The reduced Ostrovsky equation: integrability and wave breaking

Ted Johnson, with Karl Helfrich and Roger Grimshaw

INI - Oxford
22nd September 2022

The reduced Ostrovsky equation

KdV with weak rotation: Ostrovsky equation

$$
u_{t}+\mu u u_{x}+\lambda u_{x x x}=\gamma v, \quad v_{x}=\gamma u
$$

- μ nonlinearity; λ non-hydrostatic; γ rotation
- $\lambda=0$ and $\gamma=0$ (non-rotating, hydrostatic) Inviscid Burgers (Hopf) equation
All localised or periodic solutions break
- $\gamma=0$ and $\lambda \neq 0$ (non-rotating, non-hydrostatic): KdV No regular initial conditions break
- $\lambda=0$ and $\gamma \neq 0$ (rotating, hydrostatic)

Reduced Ostrovsky (Hunter, Vakhnenko) equation. Some initial conditions break, others do not

The reduced Ostrovsky equation

Rescale equation ($\mu=1, \gamma=1$). Introduce anti-differentiation operator for localised or periodic initial data

$$
\partial_{x}^{-1} u=\int^{x} u\left(x^{\prime}, t\right) \mathrm{d} x^{\prime},
$$

with integration constant chosen so integral over domain or period vanishes (to satisfy zero-mass constraint). Then

$$
\begin{equation*}
u_{t}+u u_{x}=\partial_{x}^{-1} u, \tag{1}
\end{equation*}
$$

the reduced Ostrovsky equation.

Previous work

```
Hunter (1990)
Vakhnenko (1992)
Parkes (1993)
Vakhnenko and Parkes (1998)
Boyd (2004, 2005) (microbreaking)
Stepanyants (2006)
Esler, Rump & Johnson (2009)
Liu et al (2010)
Kraenkel et al (2011)
```


Microbreaking

B: average of magnitude of highest 128 of 2048 Fourier coefficients.

Characteristic co-ordinates

- The RedO

$$
\begin{equation*}
u_{t}+u u_{x}=\partial_{x}^{-1} u \tag{2}
\end{equation*}
$$

is a quasi-linear first-order pde with one set of characteristics.

- On characteristics

$$
\frac{\mathrm{d} x}{\mathrm{~d} t}=u, \quad \frac{\mathrm{~d} u}{\mathrm{~d} t}=\partial_{x}^{-1} u
$$

- Let the characteristics be the lines $\mathcal{X}(x, t)=$ constant. Lagrangian co-ordinate (Zeitlin et al. 2003, 1D rSWE).
- In terms of (\mathcal{X}, T) with $t=T$ and $u(x, t)=U(\mathcal{X}, T)$

$$
x_{T}=U, \quad U_{T}=\partial_{x}^{-1} U
$$

with $\mathcal{X}=x$ at $T=0$.

Characteristic co-ordinates

Laboratory frame

Characteristic (Lagrangian) frame

Characteristic co-ordinates

Our system is thus

$$
x_{T}=U, \quad U_{T}=\partial_{x}^{-1} U
$$

with $\mathcal{X}=x$ at $T=0$.
Differentiating wrt \mathcal{X} gives the pair

$$
x_{\mathcal{X} T}=U_{\mathcal{X}}, \quad U_{\mathcal{X} T}=\partial_{\mathcal{X}} \partial_{x}^{-1} U=x_{\mathcal{X}} \partial_{x} \partial_{x}^{-1} U=x_{\mathcal{X}} U
$$

i.e.

$$
\phi_{T}=W, \quad W_{T}=\phi U
$$

where $W=U_{\mathcal{X}}$ and $\phi=x_{\mathcal{X}}$ is the Jacobian of the transformation to characteristic co-ordinates.

The Jacobian, ϕ

- ϕ is initially unity
- Provided ϕ remains bounded and positive the transformation is 1:1 and the wave does not break.
- If ϕ passes through zero then the waves overturns (breaks). (Nothing untoward numerically).

