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Phase separation in binary alloys

> Spinodal decomposition.

» Coarsening.

Polymer mixture at ratio 70/30. Cabral,
Higgins, Yerina, Magonov 2002
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Phase separation in binary alloys

> Spinodal decomposition.

» Coarsening.

Polymer mixture at ratio 70/30. Cabral,
Higgins, Yerina, Magonov 2002

Phase-field models:

» Smooth phase field [
variable u ~ 1 away
from interface. =0

> u transitions between
+1 and -1 across
interface region of width

O(e), e < 1. 0 0.5 1
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Cahn-Hilliard equation

Let Qc RN, N> 1, a bounded and convex domain, 9Q ¢ C*!, T >0 and
O<e«x1, u=u(x,t),
atU:_V'L ian(()? T)a
j: —M(U)Vu,
p=—-e2Au+f(u),

where j is the flux, M > 0 the mobility, p the chemical potential and f
the homogeneous free energy.
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Cahn-Hilliard equation

Let Qc RN, N> 1, a bounded and convex domain, 9Q ¢ C*!, T >0 and
O<e«x1, u=u(x,t),
Oru=-V-j, inQx(0,T),
j: —M(U)Vu,
p=—*Au+f(u),

where j is the flux, M > 0 the mobility, p the chemical potential and f
the homogeneous free energy. With boundary and initial conditions:

Vu-n=0, ondQx(0,T), (Neumann)
j'n=0, ondQx(0,T), (noflux)
u(,0)=uy on Q.

Conservation of mass m(t) := [, u(x, t)dx.
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Cahn-Hilliard equation

Let Qc RN, N> 1, a bounded and convex domain, 9Q ¢ C*!, T >0 and
O<e«x1, u=u(x,t),
Oru=-V-j, inQx(0,T),
j: —M(U)Vu,
p=—*Au+f(u),

where j is the flux, M > 0 the mobility, p the chemical potential and f
the homogeneous free energy. With boundary and initial conditions:

Vu-n=0, ondQx(0,T), (Neumann)
j'n=0, ondQx(0,T), (noflux)
u(,0)=uy on Q.

Conservation of mass m(t) := [, u(x, t)dx.

Decaying energy E[u](t) := [q [§|Vu|2 + f(u)] dx.
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Applications of Cahn-Hilliard-type models

» Tumour growth models (e.g. Cristini, Lowengrub, Wise 2009; Oden et
al. 2015)
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Applications of Cahn-Hilliard-type models

Tumour growth models (e.g. Cristini, Lowengrub, Wise 2009; Oden et
al. 2015)

Motion of immiscible fluids with free boundaries (e.g. Ding, Spelt,
Shu 2007; Abels, Garcke, Griin 2012 )

Polymer blends (e.g. De Gennes 1980, Castellano & Glotzer 1995)
Surface diffusion and electromigration in crystals and alloys (e.g.

Cahn, Elliott & Novick-Cohen 1996; Barrett, Garcke & Niirnberg 2007;
Dziwnik, Miinch, Wagner 2017)
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Choice of f and M in O;u =V - (M(u)V(-e?Au+ f'(u)))

f(u)
Double well free energy: \ /
1- 2\2
f(u) = %
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Choice of f and M in Q;u=V - (M(u)V(-e?Au+ f'(u)))

f(u)
Double well free energy: \

(1-u?)?

f(u):= 5

Constant and two-sided
nonlinear mobilities:

MO(U) = 17 7 /7

M,(u) = (1 - u?)",
neR*. Note M,(£1) =0.
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Choice of f and M in Q;u=V -

(M(u)V(-2Au+ f'(u)))

Double well free energy:
_ U2)2

f(u):= 5

Constant and two-sided
nonlinear mobilities:

MO(U) = 17
Ma(u) 1= (1- 27,
neR*. Note M,(£1) =0.

Elliott and Garcke 1996: Let
assumptions on entropy of in
luf<1in Q2x(0,T).

\ f(w)

-1.5 -0.5 0.5

T >0 and ug € H*(Q) with |ug| < 1 plus

itial data. Then there exists a weak solution
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Choice of f and M in Q;u=V -

(M(u)V(-2Au+ f'(u)))

Double well free energy:
_ U2)2

f(u):= 5

Constant and two-sided
nonlinear mobilities:

MO(U) = 17
Ma(u) 1= (1- 27,
neR*. Note M,(£1) =0.

