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Main idea and standard results

{X 1,N , X 2,N , ...XN,N}: A system of N interacting particles

i−th particle evolution in time:

dX i,N
t = C (t,X i,N

[0,t])dt

+ A(t,X i,N
[0,t])

(
B

(
t,X i,N

[0,t],

∫
g(t,X i,N

[0,t], y)µ
N
t (dy)

)
dt + dW i

t

)
where:

µN
t =

1

N

N∑
i=1

δX i,N
[0,t]

Initial Conditions: X i ,N
0 ∼ ν0 (i.i.d)
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Main idea and standard results

Corresponding McKean-Vlasov SDE:

dXt = C (t,X[0,t])dt

+ A(t,X[0,t])

(
B

(
t,X[0,t],

∫
g(t,X[0,t], y)µt(dy)

)
dt + dWt

)
where:

µt = Law(X[0,t])

Initial Condition: X0 ∼ ν0
Propagation of Chaos: for every fixed integer k we have

L
(
X 1,N
[0,T ], X

2,N
[0,T ], ..., X

k,N
[0,T ]

)
−→ L

(
X 1
[0,T ], X

2
[0,T ], ..., X

k
[0,T ]

)
as N −→ +∞, where X 1, X 2, ...XN are i.i.d copies of X .
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Main idea and standard results

Total Variation estimate:∥∥∥∥∥L(
X 1,N
[0,T ], X

2,N
[0,T ], ..., X

k,N
[0,T ]

)
− L

(
X 1
[0,T ], X

2
[0,T ], ..., X

k
[0,T ]

)∥∥∥∥∥
TV ,(0,T )

≤ C (T )

√
k

N

In a Gaussian setting we can also bound

KL
(
L
(
X 1,N
[0,T ], X

2,N
[0,T ], ..., X

k,N
[0,T ]

)
, L

(
X 1
[0,T ], X

2
[0,T ], ..., X

k
[0,T ]

))
≥ c(T )

(
k

N

)2

For k = N: RHS of the last = O(1) ⇒ convergence of the whole
system does NOT hold in general
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Functions allowing propagation of chaos

A function FN of N arguments is said to allow propagation of chaos if

lim
N→∞

FN

(
X 1,N
t , X 2,N

t , ..., XN,N
t

)
= lim

N→∞
FN

(
X 1
t , X

2
t , ..., X

N
t

)
in distribution.

Clearly, functions FN depending nicely only on the first k particles (k
fixed positive integer) allow propagation of chaos

Propagation of chaos strong estimates involve the relative entropies
of the two systems ⇒ an FN preserving little information of the
system of its arguments is more likely to allow propagation of chaos
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Functions allowing propagation of chaos

In many cases, symmetric averages of the form:

FN

(
X 1,N
t , X 2,N

t , ..., XN,N
t

)
=

1

N

N∑
i=1

g
(
X i ,N
t

)
=

∫
g(pty)dµN

t (y)

can be shown to allow propagation of chaos, where pt is the
projection mapping a path defined on [0, t] to its value at t > 0.

Interesting question: given a function FN of the whole system{
X 1,N
t , X 2,N

t , ..., XN,N
t

}
, investigate whether it allows propagation of

chaos
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Main objective

Main objective: investigate whether noralized maxima of the form

FN

(
X 1,N
t , X 2,N

t , ..., XN,N
t

)
= max

i≤N

X i ,N
t − bNt
aNt

=

max
i≤N

X i ,N
t − bNt

aNt

allow propagation of chaos or not, where bN· and aN· are deterministic
path-valued sequences such that the weak limit of the above as
N → ∞ is non-trivial for any t ≥ 0.
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Fundamental motivation: extending extreme value theory

The set {X i ,N
t : i ≤ N} is exchangeable, but its elements are NOT

independent (not even conditionally independent).
On the other hand, the set {X i

t : i ∈ N} consists of i.i.d copies of the
value Xt of X (the solution to the McKean-Vlasov SDE) at t > 0.
Why is that important?
Answer: For an infinite i.i.d sequence X 1,X 2, . . . of random variables,
there is a complete theory for the asymptotic behaviour of normalized
maxima of the form

max
i≤N

X i − bN

aN

as N → ∞ (extreme value theory).
Therefore, if normalized maxima allow propagation of chaos, we can
also evaluate weak non-trivial limits of

FN

(
X 1,N
t , X 2,N

t , ..., XN,N
t

)
=

max
i≤N

X i ,N
t − bNt

aNt
,
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Fundamental motivation: extending extreme value theory

Extreme value theory tells us that weak non-trivial limits belong to a
family of Gumbel, Weibull and Frechet distributions

Conclusion: If normalized maxima allow propagation of chaos, we can
extend extreme value theory to particle systems with mean-field drift
interaction
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Financial motivation

Particle systems with mean-field drift interaction are used to describe
the values or the default intensities of the assets in large portfolios

The study of the top performing or the worst performing assets leads
to the study of the maxima of the particle systems
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First example

Example (Gaussian system with mean-reversion towards the average)

For A(t, x[0,t]) = σ, B(t, x[0,t], r) = −κ(xt − r)/σ, C (t, x[0,t]) = 0 and
g(t, x[0,t], y[0,t]) = yt , we obtain the system

X i ,N
t = X i

0 − κ

∫ t

0

X i ,N
s − 1

N

N∑
j=1

X j ,N
s

 ds + σW i
t , i = 1, . . . ,N,

where we assume i.i.d. N(m0, σ
2
0) initial conditions.