Kraenkel et al (2011)

Differentiating (1) w.r.t. x twice and rearranging gives

$$
F_{t}+(u F)_{x}=0 .
$$

where

$$
F^{3}=1-3 u_{x x} .
$$

i.e. F is a conserved density.

The density $F=\left(1-3 u_{x x}\right)^{1 / 3}$ in characteristic co-ordinates

$$
\begin{aligned}
& (F \phi)_{T}=0, \quad \text { so that } \quad F \phi=F_{0}(\mathcal{X}) \\
& \text { where } \quad F_{0}(\mathcal{X})=F(\mathcal{X}, 0)=F(x, 0)
\end{aligned}
$$

determined by the initial conditions.

- Until breaking $\phi>0$. Thus $F(\mathcal{X}, T)=F_{0}(\mathcal{X}) / \phi(\mathcal{X}, T)$
- On each characteristic
- If $F_{0}(\mathcal{X})>0$, then $F(\mathcal{X}, T)>0, \quad \forall T \geq 0$.
- If $F_{0}(\mathcal{X})<0$, then $F(\mathcal{X}, T)<0, \quad \forall T \geq 0$.
- If $F_{0}(\mathcal{X})=0$, then $F(\mathcal{X}, T)=0, \quad \forall T \geq 0$.
- Until breaking, the \mathcal{X}-domain is permanently divided by the initial conditions into \mathcal{X}-intervals where $F>0$ and the remaining \mathcal{X}-intervals where $F<0$.

The density F in characteristic co-ordinates

Characteristic (Lagrangian) frame

Reduction of order, $F=\left(1-3 u_{x x}\right)^{1 / 3}$

$$
\begin{gathered}
\text { Now } u_{x x}=\frac{1}{\phi}\left\{\frac{U_{\mathcal{X}}}{\phi}\right\}_{\mathcal{X}}=\frac{1}{\phi}\left\{\frac{\phi_{T}}{\phi}\right\}_{\mathcal{X}}=\frac{\{\log \phi\}_{\mathcal{X} T}}{\phi}, \\
\text { i.e. } F^{3}=1-(3 / \phi)\{\log \phi\}_{\mathcal{X} T} .
\end{gathered}
$$

Combining this with $F \phi=F_{0}(\mathcal{X})$ gives

$$
\begin{align*}
(\log \phi)_{\mathcal{X} T} & =\frac{\phi}{3}\left(1-\frac{F_{0}^{3}}{\phi^{3}}\right), \tag{3}\\
\text { or } \quad(\log F)_{\mathcal{X} T} & =\frac{F_{0}}{3 F}\left(F^{3}-1\right), \tag{4}
\end{align*}
$$

equations for ϕ and F alone.

Integrability: $F_{0}(\mathcal{X})>0 \forall \mathcal{X}, \quad F=\left(1-3 u_{x x}\right)^{1 / 3}$
following Kraenkel et al.(2011)

- For smooth bounded initial conditions $u_{x x}=0$ somewhere.
- Thus $F_{0}(\mathcal{X})=1$ for some \mathcal{X}.
- Thus suppose $F_{0}(\mathcal{X})>0 \forall \mathcal{X}$ at $T=0$.
- Introduce ζ through the 1:1 mapping defined by

$$
\mathrm{d} \zeta=(1 / 3) F_{0}(\mathcal{X}) \mathrm{d} \mathcal{X}
$$

- Then equations (3),(4) reduce to the integrable Tzitzeica (1910) equation

$$
(\log h)_{\zeta T}=h-h^{-2}
$$

where $h=\phi / F_{0}=1 / F$. (Kraenkel et al. : Dodd-Bullough, 1977, equation)

- $h>0 \forall T$ so $\phi>0 \forall T$

Integrability

- Hence the RedO (1) is integrable for initial data such that $F_{0}>0$
- i.e. if $u_{x x}<1 / 3$ everywhere at any instant (including $t=0$), then the interface evolves for all time without breaking (and such that $u_{x x}<1 / 3$ everywhere)
- This remains true even if $F_{0}(\mathcal{X})$ vanishes at isolated values of \mathcal{X} (since the transformation to ζ remains $1: 1$).
- Now suppose there exists an interval $x_{1} \leq x \leq x_{2}$ in which $u_{0 x x} \geq 1 / 3$, with equality only at the end points. Then $F_{0}(x) \leq 0$ so

$$
F(\mathcal{X}, T)<0, \quad \forall \mathcal{X}_{1}<\mathcal{X}<\mathcal{X}_{2}, \quad \forall T \geq 0
$$

