The reduced Ostrovsky equation: integrability and wave breaking

Ted Johnson, with Karl Helfrich and Roger Grimshaw

> INI – Oxford 22nd September 2022

### The reduced Ostrovsky equation

KdV with weak rotation: Ostrovsky equation

 $u_t + \mu u u_x + \lambda u_{xxx} = \gamma v, \qquad v_x = \gamma u.$ 

- $\mu$  nonlinearity;  $\lambda$  non-hydrostatic;  $\gamma$  rotation
- $\lambda = 0$  and  $\gamma = 0$  (non-rotating, hydrostatic) Inviscid Burgers (Hopf) equation All localised or periodic solutions break
- ▶  $\gamma = 0$  and  $\lambda \neq 0$  (non-rotating, non-hydrostatic): KdV No regular initial conditions break
- λ = 0 and γ ≠ 0 (rotating, hydrostatic) Reduced Ostrovsky (Hunter, Vakhnenko) equation. Some initial conditions break, others do not

#### The reduced Ostrovsky equation

Rescale equation ( $\mu = 1$ ,  $\gamma = 1$ ). Introduce anti-differentiation operator for localised or periodic initial data

$$\partial_x^{-1}u = \int^x u(x',t) \mathrm{d}x',$$

with integration constant chosen so integral over domain or period vanishes (to satisfy zero-mass constraint). Then

$$u_t + uu_x = \partial_x^{-1} u, \tag{1}$$

the reduced Ostrovsky equation.

### Previous work

Hunter (1990) Vakhnenko (1992) Parkes (1993) Vakhnenko and Parkes (1998) Boyd (2004, 2005) (microbreaking) Stepanyants (2006) Esler, Rump & Johnson (2009) Liu *et al* (2010) Kraenkel *et al* (2011)

# Microbreaking



B: average of magnitude of highest 128 of 2048 Fourier coefficients.

#### Characteristic co-ordinates

The RedO

$$u_t + uu_x = \partial_x^{-1} u, \tag{2}$$

is a quasi-linear first-order pde with one set of characteristics.

On characteristics

$$\frac{\mathrm{d}x}{\mathrm{d}t} = u, \qquad \frac{\mathrm{d}u}{\mathrm{d}t} = \partial_x^{-1}u.$$

- Let the characteristics be the lines  $\mathcal{X}(x, t) = \text{constant}$ . Lagrangian co-ordinate (Zeitlin *et al.* 2003, 1D rSWE).
- ln terms of  $(\mathcal{X}, T)$  with t = T and  $u(x, t) = U(\mathcal{X}, T)$

$$\mathbf{x}_T = \mathbf{U}, \qquad \mathbf{U}_T = \partial_x^{-1} \mathbf{U},$$

with  $\mathcal{X} = x$  at T = 0.

### Characteristic co-ordinates



#### Characteristic co-ordinates

Our system is thus

$$x_T = U, \qquad U_T = \partial_x^{-1} U,$$

with  $\mathcal{X} = x$  at T = 0.

Differentiating wrt  $\mathcal{X}$  gives the pair

$$x_{\mathcal{X}\mathcal{T}} = U_{\mathcal{X}}, \qquad U_{\mathcal{X}\mathcal{T}} = \partial_{\mathcal{X}}\partial_x^{-1}U = x_{\mathcal{X}}\partial_x\partial_x^{-1}U = x_{\mathcal{X}}U,$$

i.e.

$$\phi_T = W, \qquad W_T = \phi U,$$

where  $W = U_{\chi}$  and  $\phi = x_{\chi}$  is the Jacobian of the transformation to characteristic co-ordinates.

### The Jacobian, $\phi$

- $\blacktriangleright \phi$  is initially unity
- Provided \u03c6 remains bounded and positive the transformation is 1:1 and the wave does not break.
- If  $\phi$  passes through zero then the waves overturns (breaks). (Nothing untoward numerically).