Elliott and Garcke 1996: Let

\ f(w)

-1.5 -1 -0.5 0 0.5 1

T >0 and ug € H*(Q) with |ug| < 1 plus

assumptions on entropy of initial data. Then there exists a weak solution

luf<1in Q2x(0,T).

Are there n > 0 that ensure |u| < 17
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Choice of f and M in Q;u=V -

(M(u)V(-2Au+ f'(u)))

Double well free energy:
_ U2)2

f(u):= 5

Constant and two-sided
nonlinear mobilities:

MO(U) = 17
Ma(u) 1= (1- 27,
neR*. Note M,(£1) =0.

Elliott and Garcke 1996: Let

\ f(w)

-1.5 -1 -0.5 0 0.5 1

T >0 and ug € H*(Q) with |ug| < 1 plus

assumptions on entropy of initial data. Then there exists a weak solution

luf<1in Q2x(0,T).

Are there n > 0 that ensure |u| < 17 What happens when |u| - 17
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Thin film models

Cahn-Hilliard equation in one dimension, 2 c R,
Ort = O [M(u)(—€%D et + O f'(1))].
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Cahn-Hilliard equation in one dimension, 2 c R,
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Take M = M,(u) = (1-v?)" and h:=1-u>0. If |h| < 1 then the
highest order terms are
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which models thin liquid films driven by surface tension.
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Ort = O [M(u)(—€%D et + O f'(1))].
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Thin film models

Cahn-Hilliard equation in one dimension, 2 c R,
Ort = O [M(u)(—€%D et + O f'(1))].

Take M = M,(u) = (1-v?)" and h:=1-u>0. If |h| < 1 then the
highest order terms are

Oth = —€%2"0, [h"Dpech],

which models thin liquid films driven by surface tension. We couple it
with
Oxh(x,-) =0, Owxh(x,)=0,x€dQ (Neumann) ,
h(x,") =1, Owh(x,")=p, peR, xedQ (Fixed Pressure) ,
h(-,0) =hg, on Q,

Are there n> 0 that ensure h > 07 What happens if h — 07
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Thin film models

Constantin, Elgindi, Nguyen, Vicol 2018: n=1. Pressure b.c. with p> 2.
The solution must pinch off in either finite or infinite time, i.e.

inf _ h=0,
[-1,1]x[0,T)

for some T € (0,00]. Any solution that touches 0 in finite time becomes
singular.
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Constantin, Elgindi, Nguyen, Vicol 2018: n=1. Pressure b.c. with p> 2.
The solution must pinch off in either finite or infinite time, i.e.

inf  h=0
[-1,1]x[0,T)

for some T € (0,00]. Any solution that touches 0 in finite time becomes
singular.

Bertozzi, Brenner, Dupont and Kadanoff 1994: Q = (-1,1). Pressure b.c.
with p > 2. Infinite time pinch-off is possible for n > 1/2. Two different
leading order profiles for cases 1/2<n<2 and n>2.
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Thin film models

Constantin, Elgindi, Nguyen, Vicol 2018: n=1. Pressure b.c. with p> 2.
The solution must pinch off in either finite or infinite time, i.e.

inf  h=0
[-1,1]x[0,T)

for some T € (0,00]. Any solution that touches 0 in finite time becomes
singular.

Bertozzi, Brenner, Dupont and Kadanoff 1994: Q = (-1,1). Pressure b.c.
with p > 2. Infinite time pinch-off is possible for n > 1/2. Two different
leading order profiles for cases 1/2<n<2 and n>2.

Bernis and Friedman 1990: Q = (-1,1). Neumann b.c. hg >0 plus
assumptions on entropy of initial data.

» If 1<n<2, then h>0.
» If2<n<4, then h>0 and {h=0} has zero measure.

> If n>4, then h >0 and the solution is unique.
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Back to Cahn-Hilliard: Stationary 2D radial case with Mp(u) =1

Solution u(x, t) is expected to converge to a stationary solution U(x)

-2AU+ ' (U) = e, e € R.
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Back to Cahn-Hilliard: Stationary 2D radial case with Mp(u) =1

Solution u(x, t) is expected to converge to a stationary solution U(x)

-2AU+ ' (U) = e, e € R.