F negative in an interval

Characteristic (Lagrangian) frame

The interval $\mathcal{X}_{1}<\mathcal{X}<\mathcal{X}_{2}, F_{0}(\mathcal{X})<0$

- Integrating equation (3) for ϕ in time (i.e. wrt T) gives

$$
\begin{equation*}
\beta(\mathcal{X}, T)=(\log \phi)_{\mathcal{X}}=\int_{0}^{T} \frac{\phi}{3}\left(1-\frac{F_{0}^{3}}{\phi^{3}}\right) d T . \tag{5}
\end{equation*}
$$

- The integrand is positive for all $\phi>0$, with a minimum value of $-2^{-2 / 3} F_{0}(\mathcal{X})$ achieved where $\phi=-2^{1 / 3} F_{0}(\mathcal{X})$, independently of T.
- Thus $\beta>0$ in $\mathcal{X}_{1} \leq \mathcal{X} \leq \mathcal{X}_{2}$. So $\phi \mathcal{X}>0$ there. So ϕ cannot achieve a minimum value in this interval.
- Thus breaking (if it occurs) occurs first at a point corresponding to $u_{x x}<1 / 3$ in initial data (the integrable region).

Breaking

- Now, for each \mathcal{X} in the interval $\mathcal{X}_{1}<\mathcal{X}<\mathcal{X}_{2}$,

$$
\beta=(\log \phi) \mathcal{X}>-2^{-2 / 3} F_{0}(\mathcal{X}) T
$$

- Integrating over the interval $\mathcal{X}_{1}<\mathcal{X}<\mathcal{X}_{2}$ yields

$$
\begin{gathered}
\phi\left(\mathcal{X}_{1}, T\right)<\phi\left(\mathcal{X}_{2}, T\right) \exp (-\alpha T), \\
\alpha=2^{-2 / 3} \int_{\mathcal{X}_{1}}^{\mathcal{X}_{2}}\left(-F_{0}(\mathcal{X})\right) d \mathcal{X}=2^{-2 / 3} \int_{x_{1}}^{x_{2}}\left\{3 u_{0 \times x}(x)-1\right\}^{1 / 3} d x
\end{gathered}
$$

- Thus the Jacobian $\phi\left(\mathcal{X}_{1}, T\right)$ at the left-hand end of the interval on which F_{0} is negative becomes exponentially small compared to its value $\phi\left(\mathcal{X}_{2}, T\right)$ at the right-hand end.

Jacobian minimum

The logarithm of the minimum, $\phi_{m}(T)$, over \mathcal{X} of the Jacobian $\phi(\mathcal{X}, T)$ as a function of T for the initial profile

$$
u_{0}(x)=u_{1} \sin (x)+u_{2} \sin (2 x+\theta)
$$

(where θ is an arbitrary phase shift). Here $u_{1}=0.3, u_{2}=0.03$ and $\theta_{0}=3.5453$ so $\max \left(u_{0 x x}\right)-1 / 3=4 \times 10^{-5}$, computed with $N=4096$ nodes. The wave breaks when ϕ_{m} first vanishes, at $T=t_{b}=2081.7$.

Breaking-time scaling

The scaled time to breaking, αt_{b}, for this initial profile for varying θ_{0} as a function of the excess of $u_{0 x x}$ over $1 / 3$. The number of nodes in the computations are: ' + ' $N=2048$ and 'o' $N=4096$.

Jacobian at breaking

The Jacobian $\phi\left(\mathcal{X}, t_{b}\right)$ at the instant of breaking. The thinner curve shows $F_{0}(\mathcal{X})$ which is negative in a region surrounding 1.31π.

Jacobian at breaking - detail

The scaled Jacobian $\phi(\hat{\xi})$ as a function of the scaled co-ordinate ξ. The scaling is such that the region of negative $F_{0}(\mathcal{X})$ has unit depth and width 2 .

