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Phase separation in binary alloys

[Spinodal decomposition.
[_Coarsening.

Polymer mixture at ratio 70/30. Cabral,
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Phase separation in binary alloys

[Spinodal decomposition.
[_Coarsening.

Polymer mixture at ratio 70/30.

Higgins, Yerina, Magonov 2002
Phase- eld models: 9 g

[—Smooth phase eld
variable u = £1 away
from interface.

4 transitions between
+1 and —1 across
interface region of width
o, " 11

Cabral,
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Cahn-Hilliard equation

Let [R", N =1, a bounded and convex domain, @ [T, T >0 and
0<" [T u=u(x;t),

@u=-CT3 in x(0;T);
j=-M(u) ]
=="2 u+f(u);

where j is the ux, M =0 the mobility, the chemical potential and f
the homogeneous free energy.

April 2022 Oxbridge PDE Conference



Cahn-Hilliard equation

Let [R", N =1, a bounded and convex domain, @ [T, T >0 and
0<" [T u=u(x;t),

@u=-CT3 in x(0;T);
j=-M(u) ]
=="2 u+f(u);

where j is the ux, M =0 the mobility, the chemical potential and f
the homogeneous free energy. With boundary and initial conditions:

[uh=0; on@ x(0;T); (Neumann)

jth=0; on@ x(0;T); (no ux)
u(Gio)=ug on :

April 2022 Oxbridge PDE Conference



Cahn-Hilliard equation

Let [R", N =1, a bounded and convex domain, @ [T, T >0 and
0<" [T u=u(x;t),

@u=-CT3 in x(0;T);
j=-M(u) ]
=="2 u+f(u);

where j is the ux, M =0 the mobility, the chemical potential and f
the homogeneous free energy. With boundary and initial conditions:

[uh=0; on@ x(0;T); (Neumann)
jh=0; on@ x(0;T); (no ux)
u(Gio)=ug on :

Conservation of mass m(t) & f, u(x; t)dx.

April 2022 Oxbridge PDE Conference



Cahn-Hilliard equation

Let [R", N =1, a bounded and convex domain, @ [T, T >0 and
0<" [T u=u(x;t),

@u=-CT3 in x(0;T);
j=-M(u) ]
=="2 u+f(u);

where j is the ux, M =0 the mobility, the chemical potential and f
the homogeneous free energy. With boundary and initial conditions:

[uh=0; on@ x(0;T); (Neumann)
jh=0; on@ x(0;T); (no ux)
u(Glo)=ug on
Conservation of mass m(t) & f, u(x; t)dx.

Decaying energy E[u](t) & fq [§DIB+ f (u)]dx.
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Applications of Cahn-Hilliard-type models

[Fumour growth models (e.g. Cristini, Lowengrub, Wise 2009; Oden et
al. 2015)
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Applications of Cahn-Hilliard-type models

[Fumour growth models (e.g. Cristini, Lowengrub, Wise 2009; Oden et
al. 2015)

[_Motion of immiscible uids with free boundaries (e.g. Ding, Spelt,
Shu 2007; Abels, Garcke, Grun 2012 )

[_Polymer blends (e.g. De Gennes 1980, Castellano & Glotzer 1995)
[Surface di usion and electromigration in crystals and alloys (e.g.

Cahn, Elliott & Novick-Cohen 1996; Barrett, Garcke & Nurnberg 2007;
Dziwnik, Munch, Wagner 2017)
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Choice of f and M in @,u = CITM (u) L= u +f'(u)))

Double well free energy:

(1-u?)?

f(uz 5
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Choice of f and M in @,u = CITM (u) L= u +f'(u)))

Double well free energy:
(1-u?)?
2

Constant and two-sided
nonlinear mobilities:

f(u) 2

Mo(u) = 1;

M, (u) & (L -u?)y;
n CR*. Note M,(x1) = 0.
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Double well free energy:
(1-u?)?
2

Constant and two-sided
nonlinear mobilities:

f(u) 2

Mo(u) = 1;
M,(u) & (1-u?)5;
n CR*. Note M,(x1) = 0.
Elliott and Garcke 1996: Let T >0 and up CHI*( ) with gk 1 plus

assumptions on entropy of initial data. Then there exists a weak solution
WElin x(0;T).
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Choice of f and M in @,u = CITM (u) L= u +f'(u)))

Double well free energy:
(1-u?)?
2

Constant and two-sided
nonlinear mobilities:

f(u) 2

Mo(u) = 1;
M, (u) & (L -u?)y;
n CR*. Note M,(x1) = 0.

