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The Euler equation for an incompressible inviscid fluid in R2

in Vorticity-stream formulation

Find (ω, ψ) that solves the vorticity-stream system
ωt +∇⊥ψ · ∇ω =0 in R2 × (0,T )

ψ = (−∆)−1ω in R2 × (0,T )

ω(·, 0) =ω0 in R2

(V)

where (a, b)⊥ = (b,−a),

(−∆)−1f (x) =
1

2π

∫
R2

log
1

|x − y |
f (y) dy .

• The velocity field (Biot-Savart law).

u(x , t) = ∇⊥ψ =
1

2π

∫
R2

(y − x)⊥

|x − y |2
ω(y , t) dy

• The vorticity, ω = ∇× u = ∂xu2 − ∂yu1.
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
ωt +∇⊥ψ · ∇ω =0 in R2 × (0,T )

ψ = (−∆)−1ω in R2 × (0,T )

ω(·, 0) =ω0 in R2

(V)

• Global existence and uniqueness in L∞(R2) of the initial
value problem (V ) is known: Wolibner (1933), Yudovich (1963).
Solutions are regular if ω0 is.

• Steady states: if Ψ = Ψ(x) is a solution of

−∆Ψ =f (Ψ) in R2

then (ψ, ω), with ω(x) = f (ψ(x)). is a steady state of (V).

• Example: Liouville equation: −∆ψ = eψ = ω = 8
(1+|x |2)2 . The

Kaufmann-Scully vortex. Mass
∫
R2 ω = 8π



We want to describe the evolution of solutions to (V) with
vorticities ω(x , t) concentrated around a finite number of points.

ω(x , t) ≈
k∑

j=1

8πκjδ(x − ξj(t)), Ψ(x , t) ≈
k∑

j=1

4κj log
1

|x − ξj(t)|



Analysis of solutions with highly concentrated vorticities:
A mathematical subject with a long history: it traces back to
Helmholtz (1858), Kirchhoff (1876), Routh (1881), Lagally (1921)
C.C. Lin (1941).

Formal N-vortex singular solutions (ωs ,Ψs) of (V):

ωs(x , t) =
N∑
j=1

8πκj δ(x − ξj(t)),

where δ(x) is the Dirac mass at 0, κj ∈ R, ξj : [0,T ]→ Ω.
Since Ψs = (−∆)−1ωs , we must have

Ψs(x , t) =
N∑
j=1

κjΓ(x − ξj(t)), Γ(x) = 4 log
1

|x |
.

Formally we compute



ωs
t +∇⊥Ψs · ∇ωs

= −
N∑
j=1

8πκj∇δ(x − ξj) · ξ̇j +
N∑

i ,j=1

8πκiκj∇⊥Γ(x − ξi ) · ∇δ(x − ξj)

= 8π
N∑
j=1

[−κj ξ̇j +∇⊥x
(
8π
∑
i 6=j

κiκjΓ(x − ξi )
)
] · ∇δ(x − ξj).

We use Γ(x), δ(x) are “radial”: ∇⊥Γ(x − ξj) · ∇δ(x − ξj) = 0.
Thus (ωs .Ψs) is a “solution” of Problem (V) if and only if
(ξ1, . . . , ξN) solves the planar N-body problem

ξ̇j(t) =
∑
i 6=j

4κi
(ξi (t)− ξj(t))⊥

|ξi (t)− ξj(t)|2
, j = 1, . . . ,N. (K )



ξ̇j(t) =
∑
i 6=j

4κi
(ξi (t)− ξj(t))⊥

|ξi (t)− ξj(t)|2
, j = 1, . . . ,N. (K )

A Natural question: Are there true solutions (smooth) of (V)
with vorticities highly concentrated around a finite set of points
which evolve by a dynamics approximated by (K)?



We consider ω0ε and Ψ0ε explicit ε-regularizations of the singular
solution

ωs(x , t) =
N∑
j=1

8πκjδ(x − ξj(t)), Ψs(x , t) =
N∑
j=1

κj log
8

|x − ξj(t)|4
,

using Kaufmann-Scully vortices.

ω0ε(x , t) =
N∑
j=1

κj
ε2

W0

(
x − ξj(t)

ε

)
, W0(y) =

8

(1 + |y |2)2

Ψ0ε(x , t) =
N∑
j=1

κj log
8

(|x − ξj(t)|2 + ε2)2



We have (−∆)−1ω0ε = Ψ0ε and
∫
R2 W0 = 8π. We get

ω0ε ⇀

N∑
j=1

8πκjδ(x−ξi (t)),
1

| log ε|
|∇⊥Ψ0ε|2 ⇀

N∑
j=1

32πκ2
j δ(x−ξj(t)).