Jacobian at breaking - asymptotic form

- Consider a weakly supercritical initial condition where $u_{0 x x}$ is smooth with maximum at \mathcal{X}_{0} slightly exceeding $1 / 3$.
- Near \mathcal{X}_{0},

$$
u_{0 x x}=a-b\left(\mathcal{X}-\mathcal{X}_{0}\right)^{2}+\cdots,
$$

where $a=\max \left(u_{0 x x}\right)=u_{0 x x}\left(\mathcal{X}_{0}\right)$ and $b=-(1 / 2) u_{0 x x x x}\left(\mathcal{X}_{0}\right)>0$.

- Then

$$
\left[F_{0}(\mathcal{X})\right]^{3}=(3 a-1)\left[-1+\xi^{2}+\cdots\right],
$$

where $\xi=\left(\mathcal{X}-\mathcal{X}_{0}\right)[3 b /(3 a-1)]^{1 / 2}$ and $\xi= \pm 1$ corresponds to $\mathcal{X}=\mathcal{X}_{2}, \mathcal{X}_{1}$ in the general problem.

- Write

$$
\phi=(3 a-1)^{1 / 3} \hat{\phi},
$$

giving the parameter-free generic equation near breaking,

$$
(\log \hat{\phi})_{\xi \tau}=(\hat{\phi} / 3)\left[1+\left(1-\xi^{2}\right) / \hat{\phi}^{3}\right]
$$

where $T=\epsilon \tau$ for $\epsilon=(3 a-1)^{5 / 6} / \sqrt{3 b}$.

- The time to breaking scales as $\left[\max \left(u_{0 x x}\right)-1 / 3\right]^{5 / 6}$.

Jacobian minimum at large time

- Dropping the first term in the governing equation (less than $1 / 8$ th the second) gives

$$
(\log \phi)_{\mathcal{X} T}=-(1 / 3) F_{0}^{3} / \phi^{2} .
$$

- This has solution

$$
\phi=A+B(\mathcal{X}) T,
$$

for A constant and $B(\mathcal{X})$ a function of \mathcal{X} alone, provided $A B^{\prime}(\mathcal{X})=-(1 / 3) F_{0}^{3}$.

- Near breaking

$$
\phi=A\left(1-t / t_{b}\right)+(t / 3 A) \int_{\mathcal{X}}^{\mathcal{X}_{1}} F_{0}^{3}\left(\mathcal{X}^{\prime}\right) \mathrm{d} \mathcal{X}^{\prime} .
$$

- Since $F_{0}>0$ in $\mathcal{X}<\mathcal{X}_{1}$ and $F_{0}<0$ in $\mathcal{X}>\mathcal{X}_{1}$ this gives ϕ increasing monotonically with distance from a local minimum at $\mathcal{X}=\mathcal{X}_{1}$ of

$$
\phi_{m}=A\left(1-t / t_{b}\right) .
$$

- The Jacobian does indeed appear to decrease linearly with t at large t until vanishing at t_{b}.

Jacobian at breaking - detail

The scaled Jacobian $\phi(\hat{\xi})$ as a function of the scaled co-ordinate ξ. The scaling is such that the region of negative $F_{0}(\mathcal{X})$ has unit depth and width 2 .

Jacobian minimum at large time

The minimum of the Jacobian, $\phi_{m}(T)$, as a function of time for $T>400$. The dashed line shows the corresponding value of F_{0} at the same \mathcal{X} and T, i.e. $F_{m}(T)=F_{0}\left(\mathcal{X}_{m}(T)\right)$. Note that at large T, ϕ_{m} is less than $\frac{1}{2} F_{m}$.

Ostrovsky number

- In the unscaled equation an Ostrovsky number can be defined as

$$
O_{s}=3 \mu \kappa / \gamma^{2}, \quad \text { where } \quad \kappa=\max \left[u_{0 x x}(x)\right]
$$

- Initial conditions with $O_{s}>1$ break and those with $O_{s} \leq 1$ do not.
- Increasing nonlinearity (μ) or curvature (κ) increases O_{s}.
- Increasing rotation (γ) decreases O_{s}.