Elliott and Garcke 1996: Let T >0 and up CHI*( ) with gk 1 plus
assumptions on entropy of initial data. Then there exists a weak solution
WElin x(0;T).

Are there n >0 that ensure Wk 1? What happens when WO 1?
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Thin Im models

Cahn-Hilliard equation in one dimension, [R,
@tu = @X[M (u)(_"2@xxxu + @Xf ’(U))]:
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Thin Im models

Cahn-Hilliard equation in one dimension, [R,
@tu = @X[M (u)(_"2@xxxu + @Xf ’(U))]:

Take M =M,(u) =(1-u®)7 and h F1-u=0. If AOIdhen the
highest order terms are

@th = _"22n@x [hn@xxxh];

which models thin liquid Ims driven by surface tension.
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Thin Im models

Cahn-Hilliard equation in one dimension,” R,
@u @ M ue "’@uu  @f Suee :

TakeM M,"ue "1 u?"andh 1 uCO. If 8P 1 then the
highest order terms are

@ **2'@ h"@uh ;
which modelghin liquid Ims driven by surface tension. We couple it
with

@h'x;s 0, @xh'x;* Ox>@ (Neumann);
h°x; e 1, @h'x;e p; p>R;x>@  (Fixed Pressure)
h" ;0 hg; on ;

Are theren AO that ensureh A0? What happens ih  0?
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Thin Im models

Constantin, Elgindi, Nguyen, Vicol 20181 1. Pressure b.c. witlp A2.
The solution must pinch o in either nite or in nite time, i.e.

inf h 0
1,1 O;Te

for someT >"0;2 . Any solution that touches 0 in nite time becomes
singular.

April 2022 Oxbridge PDE Conference 6



Thin Im models

Constantin, Elgindi, Nguyen, Vicol 20181 1. Pressure b.c. witlp A2.
The solution must pinch o in either nite or in nite time, i.e.

inf h 0
1,1 O;Te

for someT >"0;2 . Any solution that touches 0 in nite time becomes
singular.

Bertozzi, Brenner, Dupont and Kadano 1994: " 1;1e. Pressure b.c.
with p A2. In nite time pinch-o is possible forn A1-2. Two di erent
leading order pro les for cases2 @n @2 andn A2.

April 2022 Oxbridge PDE Conference 6



Thin Im models

Constantin, Elgindi, Nguyen, Vicol 20181 1. Pressure b.c. witlp A2.
The solution must pinch o in either nite or in nite time, i.e.

inf h 0
1,1 O;Te

for someT >"0;2 . Any solution that touches 0 in nite time becomes
singular.

Bertozzi, Brenner, Dupont and Kadano 1994: " 1;1e. Pressure b.c.
with p A2. In nite time pinch-o is possible forn A1-2. Two di erent
leading order pro les for cases2 @n @2 andn A2.

Bernis and Friedman 1990: 1;1.. Neumann b.c.hy CO plus
assumptions on entropy of initial data.

L If 1 @n @2, thenh CO.
L If2Bn @4, thenhCO and”h 0e has zero measure.
L If nC4, thenh A0 and the solution is unique.
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Back to Cahn-Hilliard: Stationary 2D radial case witflg"ue 1

Solutionu™x;te is expected to converge to a stationary solutifi xe

"2y f®U.e ¢ >R:
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Back to Cahn-Hilliard: Stationary 2D radial case witflg"ue 1

Solutionu™x;te is expected to converge to a stationary solutifi xe

"2y f®U.e ¢ >R:

Niethammer 1995: Existence and uniqueness (ugto U) of small
energy stationary solutions.

"og™"S
O™"e T A

IO
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Time dependent 2D radial case witkl,"us "1 u?e?

Lee, Manch, Sasli 2016; Pesce, Manch 2021: F&;B 1, numerical
solutionu develops a maximum less but close to 1 near interface, where
MZAU' 0.

£
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Time dependent 2D radial case witkl,"us "1 u?e?

Lee, Manch, Sasli 2016; Pesce, Manch 2021: F&;B 1, numerical
solutionu develops a maximum less but close to 1 near interface, where
MZAU' 0.