We prove that for a given colisionless solution of the system

ξ̇j(t) =
∑
i 6=j

κi4
(ξi (t)− ξj(t))⊥

|ξi (t)− ξj(t)|2
, j = 1, . . . ,N. (K )

there is a solution of system (V) that differs little from (Ψ0ε, ω0ε).



Theorem (Dávila, del Pino, Musso, Wei, ARMA 2020)

Let ξ(t) be a colisionless solution of (K) in [0,T ]. There exists a
solution (ωε,Ψε) of Problem (V) of the form

ωε(x , t) =
k∑

j=1

κj
ε2

W0

(
x − ξj
ε

)
+ φ(x , t)

Ψε(x , t) =
k∑

j=1

κj log
1

(ε2 + |x − ξj |2)2
+ ψ(x , t)

where for some 0 < σ < 1 and all (x , t) ∈ R2 × (0,T ) we have

|φ(x , t)| ≤ εσ
k∑

j=1

1

ε2
W0

(
x − ξj
ε

)
,

|ψ(x , t)|+ ε|Dxψ(x , t)| ≤ ε2.



In particular:

ωε ⇀

k∑
j=1

8πκjδ(x − ξi )
1

| log ε|
|∇Ψε|2 ⇀

k∑
j=1

8πκ2
j δ(x − ξj).

A prior result along these lines, Marchioro and Pulvirenti (1993).

Ingredients in the construction:

• Improvement of the approximation in powers of ε using elliptic
and transport equations.

• Setting up the problem as a coupled system of inner problems
near the singularities and and an outer problem more regular (the
inner-outer gluing scheme)

• A priori estimates to solve by a continuation (degree) argument.



Improving the approximation. Let Γ0(y) := log 8
(1+|y |2)2 ,

Ψ0ε(x , t) =
k∑

j=1

κjΓ0

(
x − ξj(t)

ε

)
−
κj
8π

log 8ε2

We want to solve the equation E (ω,Ψ) = 0, where

E (ω,Ψ) := ωt +∇⊥x Ψ · ∇xω, −∆xΨ = ω.

Near ξj(t) write y =
x−ξj (t)

ε . We look for a solution of the form

Ψ = Ψ0ε(x , t) + κjψ(y , t), ω =
κj
ε2

W0(y) +
κj
ε2
φ(y , t) .



In terms of the y -variable we get the expression

ε4E (ω,Ψ) =ε2φt + (−εξ̇ +∇⊥y Ψ0ε + κj∇⊥y ψ) · ∇y (W0 + φ),

−∆yψ =φ

We have

Ψ0ε(x , t) = κjΓ0(y) + ϕ(x) + O(ε2) + constant, y =
x − ξj
ε

,

ϕ(x) =
∑
i 6=j

κiΓ(x − ξi ).

By assumption ξ̇j = ∇⊥x ϕ(ξj), hence we get

−εξ̇j +∇⊥y Ψ0ε(ξj + εy) = κj∇⊥(Γ0 +R)

with R = O(ε2|y |2).



ε4E (ω,Ψ) =ε2φt + κj∇⊥y (Γ0(y) +R+ ψ) · ∇y (W0 + φ), ,

−∆yψ =φ

R =O(ε2|y |2)

Let f (u) = eu. Since W0 = f (Γ0) we find

ε4E (ω,Ψ) =ε2φt − κj∇⊥y Γ0 · ∇(∆ψ + f ′(Γ0)ψ)

+ κj∇⊥R · ∇U0 + κj∇⊥R∇φ+∇⊥ψ∇φ.

The 0-error term:

ε4E (ω0ε,Ψ0ε) = ∇⊥R · ∇W0 = O(ε2|y |−4).

We obtain a reduction in the error by solving the elliptic equation

−∇⊥y Γ0 · ∇(∆ψ + f ′(Γ0)ψ) +∇⊥R · ∇W0 = 0



After sufficiently improving the approximation we solve the
problem by a continuation (degree) argument, which near each ξj
roughly reads as

ε2φt −∇⊥Γ0·∇(∆ψ + f ′(Γ0)ψ) + Q(φ) + E (y , t) = 0

−∆ψ =φ in R2 × [0,T ]

with E = O(ε5ρ−3), Q(φ) = ∇⊥ψ∇φ, quadratic term.