Modified reduced Ostrovsky equation

- A rotating, hydrostatic, two-layer, Boussinesq fluid where the layers have equal depths, is governed by the mRO

$$
u_{t}+(1 / 2) u^{2} u_{x}=\partial_{x}^{-1} u
$$

- Similar considerations show that
- If $\left|u_{0 x}\right|<1$ everywhere, the wave never breaks.
- If $\left|u_{0 x}\right|>1$ somewhere, the wave breaks in finite time.

Orbital stability of periodic solutions

Travelling $2 L$-periodic solutions of the reduced Ostrovsky equation have the normalized form

$$
u(x, t)=\frac{L^{2}}{\pi^{2}} U(z), \quad z=\frac{\pi}{L} x-\frac{L}{\pi} \gamma t
$$

where $U(z)$ is a 2π-periodic solution of the second-order differential equation

$$
\frac{d}{d z}\left[(\gamma-U) \frac{d U}{d z}\right]+U(z)=0
$$

and the parameter γ is proportional to the wave speed.

- U has zero mean.
- U can be taken as even in z.
- U exists for every $\gamma \in\left(1, \frac{\pi^{2}}{9}\right)$.
- As $\gamma \rightarrow \frac{\pi^{2}}{9}$ the limiting wave has a (non-smooth) parabolic profile ($F \equiv 0$).
- Conserved momentum $Q(u)=\|u\|_{L^{2}}^{2}$.
- Conserved energy

$$
E(u)=\left\|\partial_{x}^{-1} u\right\|_{L^{2}}^{2}+\frac{1}{3} \int u^{3} d x,
$$

- Introduce the functional

$$
S_{\gamma}(u):=E(u)-\gamma Q(u) .
$$

- As usual, the Euler-Lagrange equations for S_{γ} gives the redO.

First try, second variation

- Take v square integrable $2 \pi N$-periodic function with zero mean.
- Expand $S_{\gamma}(U+v)-S_{\gamma}(U)$ to quadratic order in v.
- Obtain second variation

$$
\delta^{2} S_{\gamma}=\int\left[\left(\partial_{z}^{-1} v\right)^{2}-(\gamma-U) v^{2}\right] d z
$$

- Not sign definite.
- Write this as the quadratic form

$$
\delta^{2} S_{\gamma}=\left\langle L_{\gamma} v, v\right\rangle_{L^{2}}
$$

where L_{γ} is the self-adjoint operator

$$
L_{\gamma}:=-\partial_{z}^{-2}-\gamma+U
$$

Lyapunov functional: second try

There are other conserved quantities of the redO.

- Higher order energy

$$
H(u)=\int \frac{\left(u_{x x x}\right)^{2}}{\left(1-3 u_{x x}\right)^{7 / 3}} d x
$$

- Casimir-type functional $C(u)=\int\left(1-3 u_{x x}\right)^{1 / 3} d x$.
- Define a second energy functional $R_{\Gamma}(u):=C(u)-\Gamma H(u)$,
- Choose parameter Γ so the same periodic wave U that is critical point of S_{γ} is a critical point of $R_{\Gamma}(u)$, then

$$
\begin{gathered}
\Gamma:=-\left(\gamma^{3}-6 I\right)^{-2 / 3} \\
I=\frac{1}{2}\left(\gamma-\frac{1}{2} U^{2}\right)^{2}\left(\frac{d U}{d z}\right)^{2}+\frac{\gamma}{2} U^{2}-\frac{1}{8} U^{4}=\text { const. }
\end{gathered}
$$

Second try, second variation

$$
\delta^{2} R_{\Gamma}:=\int\left[\frac{v^{2}}{\left(\gamma^{3}-6 /\right)^{2 / 3}}-\frac{v_{z z}^{2}}{\left(1-3 U^{\prime \prime}\right)^{5 / 3}}\right] d z .
$$

- Not sign definite.
- Write this as the quadratic form

$$
\delta^{2} R_{\Gamma}=\left\langle M_{\gamma} v, v\right\rangle_{L^{2}},
$$

where M_{γ} is the self-adjoint operator

$$
M_{\gamma}:=-\partial_{z}^{2}\left(1-3 U^{\prime \prime}\right)^{-5 / 3} \partial_{z}^{2}+\left(\gamma^{3}-6 I\right)^{-2 / 3}
$$

A linear combination

- Introduce

$$
\Lambda_{c, \gamma}(u):=S_{\gamma}(u)-c R_{\Gamma}(u)
$$

where $c \in \mathbb{R}$ is a parameter to be defined within an appropriate interval.