S
£

Doestouchdown happen in nite or in nite time? Does it depend om?
Does it have some underlying structure?
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Time dependent 2D radial case B1"0e

Letu u'r;te,
@u Fl@ArMAu'@ °;
"2%@”r@u- fFue;
for “r;te >70;1« "0;2 e, under boundary conditions

@u 1l;te O0; MU 1ltee@ “1;te O;
@u'0te 0, @ "0O;te O
u'r;0e  ugp're;

and where
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Time dependent 2D radial case B1"0e

Letu u'r;te,
@u Fl@ArMAu'@ °;
"2%@”r@u- fFue;
for “r;te >70;1« "0;2 e, under boundary conditions

@u 1l;te O0; MU 1ltee@ “1;te O;
@u'0;te 0 @ ~O;te O
u'r;0e  ugp're;

and where
~1 U2‘2
foue > Mu "1 u®" nCO
Consider the Lebesgue and Sobolev spaces of radial functigyBe,
HP " Be.
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Time dependent 2D radial case B B;"0e

Theorem (Novick-Cohen and Pesce 2022+)

Let ug >Hr1adABo with 3B 1 plus assumptions on entropy of initial data.

Then8§u>L*" O;T ;HZ;"Bes 9L "0;T;H.L "B 9C" O;T ;L7 Bee
such that 8B 1
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Time dependent 2D radial case B B;"0e

Theorem (Novick-Cohen and Pesce 2022+)

Let ug >Hr1adABo with 3B 1 plus assumptions on entropy of initial data.

Then8u>L%" O;T ;HZ "Bee 9L" "0;T;HL "Bes 9C" O;T ;L2 " Bes

rad rad rad

such that®5B1 and

T T 1
So T Tte; @UTteeyiy 1 dt So So j@ rdrdt;

STsl' drd stsll@ @ue @M drd
rdrdt " @ r@ue @ M"ue e rdrdt
0 S ! o Yo r

T 1
S, S, “Mf %Fue@u rdrdt;

forall >L2°0;T;H.,"Bee and >L2°0;T;Hl,"Bee 9L "Br+ such

al

that — >L?"°0;T;L2, Bes which satisfy 0on"0;Te ~0;1e.

rad
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Time dependent 2D radial case B B;"0e

Theorem (Novick-Cohen and Pesce 2022+)

Let ug >Hr1adABo with 3B 1 plus assumptions on entropy of initial data.

Then8u>L%" O;T ;HZ "Bee 9L" "0;T;HL "Bes 9C" O;T ;L2 " Bes

rad rad rad

such that®5B1 and

T T 1
So T Tte; @UTteeyiy 1 dt 50 50 j@ rdrdt;

STsl' drd stsll@ @ue @M drd
rdrdt " @ r@ue @ M"ue e rdrdt
0 S ! o Yo r

T 1
S, S, “Mf %Fue@u rdrdt;

forall >L2°0;T;H.,"Bee and >L2°0;T;Hl,"Bee 9L "Br+ such

al

that — >L?"°0;T;L2, Bes which satisfy 0on"0;Te ~0;1e.

rad

L Based on proof by Elliott and Garcke 1996.
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Time dependent 2D radial case B B;"0e

Theorem (Novick-Cohen and Pesce 2022+)

Let up >HL "Be with $,SB 1 plus assumptions on entropy of initial data.

rad
Then8u>L*" 0T [HZ,"Be+ 9L" "0;T HL "Be+ 9C™ 0T ;L% Ber

such that®5B1 and

T T 1
So T Tte; @UTteeyiy 1 dt So So j@ rdrdt;

STsl' drd stsll@ @ue @M drd
rdrdt " @ r@ue @ M"ue e rdrdt
0 S ! o Yo r

T 1
S, S, “Mf %Fue@u rdrdt;

forall >L2°0;T;H.,"Bee and >L2°0;T;Hl,"Bee 9L "Br+ such
that — >L?"°0;T;L2, Bes which satisfy 0on"0;Te ~0;1e.
L Based on proof by Elliott and Garcke 1996.
L Work in progress: Generalizations. FoiC4, "2uS 1+ has zero
measure.
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What happensiu 1 (v 0)in nite time?

We will work from now on withv"r;te 1 u’r;te, which satis es

@v %@ v 2 v-”@<"2F1@”r@v- 2 ve 3vZ 2vee
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What happensiu 1 (v 0)in nite time?