Niethammer 1995: Existence and uniqueness (up to U — —U) of small
energy stationary solutions.
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Back to Cahn-Hilliard: Stationary 2D radial case with Mp(u) =1

Solution u(x, t) is expected to converge to a stationary solution U(x)

-2AU+ ' (U) = e, e € R.

Niethammer 1995: Existence and uniqueness (up to U — —U) of small
energy stationary solutions.

15

ellog(e)]
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0.5
U o

-05

-1 I O(e)
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Time dependent 2D radial case with M,(u) = (1 - u?)?2

Lee, Miinch, Siili 2016; Pesce, Miinch 2021: For |up| < 1, numerical
solution u develops a maximum less but close to 1 near interface, where
MQ(U) ~ 0

T --- u(r,0) (initial cndition)| |
— u(r,t)
u |
o- Y T
1.01 T
[ i
L [
[0.99 : :
1 0 ‘ ! ). | ‘ ) —
0 0.5 1
re r
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Lee, Miinch, Siili 2016; Pesce, Miinch 2021: For |up| < 1, numerical
solution u develops a maximum less but close to 1 near interface, where
MQ(U) ~ 0

T --- u(r,0) (initial cndition)| |
— u(r,t)
u |
o- Y T
1.01 T
[ i
L [
[0.99 : :
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Time dependent 2D radial case with M,(u) = (1 - u?)?2

Lee, Miinch, Siili 2016; Pesce, Miinch 2021: For |up| < 1, numerical
solution u develops a maximum less but close to 1 near interface, where
MQ(U) ~ 0

T --- u(r,0) (initial cndition)| |
— u(r,t)
u |
o- Y T
1.01 T
[ i
L [
[0.99 : :
1 0 ‘ ! ‘ ). L e —
0 0.5 1
re r

Does touchdown happen in finite or infinite time? Does it depend on n?
Does it have some underlying structure?
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Time dependent 2D radial case in B = B;(0)

Let u=u(r,t),
Oru :18, (rM(u)Or ),
r

1
w=—e>=0, (ro,u) + f'(u),
r
for (r,t) € (0,1) x (0, 00), under boundary conditions

Oru(l,t) =0, M(u(1,t))0,u(1,t) =0,
Oru(0,t) =0, 9O,u(0,t) =0,
u(r,0) = uo(r),
and where

f(u)= u, M(u)=(1-u®)?, n>0.
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Time dependent 2D radial case in B = B;(0)

Let u=u(r,t),
Oru :18, (rM(u)Or ),
r

1
w=—e>=0, (ro,u) + f'(u),
r
for (r,t) € (0,1) x (0, 00), under boundary conditions

Oru(l,t) =0, M(u(1,t))0,u(1,t) =0,
Oru(0,t) =0, 9O,u(0,t) =0,
u(r,0) = uo(r),
and where

f(u)= u, M(u)=(1-u®)?, n>0.

Consider the Lebesgue and Sobolev spaces of radial functions L2 ,(B),
H2y(B).
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Time dependent 2D radial case in B = B;(0)

Theorem (Novick-Cohen and Pesce 2022+)

Let ug € HY ,(B) with |ug| < 1 plus assumptions on entropy of initial data.

Then 3u € L2([0, T); H2,(B)) 1 L™ (0, T; Hay(B)) 0 C([0. TT; L2,,(B))
such that |u| <1
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Time dependent 2D radial case in B = B;(0)

Theorem (Novick-Cohen and Pesce 2022+)

Let ug € HY ,(B) with |ug| < 1 plus assumptions on entropy of initial data

Then 3u € L2([0, T1; H2,4(B)) 1 L= (0, T: Hiy(B)) n C([0, TT; L2,,(B))
such that |u|<1 and

T T 1
[O (C(t)78tu(t))H17H71dt=—‘/(; foja,grdrdt,

T 1 T 11
[ [ i rdrde == [ [0 20, (r0,u) 0, (M(u)) rdrd
T 1
+f0 fo (MF") ()0, ut) rdrdt,

for all ¢ € L2(0, T; HX /(B)) and ¢ € L?(0, T; H: ,(B)) n L= (Bt) such

that £ € 12(0, T; L2, ,(B)) which satisfy 1) =0 on (0, T) x {0,1}.
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such that |u|<1 and
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that £ € 12(0, T; L2, ,(B)) which satisfy 1) =0 on (0, T) x {0,1}.