A basic ingredient: A priori estimates for the linear part of the
equation under initial datum zero

ε2φt −∇⊥Γ0·∇(∆ψ + f ′(Γ0)ψ) + E (y , t) = 0

−∆ψ =φ in R2 × [0,T ]

φ(·, 0) =0 in R2

and
∫
Bδ/ε

y φ(y , t) dy = 0,
∫
R2 φ(y , t) dy = 0

‖φ(y , t)(1+|y |2)‖L2(R2) . ε−2| log ε|1/2 sup
τ∈[0,T ]

‖E (y , τ)(1+|y |2)‖L2(R2)

This allows a fixed point scheme to work when E = O(ε5ρ−3).



The generalized surface quasigeostrophic equation (SQG)
Let 1

2 < s < 1.{
ωt +∇⊥ψ · ∇ω = 0 in R2 × (0,T )

ψ = (−∆)−sω in R2 × (0,T ),

(−∆)−s f (y) = cs

∫
R2

1

|x − y |2−2s
f (y) dy



ξ̇j(t) =
∑
i 6=j

κids
(ξi (t)− ξj(t))⊥

|ξi (t)− ξj(t)|4−2s
, j = 1, . . . ,N. (Ks)

Theorem ( MD, Antonio Fernandez )

Let 0.937 ≤ s < 1. For a colisionless solution ξ(t) of the N-body
problem (Ks) there exists a solution of (SQG) such that

ω(x , t) ≈
N∑
j=1

kj
1

ε2
U0

(
x − ξj
ε

)
, U0(y) =

cs
(1 + |x |2)1+s

The proof is substantially harder.
Special case: A travelling wave solution for the case of a travelling
vortex pair: Ao, Dávila, del Pino, Musso, Wei (TAMS, 2021).



How about t → +∞?
A 4-vortex situation: (M.D., J. Davila, M. Musso, S. Parmeshwar )

There exists a solution w(x , t) in Euler 2d which approximately
looks like 2 vortex pairs travelling with constant speeds in opposite
directions.

x1

x2

+1

−1

−1

+1

ξ1

ξ2

ξ4

ξ3

w(x , t) ≈ ε−2
4∑

j=1

U(
x − ξi
ε

)(−1)i + o(1)

o(1)→ 0 as t → +∞



Nearly singular solutions for Euler in R3?

Open question: Solutions with concentrated vorticities near
curves (filaments): the Vortex filament conjecture (Helmholtz, Da
Rios, Levi-Civita 1858-1906-1931).



We consider the Euler equation in R3 in stream-vorticity
formulation

ωt + (u · ∇)ω − (ω · ∇)u = 0 ,

u = ∇× ψ, ψ(x , t) =
1

4π

∫
R3

x − y

|x − y |2
× ω(y , t)dy .

(V)

(ω = ∇× u in R3). We want to find solutions with vorticity
concentrated on a time evolving curve (filament) Γ(t) parametrized
by arclength as γ(s, t) in R3.



Vortex filament dynamics. (After Helmholtz and Kelvin) is a
solution ωε(x , t) of (V) concentrated in a tube radius ε so that

ωε(·, t) ≈ cδΓ(t)tΓ(t) as ε→ 0,

tΓ(t) tangent vector field, δΓ(t) the uniform curve Dirac measure.
1904, Da Rios formal law: Letting τ = t| log ε|, γ(s, τ)
parametrization by arclength of Γ(τ), κ curvature, then

γτ =
c

4π
(γs × γss) =

c

4π
κbΓ(τ) ,

bΓ(τ) binormal vector. This is the binormal flow of curves.

tΓ(τ)

nΓ(τ)

bΓ(τ)

Γ(τ)γ(s, τ)



The vortex filament conjecture:

Let Γ(τ) be a solution curve of the binormal flow defined in [0,T ]
for some c > 0, T > 0. For each ε > 0 there exists a smooth
solution ωε(x , t) to (V) satisfying in the distributional sense,

ωε(·,
τ

| log ε|
) ⇀ cδΓ(τ)tΓ(τ) as ε→ 0, for all 0 ≤ τ ≤ T .

Natural: To look for a solution of the form

ωε(x , τ) =
1

ε2
W0

(z
ε

)
tΓ(τ)+o(1), x = γ(τ, s)+z1bΓ(τ)+z2nΓ(τ),

This statement is only known for special curves associated to
travelling wave solutions: the thin vortex ring first found by
Fraenkel, and recently a helicoidal filament.