We will work from now on withv"r;te 1 u’r;te, which satis es

Qv %@ v 2 v-“@<"2F1@“r@v. 27 v3 3y2 2yee

Proposition
Let1Bn@ andv'r;te AOfor all “r;te >~0;1¢ "0;t*s be a smooth
solution. If there existe¥ @ such that

lim min v'r;te |lim Vv T te;te O:
t t¥r>"0;1e tot*

Then v becomes singular at that point in the following sense:

t¥

So @nqV'rite @y Vrite @vr;te | - dt 2
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What happensiu 1 (v 0)in nite time?

We will work from now on withv"r;te 1 u’r;te, which satis es

Qv %@ v 2 v-“@<"2F1@“r@v. 27 v3 3y2 2yee

Proposition
Let1Bn@ andv'r;te AOfor all “r;te >~0;1¢ "0;t*s be a smooth
solution. If there existe¥ @ such that

lim min v'r;te |lim Vv T te;te O:
t t¥r>"0;1e tot*

Then v becomes singular at that point in the following sense:

t¥

So @nqV'rite @y Vrite @vr;te | - dt 2

L Following similar thin- Im results by Constantin et. al. 2018 and
Bertozzi et. al. 1994.
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What happens as 2 ? Numerical solution fon 0

HereV 1 U, U is the solution to the constant mobility stationary
problem.
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What happens as 2 ? Numerical solution fon 4

|
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/
£
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What happens as$

a ? Numerical solution fon 4

|
—

/
£

" Central' TD

April 2022

Oxbridge PDE Conference

13



In nite time touchdown: Casen A2

Pesce and Mdanch 2021: We can useatched asymptotics to obtain an
asymptotic composite expansion with in nite time touchdown, namely

Veomp T;t®  Veentral 'T;t®  Viouchdown I;te

A ~ 2.
At 20T rge AT rpe;

whereA ; A are constants xed by matching.
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In nite time touchdown: Casen A2

Pesce and Mdanch 2021: We can useatched asymptotics to obtain an
asymptotic composite expansion with in nite time touchdown, namely

Veomp T;t®  Veentral 'T;t®  Viouchdown I;te

A ~ 2.
At 20T rge AT rpe;

whereA ; A are constants xed by matching.

Matching at leading order gives

1 ~ ~
Veentral T 77 % g Ie; r>"0;rge;
U rry ~a . .
Viouchdown t 71" o *; T >7a a2 .
t 2°n 1.
1 U¢AI"; I’>AI’¢;1';

where o, ' ¢ and U; solve ODEs.
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In nite time touchdown: Casen B2

PhD Thesis, Pesce 2022: We can nd consistent asymptotic expansions
only for 1-2 @n B2. Similar to the previous case but now

VcompAr;t‘ Veentral T;t®  Viouchdown I T®
DN % -~ 2
At n'r rge” ATro orges;

whereA ; A are constants xed by matching.
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In nite time touchdown: Casen B2

PhD Thesis, Pesce 2022: We can nd consistent asymptotic expansions
only for 1-2 @n B2. Similar to the previous case but now

VcompAr;t‘ Veentral T;t®  Viouchdown I T®
1, S ~ 2
At 2 r rge™t A1 rpes;
whereA ; A are constants xed by matching.

Matching at leading order gives

1. ~

Veentral T 7 o Ie; r>"0;rge;
Zni rry

Viouchdown T "0+ " g e e >7a ;a8 e
t o

1 Ui're; r>"ry;1e;

where g, ' o and U; solve ODEs.
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Conclusion

In the setting of radial solutions in 2D unitary ball:

L For n AQ, existence and regularity of bounded radially symmetric
weak solutions.
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Conclusion

In the setting of radial solutions in 2D unitary ball:

L For n AQ, existence and regularity of bounded radially symmetric
weak solutions.

L FornC1, nite time touchdown implies singularity formation.

L For n A1-2 there is a numerical solution that converges in long time
to an asymptotic approximation within nite time touchdown
Di erent leading order expansions for2 @n B2 and 2@n.

L Informed by research othin- Im equations .
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Sobolev spaces of radially symmetric functions

Theorem (Rellich-Kondrachov Compactness Theorem)

AssumeU is a bounded open subset RN, @J is C* and letN Amp C1.

N .

If 1Bq @Npr- then the embedding
W™P e 0 LI"Us

is compact.