> Based on proof by Elliott and Garcke 1996.
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Time dependent 2D radial case in B = B;(0)

Theorem (Novick-Cohen and Pesce 2022+)
Let ug € HY ,(B) with |ug| < 1 plus assumptions on entropy of initial data

Then 3u € L2([0, T1; H2,4(B)) 1 L= (0, T: Hiy(B)) n C([0, TT; L2,,(B))
such that |u|<1 and

T T 1
[O (C(t)78tu(t))H17H71dt=—‘/(; foja,grdrdt,

T 1 T 11
[ [ i rdrde == [ [0 20, (r0,u) 0, (M(u)) rdrd
T 1
+f0 fo (MF") ()0, ut) rdrdt,

for all ¢ € L2(0, T; HX /(B)) and ¢ € L?(0, T; H: ,(B)) n L= (Bt) such
that £ € 12(0, T; L2, ,(B)) which satisfy 1) =0 on (0, T) x {0,1}.
> Based on proof by Elliott and Garcke 1996.

» Work in progress: Generalizations. For n >4, {|u| =1} has zero
measure.
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What happens if u - 1 (v - 0) in finite time?

We will work from now on with v(r,t):=1-u(r,t), which satisfies

v =20, [rvg(z —v)o, (5213, (rOw) +2(—v3 +3v2 2v))] .
r r
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What happens if u - 1 (v - 0) in finite time?

We will work from now on with v(r,t):=1-u(r,t), which satisfies
1 n n 21 3 2
Orv =-=0, [rv+ 2-v)io, (5 =0, (ropv) +2(-v> +3v° - 2v))] .
r r
Proposition

Let 1< n<oo and v(r,t) >0 for all (r,t) e
solution. If there exists t* < oo such that

(0,1) x (0,t*) be a smooth

I t) = I t),t) =0.
th:*rEr\(w(;n)v(r ) = im v(7(t),t) =

Then v becomes singular at that point in the following sense:

t*
fo [Drr V(F, ) + Dy (1, ) + Dy V(. 1),y dE = +o0.
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What happens if u - 1 (v - 0) in finite time?

We will work from now on with v(r,t):=1-u(r,t), which satisfies
1 n n 21 3 2
Orv =-=0, [rv+ 2-v)io, (5 ;3, (ro,v) +2(-v> +3v° - 2v))] .
r
Proposition

Let 1< n<oo and v(r,t) >0 for all (r,t) e
solution. If there exists t* < co such that

(0,1) x (0,t*) be a smooth

I t) = I t),t) =0.
th:*rg(w(;n)v(r ) = im v(7(t),t) =

Then v becomes singular at that point in the following sense:

t*
fo [Drr V(F, ) + Dy (1, ) + Dy V(. 1),y dE = +o0.

> Following similar thin-film results by Constantin et. al. 2018 and
Bertozzi et. al. 1994.

April 2022 Oxbridge PDE Conference



What happens as t — c? Numerical solution for n =0

Here V =1- U, U is the solution to the constant mobility stationary
problem.
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What happens as t — o? Numerical solution for n =4
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What happens as t — o? Numerical solution for n =4

Central
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What happens as t — o? Numerical solution for n =4

15+

v(r,0)
v(r, 101%)
— — w(r,10M) ||
— - v(r, 1019)
-------- V()

05

et
Central = TD
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What happens as t — o? Numerical solution for n =4

15+

v(r,0)
v(r, 101%)
— — w(r,10M) ||
— - v(r, 1019)
-------- V()
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Infinite time touchdown: Case n> 2

Pesce and Miinch 2021: We can use matched asymptotics to obtain an
asymptotic composite expansion with infinite time touchdown, namely

Vcomp(r7 t) ::Vcentral(r, t) + Vtouchdown(ra t) +

At (r-r.)_—A(r-r)2,

where A_, A, are constants fixed by matching.
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Infinite time touchdown: Case n> 2

Pesce and Miinch 2021: We can use matched asymptotics to obtain an
asymptotic composite expansion with infinite time touchdown, namely

Vcomp(r7 t) ::Vcentral(r, t) + Vtouchdown(ra t) +

At (r-r.)_—A(r-r)2,

where A_, A, are constants fixed by matching.