- We wish to characterize the spectrum of the linear operator $K_{c, \gamma}:=L_{\gamma}-c M_{\gamma}$.
- $K_{c, \gamma}$ is self-adjoint with 2π-periodic coefficients by construction.
- By Bloch's theorem it is sufficient to seek eigenfunctions of the form

$$
e^{i \kappa z} w(z, \kappa)
$$

with eigenvalues $\lambda(\kappa)$ where κ lies in the Brillouin zone $\mathbb{T}=\left[-\frac{1}{2}, \frac{1}{2}\right]$ and $w(z, \kappa)$ is $2 \pi N$-periodic.

- Thus introduce the operator

$$
P_{c, \gamma}(\kappa):=e^{-i \kappa z} K_{c, \gamma} e^{i \kappa z}
$$

and look for its $2 \pi N$-periodic eigenfunctions $w(z, \kappa)$ and eigenvalues $\lambda(\kappa)$.

Numerical treatment of the operator $P_{c, \gamma}(\kappa)$

- Write

$$
P_{c, \gamma}(\kappa)=A_{\gamma}(\kappa)-c B_{\gamma}(\kappa)
$$

where

$$
\begin{aligned}
& A_{\gamma}(\kappa)=-\left(\partial_{z}+i \kappa\right)^{-2}-(\gamma-U) \\
& B_{\gamma}(\kappa)=\left(\gamma^{3}-6 I\right)^{-2 / 3}-\left(\gamma^{3}-6 I\right)^{-5 / 3}\left(\partial_{z}+i \kappa\right)^{2}(\gamma-U)^{5}\left(\partial_{z}+i \kappa\right)^{2}
\end{aligned}
$$

- Discretise the linear operators in Fourier space and evaluate products pseudospectrally, so
$\widehat{A_{\gamma}}(\kappa)=\operatorname{diag}\left(\mathbf{k}_{1}^{2}\right)-\mathcal{F}\left(\operatorname{diag}(\gamma-\mathbf{U}) \mathcal{F}^{-1}(\mathbf{I})\right)$,
$\widehat{B_{\gamma}}(\kappa)=\left(\gamma^{3}-6 I\right)^{-2 / 3} \mathbf{I}-\left(\gamma^{3}-6 I\right)^{-5 / 3} \operatorname{diag}\left(\mathbf{k}^{2}\right) \mathcal{F}\left(\operatorname{diag}(\gamma-\mathbf{U})^{5} \mathcal{F}^{-1}\left(\operatorname{diag}\left(\mathbf{k}^{2}\right)\right)\right.$,
where \mathcal{F} and \mathcal{F}^{-1} denote the discrete Fourier transform and its inverse, \mathbf{k} is the wavenumber vector with components $\kappa \pm n$ and \mathbf{k}_{1} its component-wise inverse.
- Eigenvalues obtained using the Matlab subroutines eig and eigs.

The base periodic solutions

- (a) 2π-periodic solutions of the redO for $a=A_{1}=-0.3,-0.5,-0.6,-0.65$.
- (b) Log of the absolute value of the Fourier cosine coefficients, A_{n}.
- Dashed: limiting piecewise parabolic wave ($a=-\frac{2}{3}$) with coefficients $A_{n}=2(-1)^{n} / 3 n^{2}$.
- Spectral Newton-Kantorovich iteration on A_{n}, γ.