Theorem (Guedes et. al. 2011)
LetN Ampand AO. If 1Bq @’)NNW then the embedding

WTP"Be 0 LY°B; SS-

rad

is compact.
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Sobolev spaces of radially symmetric functions

Proposition (PhD thesis, Pesce 2022)
LetN mpand CO. Then the embedding

WP Be 0 LI"B; XS+

is compact for alll Bq @ .
Taking 1,m 1andp 2, we obtain

Hi,"Be0 L% "B

rad

is compact for all IBq @ . In particular, we takeq 2.
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Casen A2

Central region:

- 1 - -
2@ ore F@P ofree 4 ore

@ o 0e
0 e
wherec; is a constant.
Annular region;
"2d  dUs
R r . fCEU L[] '
r dr ¢ dr :
Ufle 0O

U¢Ar¢° 1; Ufr:c- 0;

where is a constant.
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Case n>2

Touchdown region:

70()@  To()=J;  [{-oo;00);
JA(= )"

t Doy T B-thoitt ifn<3;

To( )= + 557 In(= ) +B_ +hot: if n=3; as
+B_+h:o:t: if n>3;

*o( )=A; 2+B, +Ci+hoit:as - oo

where AL, B+, C., J are constants.
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Casen<?2

Central region:

1 2"
—~ 0

1 .
n _T@r [r g@r ("2 (@rr 0+F@r 0)_4 0)] In (O,I'|i|
o(r) =a; +ayr’+ho:t:;; asr - 0;

o(r) :ag(rgr)% +a;(rgr) 2D +hoit;; asr - ro

where a;, a5, a;, a; are constants.
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Casen<?2

Touchdown region:
0()@ To()=J;  [roo;e0);

A
as - +oo, let n 22 we have

(- )<n+1> +B(- ) +C(- ) 172(7“?1;20“1 +hoit: L<n<ng
-0 )= (- )2*+B_x1*In\(/X)+C_x1 = +h:o:t: n=ncn
0 - +1—  —8n2+20n+ —n
- )ﬁﬂa_(— )44 gy +C_(- )§T1+h:o:t: NnEsn<2;
=2;
where )

—J(n+1)3 n+l .

“Bacme-m"
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Casen<?2

On the other hand, as - +oco, we have
-J 3—2n i

AT (2n—1)(2n—-2)(2n-3) +B+ +Cy

2422 (In( )+1)+Bs +Cy;

A+
2 —J 32 .
+Bs + AT (2n—1)(2n-2)(2n-3) +Cy;

2+By +—25In( ) +Cy;
2AY

—J 3—2n

2 .
+Bs +Cit AT (2n—1)(2n-2)(2n-3)’

where Ax, B+, C+, J are constants.
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Case n > 2: Self-similarity

In the central region, we speci cally make the ansatz
v(r;t) O (r)
with some <0.

This assumption can be tested by plotting v (r;t)/v(0;t) for di erent
times, we expect all curves to collapse near r = 0.
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Case n > 2: Self-similarity

Similarly, in the touchdown region,

v mr; B

for some , <0. We test this ansatz by rst scaling
1/2
z V@@ @(@rrV(rit)
min v (t)’ v(rg
min v(©) (rit)
Note that [—lwhen t is large.

This assumption can be tested by plotting w as a function of
di erent times, we expect all curves to collapse near r = r

) (r-T®):

for
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Case n > 2: Self-similarity

5
——t=10" 500 |——t=10"
,,t:mg =101
4 t=10 t=10" |
Lt=108 400 =108 !
— — t=10" t =104 !
t=10% 3 300 t =101
200

0 005 01 015 0.2
T

Left: Central region rescaled according to r vs. v(r;t)/v(0;t) for di erent
times. Right: Rescaled touchdown region, w vs . For n=4.
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Case n > 2: Similarity coe cients

To obtain the coe cients we note that, for example in the central region,

log(v(0;t)) Clag( (0)) + log(t):

- 5 s 0o 5 10 15
log(t) log(t) log(t)

dlog(v(0;)))
dlog(t)
=5.

vs log(t) for nal time 10*° and (left) n = 3, (middle) n = 4, (right)

1
2(n-1)
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Case n > 2: Similarity coe cients

Same for

5 5 - 5
log(t) log(t) log(t)
W vs log(t) for nal time 10*° and (left) n =3, (middle) n = 4,
(right) n =5.
1
[Q——
(n-1)
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Case n > 2: Similarity coe cients

For note

e (o) CB72 0 ~():
Moreover, when t is large

(r;t) OO, v (r;t):

8
log(t)

Left: Log-log for (F;t)/"? and @,V (F;t), Right: Derivative of (left) for n=4
and " = 0:05.
1

2 DIEG
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