Used for modelling:

monetary reserves of banks
default intensities in large interbank networks.
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First example characteristics

McKean-Vlasov SDE solution X : Gaussian Ornstein-Uhlenbeck
process with constant mean m0 and time-t variance given by

σ2
t = Var(Xt) = e−2κtσ2

0 + (1− e−2κt)
σ2

2κ
.

Normalizing sequences:

bNt = m0 + σt
√
2 logN − log logN − log(4π)

aNt =
σt√

2 logN − log logN − log(4π)

Normalized maximum limiting distribution: Standard Gumbel with
CDF: F (x) = exp(−e−x)
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Second example

Example (Rank-based particle system)

For A(t, x[0,t]) =
√
2, B(t, x[0,t], r) = B(r), C (t, x[0,t]) = 0 and

g(t, x[0,t], y[0,t]) = 1{yt≤xt}, we obtain the system

dX i ,N
t = B

 1

N

N∑
j=1

1{X j,N
t ≤X i,N

t }

 dt +
√
2dW i

t , i = 1, . . . ,N,

where B(r) is a twice continuously differentiable function on [0, 1].

In the rank-based system, the drift of the i-th particle equals
B(kt/N), where kt counts the number of particles having smaller
values at any t > 0.

Rank-based systems play an important role in stochastic portfolio
theory
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Second example characteristics

McKean-Vlasov SDE:

dXt = B(Ft(Xt))dt +
√
2dWt ,

Ft(x) = P(Xt ≤ x).

Normalizing sequences: determined via standard extreme value theory
techniques*

Normalized maximum limiting distribution: Standard Gumbel with
CDF: F (x) = exp(−e−x)**

*,**: Only when Xt is stationary and B satisfies certain conditions.
Otherwise, the question is still open
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Assumptions

Assumption 1

The coefficient functions satisfy the following conditions:

A and C are uniformly bounded,

for every t > 0 and every continuous path x = x[0,t] defined on [0, t],
the function r 7→ B(t, x[0,t], r) is twice continuously differentiable,
and its first and second derivatives are bounded uniformly in (t, x).

Note that r 7→ B(t, x[0,t], r) itself need not be bounded, only its first
two derivatives. This applies to the first example we covered, where
B(t, x[0,t], r) had uniformly linear growth in r .

If the interaction function g is uniformly bounded, the growth
properties of r 7→ B(t, x[0,t], r) become irrelevant. This applies to the
first example we covered, where g is just an indicator
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Assumptions

Assumption 2 (Moment bounds)

Assume that there is a continuous function K (t) such that for all p ∈ N,
t > 0, N ∈ N, and i , j ∈ {1, . . . ,N}, one has the moment bounds

E
[
g(t,X i

[0,t],X
j
[0,t])

2p
]
≤ p!K (t)p (1)

and

E

[(∫
g(t,X i

[0,t], y)(µ
N
t − µt)(dy)

)2p
]
≤ 1

Np
p!K (t)p. (2)

Assumption 2 holds when g(t,X i
[0,t],X

j
[0,t])−

∫
g(t,X i

[0,t], y)µt(dy)
are bounded or conditionally (on X i

[0,t]) sub-Gaussian with a uniformly
bounded variance proxy. This covers a very wide range of mean-field
systems (including both of our examples).
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Changing the probability measure

Define the stochastic exponential ZN = exp(MN − 1
2⟨M

N⟩), where

MN
t =

N∑
i=1

∫ t

0
∆B i ,N

s dW i
s

and

∆B i ,N
t = B

(
t,X i

[0,t],

∫
g(t,X i

[0,t], y)µ
N
t (dy)

)
− B

(
t,X i

[0,t],

∫
g(t,X i

[0,t], y)µt(dy)
)
.

Under our assumptions, we can show that ZN is a true Martingale

Girsanov’s theorem: For a probability measure QN with dQN

dP = ZN
T ,

we have that

LQN

(
X 1
[0,T ], X

2
[0,T ], ..., X

k
[0,T ]

)
= LP

(
X 1,N
[0,T ], X

2,N
[0,T ], ..., X

k,N
[0,T ]

)
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The main result

Theorem

Suppose Assumptions 1 and 2 are satisfied and consider the laws QN

constructed above. Fix t ∈ (0, t) and suppose that for some normalizing
constants aNt , b

N
t the normalized maxima of the i.i.d. system converge

weakly to a nondegenerate distribution function Γt on R:

P
(
max
i≤N

X i
t − bNt
aNt

≤ x

)
→ Γt(x) as N → ∞, x ∈ R.

Then the normalized maxima of the interacting particle systems also
converge to Γt :

QN

(
max
i≤N

X i
t − bNt
aNt

≤ x

)
→ Γt(x) as N → ∞, x ∈ R.
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