Differentiating (1) w.r.t. x twice and rearranging gives

 $F_t + (uF)_x = 0.$ 

where

$$F^3=1-3u_{xx}\,.$$

i.e. *F* is a conserved density.

The density  $F = (1 - 3u_{xx})^{1/3}$  in characteristic co-ordinates

$$(F\phi)_T = 0$$
, so that  $F\phi = F_0(\mathcal{X})$ ,

where  $F_0(\mathcal{X}) = F(\mathcal{X}, 0) = F(x, 0),$ 

determined by the initial conditions.

• Until breaking  $\phi > 0$ . Thus  $F(\mathcal{X}, T) = F_0(\mathcal{X})/\phi(\mathcal{X}, T)$ 

#### On each characteristic

- If  $F_0(\mathcal{X}) > 0$ , then  $F(\mathcal{X}, T) > 0$ ,  $\forall T \ge 0$ .
- If  $F_0(\mathcal{X}) < 0$ , then  $F(\mathcal{X}, T) < 0$ ,  $\forall T \ge 0$ .
- If  $F_0(\mathcal{X}) = 0$ , then  $F(\mathcal{X}, T) = 0$ ,  $\forall T \ge 0$ .

• Until breaking, the  $\mathcal{X}$ -domain is permanently divided by the initial conditions into  $\mathcal{X}$ -intervals where F > 0 and the remaining  $\mathcal{X}$ -intervals where F < 0.

#### The density F in characteristic co-ordinates



Reduction of order,  $F = (1 - 3u_{xx})^{1/3}$ 

Now 
$$u_{xx} = \frac{1}{\phi} \{ \frac{U_{\chi}}{\phi} \}_{\chi} = \frac{1}{\phi} \{ \frac{\phi_T}{\phi} \}_{\chi} = \frac{\{\log \phi\}_{\chi T}}{\phi},$$
  
i.e.  $F^3 = 1 - (3/\phi) \{\log \phi\}_{\chi T}.$ 

Combining this with  $F\phi = F_0(\mathcal{X})$  gives

$$(\log \phi)_{\mathcal{XT}} = \frac{\phi}{3} (1 - \frac{F_0^3}{\phi^3}),$$
 (3)

or 
$$(\log F)_{\mathcal{XT}} = \frac{F_0}{3F} (F^3 - 1),$$
 (4)

equations for  $\phi$  and F alone.

Integrability:  $F_0(\mathcal{X}) > 0 \ \forall \mathcal{X}$ ,

$$F = (1 - 3u_{xx})^{1/3}$$

following Kraenkel et al.(2011)

- For smooth bounded initial conditions  $u_{xx} = 0$  somewhere.
- Thus  $F_0(\mathcal{X}) = 1$  for some  $\mathcal{X}$ .
- Thus suppose  $F_0(\mathcal{X}) > 0 \ \forall \mathcal{X}$  at T = 0.
- Introduce  $\zeta$  through the 1:1 mapping defined by

 $\mathrm{d}\zeta = (1/3)F_0(\mathcal{X})\,\mathrm{d}\mathcal{X}.$ 

Then equations (3),(4) reduce to the integrable Tzitzeica (1910) equation

 $(\log h)_{\zeta T} = h - h^{-2},$ 

where  $h = \phi/F_0 = 1/F$ . (Kraenkel *et al.* : Dodd-Bullough, 1977, equation)

 $h > 0 \ \forall T \text{ so } \phi > 0 \ \forall T$ 

# Integrability

- Hence the RedO (1) is integrable for initial data such that  $F_0 > 0$
- ▶ i.e. if  $u_{xx} < 1/3$  everywhere at any instant (including t = 0), then the interface evolves for all time without breaking (and such that  $u_{xx} < 1/3$  everywhere)
- This remains true even if F<sub>0</sub>(X) vanishes at isolated values of X (since the transformation to ζ remains 1:1).
- Now suppose there exists an interval x<sub>1</sub> ≤ x ≤ x<sub>2</sub> in which u<sub>0xx</sub> ≥ 1/3, with equality only at the end points. Then F<sub>0</sub>(x) ≤ 0 so