The lowest eigenvalues of the operator $P_{c, \gamma}(\kappa)$ when $c=0.5$

- Left: $a=-0.1$ and Right : $a=-0.2$.
- Red dashed: the lowest eigenvalues of the unperturbed operator for $a=0$.
- Blue diamonds: computed eigenvalues.
- All repeated eigenvalues for $a=0$ are split when $a \neq 0$.
- Thus for $c=0.5, \Lambda_{c, \gamma}(u)$ provides a Lyapunov functional for $a=-0.1$ and $a=-0.2$.

Small- κ, small-a asymptotics (dashed red) and numerics

- Left: Detail of previous figure ($c=0.5, a=-0.1$) in neighbourhood of origin. The two spectral bands split at finite a.
- Centre: The ground spectral band for $a=-0.1$ but for $c=0.7$.
- Thus for $c=0.7, \Lambda_{c, \gamma}(u)$ does not provide a Lyapunov functional for $a=-0.1$.
- Right: The first excited spectral band for $a=-0.1, c=0.7$.
- Ground state transition from concave upwards (left) to concave downwards (centre) with increasing $|c|$ is generic.
- At fixed a the graph of the spectral band $\lambda_{\mathrm{gr}}(\kappa)$ is concave upwards at $\kappa=0$ for $c \in\left(c_{-}, c_{+}\right)$and concave downwards outside this interval.

Determining the positivity of $P_{c, \gamma}(\kappa)$

- At fixed a the graph of the spectral band $\lambda_{\mathrm{gr}}(\kappa)$ is concave upwards at $\kappa=0$ for $c \in\left(c_{-}, c_{+}\right)$and concave downwards outside this interval.
- This is first occurrence of a negative eigenvalue of $P_{c, \gamma}(\kappa)$.
- Thus boundaries $c_{ \pm}$are determined by changes in sign of $\lambda_{\mathrm{gr}}^{\prime \prime}(0)$.
- Since $\lambda_{\mathrm{gr}}^{\prime}(0)=0$, the sign of $\lambda_{\mathrm{gr}}^{\prime \prime}(0)$ is the sign of $\lambda_{\mathrm{gr}}\left(\delta_{\kappa}\right)$ for $0<\delta_{\kappa} \ll 1$.
- $c_{ \pm}$are thus determined as the values of c for which $P_{c, \gamma}\left(\delta_{\kappa}\right)$ has a zero eigenvalue, i.e. $\operatorname{det}\left[P_{c, \gamma}\left(\delta_{\kappa}\right)\right]=0$, i.e.

$$
\operatorname{det}\left[A_{\gamma}\left(\delta_{\kappa}\right)-c B_{\gamma}\left(\delta_{\kappa}\right)\right]=0
$$

i.e eigenvalues of the generalised linear eigenvalue problem

$$
A_{\gamma}\left(\delta_{\kappa}\right)=c B_{\gamma}\left(\delta_{\kappa}\right)
$$

- Computations performed for $\delta_{\kappa}=10^{-2}, 10^{-3}, 10^{-4}$. Results graphically indistinguishable.

Region of $(c,|a|)$ plane where $P_{c, \gamma}(\kappa)$ positive $\forall \kappa$

- Left: the reduced Ostrovsky equation
- Right: the modified reduced Ostrovsky equation
- The dashed lines show small |a| expansions for the boundaries

Conclusions

- Reduced Ostrovsky breaks if $3 u_{x x x}>1$, integrable otherwise.
- For small excesses of $3 u_{x x x}$ over 1 , breaking time varies as $\left[\max \left(u_{0 x x}\right)-1 / 3\right]^{5 / 6}$.
- Periodic solutions to the reduced Ostrovsky and modified reduced Ostrovsky equations are orbitally stable.

Grimshaw, R. H. J.; Helfrich, K. \& Johnson, E. R. The reduced Ostrovsky equation: Integrability and breaking Stud Appl Math, 2012, 129, 414-436 Johnson, E. R. \& Grimshaw, R. H. J. Modified reduced Ostrovsky equation: Integrability and breaking Phys. Rev. E, 2013, 88, 021201 Johnson, E. R. \& Pelinovsky, D. E. Orbital stability of periodic waves in the class of reduced Ostrovsky equations J. Diff. Equat., 2016, 261, 3268-3304