Examples: a helix whose horizontal section rotates at a constant
angular speed or a vertically translating circle are solutions of the
bi-normal flow of curves.



Solutions ~ω(x , y , z , t) of 3d-Euler with Helicoidal symmetry can be
obtained from a scalar function w(x + iy , t) in the form

~ω(x , y , z , t) = w(e−iz(x + iy), t/| log ε|)
[
i(x + iy)

b

]
where w(x , τ) solves{

| log ε|wτ +∇⊥ψ · ∇w = 0

−∇ · (K∇ψ) = w

K (x , y) =
1

κ2 + x2 + y2

(
κ2 + y2 −xy
−xy κ2 + x2

)
Rotating helicoidal solutions:

w(x + iy , τ) = w(e iατ (x + iy)), ψ((x + iy), τ) = ψ(e iατ (x + iy)).

The problem reduces to the elliptic equation

−∇ · (K∇ψ) = f (ψ − α

2
| log ε|(x2 + y2)) = w in R2



Special case f (u) = ε2eu. we prove:

Theorem (Dávila, del Pino, Musso, Wei, CVPDE, to appear)

There exists a solution ψε to the equation

−∇ · (K∇ψ) = ε2eψ+λ(x2+y2) in R2

such that ε2eψ−
α
2
| log ε|(x2+y2) ⇀ 8πδ(x0,0), x0 > 0, for a suitable

choice of α.

α is precisely the number that makes the ”rotating helix”

γ(s, τ) =

e
i( s√

b2+x2
0

−ατ)

(x0 + iy0)
bs√
b2+x2

0


a solution of the binormal flow



Another known solution of the binormal flow that does not change
its form in time is the vortex ring.
Axisymmetric Euler no-swirl: Cylindrical coordinates

ω(r , z , τ) = W (r , z , τ)(−y , x).

After rescaling time t = τ/| log ε|, we get
| log ε|rWτ +∇⊥(r2ψ)∇W = 0

−(ψrr + 3
r ψr + ψzz) := −∆5ψ = W

ψr (0, z , τ) = 0.



Fraenkel’s exact traveling ring solutions (1970-1972):
W (r , z , τ) = W (r , z − ατ). It solves the ellintic eequation

−αr | log ε|Wz +∇⊥(r2ψ) · ∇W = 0, −∆5ψ = W

Enough to solve −∆5ψ = F (r2(ψ − α| log ε|)).

Interaction of multiple vortex rings:



Leapfrogging Vortex-Rings Helmholtz 1858: predicted the way
two identical, coaxial vortex rings interact.
• The rings travel in the same direction. Due to their mutual
interaction, the rear ring shrinks and accelerates, and the leading
ring widens and decelerates. The rear ring then passes through the
leading ring, with this process of leapfrogging then repeating again
and again.

r1

r2

z



Aim: Mathematically justify the leap-frogging dynamics for the 3d
axisymmetric Euler flow without swirl.

| log ε|rWτ +∇⊥(r2ψ) · ∇W = 0
−(ψrr + 3

r ψr + ψzz) = W
ψr (0, z , t) = 0

Notation, for a point a in (r , z)-plane we write a = (r(a), z(a)).
We look for a solution with approximate form

W (r , z , τ) =
2∑

j=1

r(aj(τ))−1 1

ε2
j

W0

(
x − aj(τ)

εj

)

Here aj = aj(τ), εj(τ) = ε√
r(aj (τ))

, W0(y) = 8
(1+|y |2)2



Theorem [Dávila, del Pino, Musso, Wei, 2022] Let
a(t) = (a1(t), . . . , aN(t)) be a colisionless solution of the system ḃi (t) =

∑
j 6=i

(bi−bj )⊥
|bi−bj |2

− r(bi )
r2
0

(
0
1

)
bi (0) = b0

i

ai (t) =

(
r0 +

r(bi (t))√
| log ε|

, z0 +
t

r0
+

z(bi (t))√
| log ε|

)
in (0,T ). Then there exists a solution Wε of 3D axisymmetric

Euler flow (without swirl) of the form

Wε(x , t) =
N∑
j=1

1

r(aj)ε2
j

W0

(
(r , z)− aj

εj

)
+ o(1)

ε =
√
r(aj(t))εj(t).



Thanks for your attention