 $F(\mathcal{X},T) < 0, \quad \forall \mathcal{X}_1 < \mathcal{X} < \mathcal{X}_2, \quad \forall T \geq 0.$ 

F negative in an interval



The interval  $\mathcal{X}_1 < \mathcal{X} < \mathcal{X}_2$ ,  $F_0(\mathcal{X}) < 0$ 

• Integrating equation (3) for  $\phi$  in time (i.e. wrt T) gives

$$\beta(\mathcal{X},T) = (\log \phi)_{\mathcal{X}} = \int_0^T \frac{\phi}{3} (1 - \frac{F_0^3}{\phi^3}) \, dT \,. \tag{5}$$

- ▶ The integrand is positive for all  $\phi > 0$ , with a minimum value of  $-2^{-2/3}F_0(\mathcal{X})$  achieved where  $\phi = -2^{1/3}F_0(\mathcal{X})$ , independently of  $\mathcal{T}$ .
- ▶ Thus  $\beta > 0$  in  $\mathcal{X}_1 \leq \mathcal{X} \leq \mathcal{X}_2$ . So  $\phi_{\mathcal{X}} > 0$  there. So  $\phi$  cannot achieve a minimum value in this interval.
- Thus breaking (if it occurs) occurs first at a point corresponding to  $u_{xx} < 1/3$  in initial data (the integrable region).

### Breaking

Now, for each  $\mathcal{X}$  in the interval  $\mathcal{X}_1 < \mathcal{X} < \mathcal{X}_2$ ,

$$\beta = (\log \phi)_{\mathcal{X}} > -2^{-2/3} F_0(\mathcal{X}) T ,$$

• Integrating over the interval  $X_1 < X < X_2$  yields

 $\phi(\mathcal{X}_1, T) < \phi(\mathcal{X}_2, T) \exp(-\alpha T),$ 

$$\alpha = 2^{-2/3} \int_{\mathcal{X}_1}^{\mathcal{X}_2} \left( -F_0(\mathcal{X}) \right) d\mathcal{X} = 2^{-2/3} \int_{x_1}^{x_2} \left\{ 3u_{0xx}(x) - 1 \right\}^{1/3} dx \, .$$

▶ Thus the Jacobian  $\phi(\mathcal{X}_1, T)$  at the left-hand end of the interval on which  $F_0$  is negative becomes exponentially small compared to its value  $\phi(\mathcal{X}_2, T)$  at the right-hand end.

#### Jacobian minimum



The logarithm of the minimum,  $\phi_m(T)$ , over  $\mathcal{X}$  of the Jacobian  $\phi(\mathcal{X}, T)$  as a function of T for the initial profile

$$u_0(x) = u_1 \sin(x) + u_2 \sin(2x + \theta),$$

(where  $\theta$  is an arbitrary phase shift). Here  $u_1 = 0.3$ ,  $u_2 = 0.03$  and  $\theta_0 = 3.5453$  so  $\max(u_{0xx}) - 1/3 = 4 \times 10^{-5}$ , computed with N = 4096 nodes. The wave breaks when  $\phi_m$  first vanishes, at  $T = t_b = 2081.7$ .

#### Breaking-time scaling



The scaled time to breaking,  $\alpha t_b$ , for this initial profile for varying  $\theta_0$  as a function of the excess of  $u_{0xx}$  over 1/3. The number of nodes in the computations are: '+' N = 2048 and 'o' N = 4096.

### Jacobian at breaking



The Jacobian  $\phi(\mathcal{X}, t_b)$  at the instant of breaking. The thinner curve shows  $F_0(\mathcal{X})$  which is negative in a region surrounding  $1.31\pi$ .