Matching at leading order gives

1
Veentral ~t 20D ¢O(r)7 re (07 r*)7
_ 1 r—1r.
Viouchdown ~t "1 900(77)a n:= _ 1* ) UAS (—OO, +OO)7
t 20D
~1-U.(r), re(re,1),

where 19, ¢ and U, solve ODEs.
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Infinite time touchdown: Case n<?2

PhD Thesis, Pesce 2022: We can find consistent asymptotic expansions
only for 1/2 < n < 2. Similar to the previous case but now

Vcomp(ra t) ::Vcentra/(rw t) + Vtouchdown(r; t) +

—A_t’%(rf r )T = A(r—r)?,

where A_, A, are constants fixed by matching.
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Infinite time touchdown: Case n<?2

PhD Thesis, Pesce 2022: We can find consistent asymptotic expansions
only for 1/2 < n < 2. Similar to the previous case but now

Vcomp(ra t) ::Vcentra/(rw t) + Vtouchdown(r; t) +

—A,t’%(rf r)T = A (r—r)3,

where A_, A, are constants fixed by matching.

Matching at leading order gives

_1
Veentral ~t "'(/JO(r); re (07 I’*),
_ 2(n+1) r—r.
Vtouchdown ~t "D QDO(T])’ n= (7,,4_1*)7 ne (_007 +OO),
tin(Zn—l)
Nl_U*(r)7 re(r,,,l),

where g, o and U, solve ODEs.
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Conclusion

In the setting of radial solutions in 2D unitary ball:

> For n> 0, existence and regularity of bounded radially symmetric
weak solutions.
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In the setting of radial solutions in 2D unitary ball:

> For n> 0, existence and regularity of bounded radially symmetric
weak solutions.

» For n>1, finite time touchdown implies singularity formation.

» For n>1/2 there is a numerical solution that converges in long time
to an asymptotic approximation with infinite time touchdown.
Different leading order expansions for 1/2<n<2 and 2< n.
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Conclusion

In the setting of radial solutions in 2D unitary ball:

For n> 0, existence and regularity of bounded radially symmetric
weak solutions.

For n > 1, finite time touchdown implies singularity formation.

For n>1/2 there is a numerical solution that converges in long time
to an asymptotic approximation with infinite time touchdown.
Different leading order expansions for 1/2<n<2 and 2< n.

Informed by research on thin-film equations.

April 2022

Oxbridge PDE Conference 16
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Sobolev spaces of radially symmetric functions

Theorem (Rellich-Kondrachov Compactness Theorem)

Assume U is a bounded open subset in RN AU is Ct and let N > mp > 1.

Ifl<qg< N’j’x’p, then the embedding
W™P(U) - LI(U)
is compact.

Theorem (Guedes et. al. 2011 )
Let N>mp and >0. If1<g< p,f,’ili;i), then the embedding

WT™P(B) = LI(B,|x|")

rad

is compact.

April 2022 Oxbridge PDE Conference



Sobolev spaces of radially symmetric functions

Proposition (PhD thesis, Pesce 2022)
Let N=mp and 8 >0. Then the embedding

W (B) = L9(B, IxI%)

rad
is compact for all 1 < g < oo.

Taking =1, m=1 and p =2, we obtain

Hiaa(B) = L7,4(B)

a

is compact for all 1 < g < oo. In particular, we take g = 2.
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Case n>?2

Central region:

g2 (a,,wo(r) + %8,1/200)) —4aho(r) = c1,

’(/)0(!’*) =0,

3,1/)0(0) = 07
where ¢; is a constant.
Annular region:
2
ed (rdU* ) +f'(U,) =0,
dr r
U(1) =0,

Us(r) =1, Ui(r) =0,

where o is a constant.
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Case n>?2

Touchdown region:

©0(1)Onynno(n) =J, e (=00, 00),

JA ()* "
D)3y T B- +ho.t.

wo(n) =1A.n+ ﬁ In(-n) + B_ + h.o.t.
A_n+ B_+ h.o.t.