Jacobian at breaking - detail



The scaled Jacobian  $\phi(\hat{\xi})$  as a function of the scaled co-ordinate  $\xi$ . The scaling is such that the region of negative  $F_0(\mathcal{X})$  has unit depth and width 2.

#### Jacobian at breaking - asymptotic form

Consider a weakly supercritical initial condition where u<sub>0xx</sub> is smooth with maximum at X<sub>0</sub> slightly exceeding 1/3.

Near  $\mathcal{X}_0$ ,

$$u_{0xx} = a - b(\mathcal{X} - \mathcal{X}_0)^2 + \cdots,$$

where  $a = \max(u_{0\times x}) = u_{0\times x}(\mathcal{X}_0)$  and  $b = -(1/2)u_{0\times x\times x}(\mathcal{X}_0) > 0$ .

Then

$$[F_0(\mathcal{X})]^3 = (3a-1)[-1+\xi^2+\cdots],$$

where  $\xi = (\mathcal{X} - \mathcal{X}_0)[3b/(3a-1)]^{1/2}$  and  $\xi = \pm 1$  corresponds to  $\mathcal{X} = \mathcal{X}_2, \mathcal{X}_1$  in the general problem.

Write

$$\phi = (3a - 1)^{1/3}\hat{\phi},$$

giving the parameter-free generic equation near breaking,

$$(\log \hat{\phi})_{\xi\tau} = (\hat{\phi}/3)[1 + (1 - \xi^2)/\hat{\phi}^3],$$

where  $T = \epsilon \tau$  for  $\epsilon = (3a - 1)^{5/6} / \sqrt{3b}$ .

• The time to breaking scales as  $[max(u_{0xx}) - 1/3]^{5/6}$ .

#### Jacobian minimum at large time

Dropping the first term in the governing equation (less than 1/8th the second) gives

 $(\log \phi)_{\mathcal{X}T} = -(1/3)F_0^3/\phi^2.$ 

This has solution

$$\phi = A + B(\mathcal{X})T,$$

for A constant and  $B(\mathcal{X})$  a function of  $\mathcal{X}$  alone, provided  $AB'(\mathcal{X}) = -(1/3)F_0^3$ . Near breaking

$$\phi = A(1-t/t_b) + (t/3A) \int_{\mathcal{X}}^{\mathcal{X}_1} F_0^3(\mathcal{X}') \mathrm{d}\mathcal{X}'.$$

Since  $F_0 > 0$  in  $\mathcal{X} < \mathcal{X}_1$  and  $F_0 < 0$  in  $\mathcal{X} > \mathcal{X}_1$  this gives  $\phi$  increasing monotonically with distance from a local minimum at  $\mathcal{X} = \mathcal{X}_1$  of

$$\phi_m = A(1-t/t_b).$$

The Jacobian does indeed appear to decrease linearly with t at large t until vanishing at t<sub>b</sub>.

Jacobian at breaking - detail



The scaled Jacobian  $\phi(\hat{\xi})$  as a function of the scaled co-ordinate  $\xi$ . The scaling is such that the region of negative  $F_0(\mathcal{X})$  has unit depth and width 2.

#### Jacobian minimum at large time



The minimum of the Jacobian,  $\phi_m(T)$ , as a function of time for T > 400. The dashed line shows the corresponding value of  $F_0$  at the same  $\mathcal{X}$  and T, i.e.  $F_m(T) = F_0(\mathcal{X}_m(T))$ . Note that at large T,  $\phi_m$  is less than  $\frac{1}{2}F_m$ .

#### Ostrovsky number

In the unscaled equation an Ostrovsky number can be defined as

$$O_s = 3\mu\kappa/\gamma^2$$
, where  $\kappa = \max[u_{0xx}(x)]$ .

- ▶ Initial conditions with  $O_s > 1$  break and those with  $O_s \le 1$  do not.
- Increasing nonlinearity  $(\mu)$  or curvature  $(\kappa)$  increases  $O_s$ .
- Increasing rotation  $(\gamma)$  decreases  $O_s$ .

A rotating, hydrostatic, two-layer, Boussinesq fluid where the layers have equal depths, is governed by the mRO

 $u_t+(1/2)u^2u_x=\partial_x^{-1}u.$ 

- Similar considerations show that
  - If  $|u_{0x}| < 1$  everywhere, the wave never breaks.
  - If  $|u_{0x}| > 1$  somewhere, the wave breaks in finite time.

#### Orbital stability of periodic solutions

Travelling 2*L*-periodic solutions of the reduced Ostrovsky equation have the normalized form

$$u(x,t) = \frac{L^2}{\pi^2}U(z), \quad z = \frac{\pi}{L}x - \frac{L}{\pi}\gamma t,$$

where U(z) is a  $2\pi$ -periodic solution of the second-order differential equation

$$\frac{d}{dz}\left[(\gamma-U)\frac{dU}{dz}\right]+U(z)=0,$$

and the parameter  $\gamma$  is proportional to the wave speed.

- U has zero mean.
- U can be taken as even in z.
- U exists for every  $\gamma \in \left(1, \frac{\pi^2}{9}\right)$ .

As  $\gamma \to \frac{\pi^2}{9}$  the limiting wave has a (non-smooth) parabolic profile ( $F \equiv 0$ ).

### Lyapunov functional: first try

- Conserved momentum  $Q(u) = ||u||_{L^2}^2$ .
- Conserved energy

$$E(u) = \|\partial_x^{-1}u\|_{L^2}^2 + \frac{1}{3}\int u^3 dx,$$

Introduce the functional

$$S_{\gamma}(u) := E(u) - \gamma Q(u).$$

• As usual, the Euler–Lagrange equations for  $S_{\gamma}$  gives the redO.

#### First try, second variation

- Take v square integrable  $2\pi N$ -periodic function with zero mean.
- Expand  $S_{\gamma}(U+v) S_{\gamma}(U)$  to quadratic order in v.
- Obtain second variation

$$\delta^2 S_{\gamma} = \int \left[ (\partial_z^{-1} v)^2 - (\gamma - U) v^2 \right] dz.$$

- Not sign definite.
- Write this as the quadratic form

$$\delta^2 S_{\gamma} = \langle L_{\gamma} v, v \rangle_{L^2},$$

where  $L_{\gamma}$  is the self-adjoint operator

$$L_{\gamma} := -\partial_z^{-2} - \gamma + U.$$

#### Lyapunov functional: second try

There are other conserved quantities of the redO.

Higher order energy

$$H(u) = \int \frac{(u_{xxx})^2}{(1-3u_{xx})^{7/3}} dx,$$

- Casimir-type functional  $C(u) = \int (1 3u_{xx})^{1/3} dx$ .
- Define a second energy functional  $R_{\Gamma}(u) := C(u) \Gamma H(u)$ ,
- Choose parameter  $\Gamma$  so the same periodic wave U that is critical point of  $S_{\gamma}$  is a critical point of  $R_{\Gamma}(u)$ , then

$$\Gamma := -(\gamma^3 - 6I)^{-2/3},$$

$$I = \frac{1}{2} \left( \gamma - \frac{1}{2} U^2 \right)^2 \left( \frac{dU}{dz} \right)^2 + \frac{\gamma}{2} U^2 - \frac{1}{8} U^4 = \text{const.}$$

# Second try, second variation

$$\delta^2 R_{\Gamma} := \int \left[ rac{v^2}{(\gamma^3 - 6I)^{2/3}} - rac{v_{zz}^2}{(1 - 3U'')^{5/3}} 
ight] dz.$$

Not sign definite.