An+

900(77) = A+772 +B.n+C, +ho.t.asn—

where A,, B,, C,, J are constants.

if n<3,
if n=3,
if n>3,

as 1 — —oo,
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Case n<?2

Central region:

1 2N 1
== 20, [rg, (= (w0 + T0,00) - 400 )| in 0,10,
Yo(r) =ag +ayr* + ho.t., asr—0,
ROy rervest
o(r) =ag(re —r W14 at r*—r412<"il>201+h.o.t. as r—ry,
0 1 9

where aj, a5, af, a7 are constants.
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Case n<?2

Touchdown region:
©0(1)Onnpo(n) = J, 1€ (00, 00),

as 1 - +0o, let n, := 7"3\[ we have

4n+1-\/-8n2+20n+1

A_(=n) T + B_(=n) 5t + C_(~n) " 20m 4 ho.t.

A(-FF + BT In (L) + Cx % +hot.

po(n) = 3 an+1-v/=8n420n+1 2-n
A_(-=n)TD + B_(-n)~ 20D + C_(-n)=1 + h.o.t.
?

where

1
n+1

-J(n+1)3
3(1-2n)(2-n)

-]

1
§<f'l<n>(.7

n=n,,

n,<n<2,
n=2,
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Case n<?2

On the other hand, as 7 — +o0, we have

7Jn3—2n
A7 (2n-1)(2n-2)(2n-3)

An? + ;‘—fn(ln(n) +1)+ B+ Cy,

2 .y 3-2n
@o = AT+ Bin+ Ag(zn—l)(gn—z)(zn—3) + G,

A.n?+ B+ 2;\%/2 In(n) + C4,

_Jn3—2n
AT(2n-1)(2n-2)(2n-3)°’

A+772 + +Bin+C,,

An?+ B+ Co+

where A,, B., C., J are constants.
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Case n > 2: Self-similarity

In the central region, we specifically make the ansatz
v(r,t) ~ t%(r)
with some a < 0.

This assumption can be tested by plotting v(r,t)/v(0,t) for different
times, we expect all curves to collapse near r = 0.
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Case n > 2: Self-similarity

Similarly, in the touchdown region,

r—ry
tY

v(r.t)~tPo(n),  ni=

)

for some 3, 7 < 0. We test this ansatz by first scaling

_ov(rt) ::(&,v(r*,t))l/2 -
rg[10|nl v(t)’ v(re,t) (r=7(t)).

Note that p ~ n when t is large.

This assumption can be tested by plotting w as a function of p for
different times, we expect all curves to collapse near r =r,.
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Case n > 2: Self-similarity

5 -
i 500 [— (=100
4 t:l()l? o :,ziglz
..... t= 102 400 =108
— =10 B |
Sot=10 < 300 t=10% |
El
1 S
0
0 0.05 0.1 -100 -50 0
r P

Left: Central region rescaled according to r vs. v(r,t)/v(0,t) for different
times. Right: Rescaled touchdown region, w vs p. For n=4.
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Case n > 2: Similarity coefficients

To obtain the coefficients we note that, for example in the central region,

log(v(0,t)) ~log(¥(0)) + alog(t).

- 5
log(t) log(t)

%{(&,;))) vs log(t) for final time 10" and (left) n =3, (middle) n = 4, (right)

n=>5
1

aN_2(n—1)
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Case n > 2: Similarity coefficients

Same for 3:

-0.05
-0.1
-0.15

-0.2

-0.3
5 5 -5 0 5 10 15
log(t) log(t) log(#)
%&?m) vs log(t) for final time 10" and (left) n=3, (middle) n=4
(right) n=5.

1

e
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Case n > 2: Similarity coefficients

For v note
Orrv(Fist) ~ tﬁ_hafm‘p(n)'

Moreover, when t is large

u(r,t) ~ 20, v(r, t).

log(t)

Left: Log-log for u(F,t)/e? and 9, v(F,t), Right: Derivative of (left) for n =4
and ¢ = 0.05.
1

(n-1)

2B~y ~ =
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