Write this as the quadratic form

$$\delta^2 R_{\Gamma} = \langle M_{\gamma} v, v \rangle_{L^2}$$

where  $M_{\gamma}$  is the self-adjoint operator

$$M_{\gamma} := -\partial_z^2 (1 - 3U'')^{-5/3} \partial_z^2 + (\gamma^3 - 6I)^{-2/3}.$$

### A linear combination

Introduce

 $\Lambda_{c,\gamma}(u) := S_{\gamma}(u) - cR_{\Gamma}(u),$ 

where  $c \in \mathbb{R}$  is a parameter to be defined within an appropriate interval.

- We wish to characterize the spectrum of the linear operator K<sub>c,γ</sub> := L<sub>γ</sub> − cM<sub>γ</sub>.
- $K_{c,\gamma}$  is self-adjoint with  $2\pi$ -periodic coefficients by construction.
- By Bloch's theorem it is sufficient to seek eigenfunctions of the form

 $e^{i\kappa z}w(z,\kappa)$ 

with eigenvalues  $\lambda(\kappa)$  where  $\kappa$  lies in the Brillouin zone  $\mathbb{T} = \left[-\frac{1}{2}, \frac{1}{2}\right]$  and  $w(z, \kappa)$  is  $2\pi N$ -periodic.

Thus introduce the operator

$$P_{c,\gamma}(\kappa) := e^{-i\kappa z} K_{c,\gamma} e^{i\kappa z},$$

and look for its  $2\pi N$ -periodic eigenfunctions  $w(z, \kappa)$  and eigenvalues  $\lambda(\kappa)$ .

# Numerical treatment of the operator $P_{c,\gamma}(\kappa)$

Write

$$P_{c,\gamma}(\kappa) = A_{\gamma}(\kappa) - cB_{\gamma}(\kappa),$$

where

$$\begin{aligned} \mathcal{A}_{\gamma}(\kappa) &= -(\partial_{z}+i\kappa)^{-2}-(\gamma-U), \\ \mathcal{B}_{\gamma}(\kappa) &= (\gamma^{3}-6I)^{-2/3}-(\gamma^{3}-6I)^{-5/3}(\partial_{z}+i\kappa)^{2}(\gamma-U)^{5}(\partial_{z}+i\kappa)^{2}. \end{aligned}$$

 Discretise the linear operators in Fourier space and evaluate products pseudospectrally, so

$$\begin{aligned} \widehat{\mathcal{A}_{\gamma}}(\kappa) = &\operatorname{diag}(\mathbf{k}_{1}^{2}) - \mathcal{F}(\operatorname{diag}(\gamma - \mathbf{U})\mathcal{F}^{-1}(\mathbf{I})), \\ \widehat{\mathcal{B}_{\gamma}}(\kappa) = &(\gamma^{3} - 6I)^{-2/3}\mathbf{I} - (\gamma^{3} - 6I)^{-5/3}\operatorname{diag}(\mathbf{k}^{2})\mathcal{F}(\operatorname{diag}(\gamma - \mathbf{U})^{5}\mathcal{F}^{-1}(\operatorname{diag}(\mathbf{k}^{2})), \end{aligned}$$

where  $\mathcal{F}$  and  $\mathcal{F}^{-1}$  denote the discrete Fourier transform and its inverse, k is the wavenumber vector with components  $\kappa \pm n$  and k<sub>1</sub> its component-wise inverse.

Eigenvalues obtained using the Matlab subroutines eig and eigs.

### The base periodic solutions



- (a) 2π-periodic solutions of the redO for a = A₁ = -0.3, -0.5, -0.6, -0.65.
- (b) Log of the absolute value of the Fourier cosine coefficients,  $A_n$ .
- ► Dashed: limiting piecewise parabolic wave  $(a = -\frac{2}{3})$  with coefficients  $A_n = 2(-1)^n/3n^2$ .
- Spectral Newton-Kantorovich iteration on  $A_n$ ,  $\gamma$ .

The lowest eigenvalues of the operator  $P_{c,\gamma}(\kappa)$  when c = 0.5



• Left: a = -0.1 and Right : a = -0.2.

- Red dashed: the lowest eigenvalues of the unperturbed operator for a = 0.
- Blue diamonds: computed eigenvalues.
- All repeated eigenvalues for a = 0 are split when  $a \neq 0$ .
- Thus for c = 0.5,  $\Lambda_{c,\gamma}(u)$  provides a Lyapunov functional for a = -0.1and a = -0.2.

Small- $\kappa$ , small-a asymptotics (dashed red) and numerics



- Left: Detail of previous figure (c = 0.5, a = -0.1) in neighbourhood of origin. The two spectral bands split at finite a.
- Centre: The ground spectral band for a = -0.1 but for c = 0.7.
- Thus for c = 0.7,  $\Lambda_{c,\gamma}(u)$  does not provide a Lyapunov functional for a = -0.1.
- Right: The first excited spectral band for a = -0.1, c = 0.7.
- Ground state transition from concave upwards (left) to concave downwards (centre) with increasing |c| is generic.
- At fixed a the graph of the spectral band  $\lambda_{gr}(\kappa)$  is concave upwards at  $\kappa = 0$  for  $c \in (c_-, c_+)$  and concave downwards outside this interval.

# Determining the positivity of $P_{c,\gamma}(\kappa)$

- At fixed a the graph of the spectral band  $\lambda_{gr}(\kappa)$  is concave upwards at  $\kappa = 0$  for  $c \in (c_-, c_+)$  and concave downwards outside this interval.
- This is first occurrence of a negative eigenvalue of  $P_{c,\gamma}(\kappa)$ .
- Thus boundaries  $c_{\pm}$  are determined by changes in sign of  $\lambda_{gr}^{\prime\prime}(0)$ .
- Since  $\lambda'_{gr}(0) = 0$ , the sign of  $\lambda''_{gr}(0)$  is the sign of  $\lambda_{gr}(\delta_{\kappa})$  for  $0 < \delta_{\kappa} \ll 1$ .
- c<sub>±</sub> are thus determined as the values of c for which P<sub>c,γ</sub>(δ<sub>κ</sub>) has a zero eigenvalue, i.e. det[P<sub>c,γ</sub>(δ<sub>κ</sub>)] = 0, i.e.

 $det[A_{\gamma}(\delta_{\kappa}) - cB_{\gamma}(\delta_{\kappa})] = 0,$ 

i.e eigenvalues of the generalised linear eigenvalue problem

$$A_{\gamma}(\delta_{\kappa}) = cB_{\gamma}(\delta_{\kappa}).$$

• Computations performed for  $\delta_{\kappa} = 10^{-2}, 10^{-3}, 10^{-4}$ . Results graphically indistinguishable.

# Region of (c, |a|) plane where $P_{c,\gamma}(\kappa)$ positive $\forall \kappa$



- Left: the reduced Ostrovsky equation
- Right: the modified reduced Ostrovsky equation
- The dashed lines show small |a| expansions for the boundaries

#### Conclusions

- Reduced Ostrovsky breaks if  $3u_{xxx} > 1$ , integrable otherwise.
- For small excesses of  $3u_{xxx}$  over 1, breaking time varies as  $[\max(u_{0xx}) 1/3]^{5/6}$ .
- Periodic solutions to the reduced Ostrovsky and modified reduced Ostrovsky equations are orbitally stable.

Grimshaw, R. H. J.; Helfrich, K. & Johnson, E. R. The reduced Ostrovsky equation: Integrability and breaking *Stud Appl Math*, 2012, **129**, 414-436 Johnson, E. R. & Grimshaw, R. H. J. Modified reduced Ostrovsky equation: Integrability and breaking *Phys. Rev. E*, 2013, **88**, 021201 Johnson, E. R. & Pelinovsky, D. E. Orbital stability of periodic waves in the class of reduced Ostrovsky equations *J. Diff. Equat.*, 2016, **261**, 3268-3304