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The Boltzmann equation

Of +v-Vif = Q(f,f) = [(fif' — f)B(r,cos8)dv,do
—_———

free transport operator collision kernel
where f/ = f(v)), ' =Ff(), fi="~F(v)

by = ks
Pre- and post-collisional velocities (v, vi./V/, v})

vt ve=Vv + Vv,
V2 + [val? = [V']? + VP

r=|v— v
cosf = Y . V Ve

v, v/ —vi

Deviation angle 6
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Cross section B: the way “particles” interact

Q(f,f) = /(f*'f' — fh)B(r,cosf)d vido

B(r,cos0) = r'b(cosf) with —d<y<2

Cut-off / b(cosf)do <
Sd—1

Non cut-off  b(cosf) ~ W|d++25 with s € (0,1)




Moment estimates (cut-off)

Moment of order k: [q F(t, X, v)|v|*dv

classical & important theme in kinetic theory
first step in the theory of the Boltzmann equation
mostly for v > 0 and for the homogeneous case
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Moment estimates (cut-off)

Hard potentials (v > 0) and homogeneous

@ Povzner'62, ElImroth’'83
generation of moments by Povzner's identities

@ Desvillettes '93

if k-moment with k > 2 initially, then all moments are generated

o Wennberg '97

not even necessary to have an initial > 2 moment

e Bobylev '97
L' estimates with exponential weight

Moderately soft potentials (—2 < v < 0) and homogeneous

@ Desvillettes '93
propagation of moments
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Pointwise decay cannot be generated (cut-off)

Recall B(r, cos#) = |vix — v|7b(cos )
cos@=k-o with k = (va — v)/|vx — V|

Gain and loss terms
Q(f, f) :/(f;:f' — ff)B(r,cosf)dv.do

:/ﬂf’B(r,cos@)dv*da—/fﬁkB(r,cose)dv*da

(e

Q. (F.f) Q_(f.f)
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Pointwise decay cannot be generated (cut-off)

Recall Q(f,f) = Q.(f,f) — Q_(Ff,f)

Loss term

Q_(f, f) f(v)/ v |v_v*y”fdv*</b (cos6) da>

—Jalia(e, | - |7)

Ch
<Gof (1 +|v]7)

for some constant Cy only depending on [ fo(1 + |v|?)dv

A lower bound for f

0:f = Q(EENESEE IR O (B $Co(1 + |v|")f.

f > e~ tG(tlvM) £ fo = initial condition

@
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Generation of pointwise decay (non cut-off)

Non-homogeneous
@ Generation of polynomial decay
@ Arbitrary polynomial decay for v > 0
@ Restricted polynomial decay for 7 < 0 (moderately soft)

Conditional to hydrodynamical bounds
@ 0<m < [f(t,x,v)dv < My
o [f(t,x,v)|v|?dv < E
o [fInf(t,x,v)dv < Hp

® L



Theorem (Cl, Mouhot, Silvestre)

Let v+ 2s € [0,2] and f be a solution of the Boltzmann equation
such that e mass, energy and entropy are controlled e. Then

© (Generation) ‘ Ify > 0‘ then‘ , 3N, 5>0

f(t,x,v) < N(1+4 t?)Ymin(1, |v|~9)

@ (Generation) , then

F(t,x,v) < N(L+t~2)min [ 1,|v|

1 e d(7+2s)
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Theorem (Cl, Mouhot, Silvestre)

Let v+ 2s € [0,2] and f be a solution of the Boltzmann equation
such that e mass, energy and entropy are controlled e. Then

Q@ (Generation) ‘ Ifvy > 0‘ then‘ , AN, 5 >0

f(t,x,v) < N(1+4 t?)Ymin(1, |v|~9)

@ (Generation) , then

F(t,x,v) < N(L+t~2)min [ 1,|v|

1 e d(7+2s)

© (Propagation) , then Vq > qo, fi, < Cmin(1,|v|~9)
f(t,x,v) < Nmin(L,|v|™9)
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Conditional C* smoothing effect (non-cutoff)

Reduce well-posedness of Boltzmann non-cutoff to hydro controls
This important equation is well-posed as long as mass and energy
do not explode.

Conditional regularity for Boltzmann
L bound (Silvestre)
Local Holder estimate (Cl, Silvestre)

°
@ Decay estimates for large velocities (Cl, Mouhot, Silvestre)
@ Schauder theory (Cl, Silvestre)
@ Global Holder estimate and bootstrap (Cl, Silvestre)
Why decay estimates?

@ Boltzmann collision operator = non-local

@ Control of coefficients |only if | control of tails =
o
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Conditional C* smoothing effect (non-cutoff)

Reduce well-posedness of Boltzmann non-cutoff to hydro controls
This important equation is well-posed as long as mass and energy
do not explode.

Conditional regularity for Boltzmann
L bound (Silvestre)
Local Holder estimate (Cl, Silvestre)

°
e Decay estimates for large velocities (Cl, Mouhot, Silvestre)
@ Schauder theory (Cl, Silvestre)
@ Global Holder estimate and bootstrap (Cl, Silvestre)
Why decay estimates?

@ Boltzmann collision operator = non-local

@ Control of coefficients |only if | control of tails =
o
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Rewriting Boltzmann (non-cutoff)

o) = [ [ (DR = ) ) 8w — vl o)
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Rewriting Boltzmann (non-cutoff)

QUF, F)(v //S“(f DF)- )>B(]v—v*\,9)

= (f( )f( ) = f(V*)f(V)) (’V e V*‘ve)dadv*'
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Rewriting Boltzmann (non-cutoff)

QF, F)(v //Sd1<f T f(v)>8(|v—v*] 9)

(07 = £ ) B — vl O)dodie
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Rewriting Boltzmann (non-cutoff)

o= [ [ ()= ) s - vio)

+f(v) (f(Vi) = f(v*)) B(|v — vi|,0)dodv.
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Rewriting Boltzmann (non-cutoff)

QUF. (v // <f(v f(v)) )B(|v — v.|,0)dodv,
(] //S< ) v k) oy
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Rewriting Boltzmann (non-cutoff)

Q(f, f)(v) :/R” (f(v/) - f(v)) Ke(v/ — v)dV + f(v)(c| - |7 = f).
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Rewriting Boltzmann (non-cutoff)

Q(f,f)(v) :/n (f(v') - f(v)) Ke(v' —v)d Vv +F(v)(c| - |7 * f).

@ Ky is a kernel depending on f and the cross section B. It can
be computed after a somewhat difficult change of variables in
the integral.
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Rewriting Boltzmann (non-cutoff)

Q(f,f)(v) :/n (f(v') = f(v)) Ke(V' —v)d v +f(v)(c| - |7 * f).

@ Ky is a kernel depending on f and the cross section B. It can
be computed after a somewhat difficult change of variables in
the integral.

@ c is a constant depending on the cross section B only. In
particular, f(c|-|? = f) is bounded if f € L' N L°°.
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Rewriting Boltzmann (non-cutoff)

Q(f,f)(v) :/n (f(v') = f(v)) Ke(V' —v)d v +f(v)(c| - |7 * f).

@ Ky is a kernel depending on f and the cross section B. It can
be computed after a somewhat difficult change of variables in
the integral.

@ c is a constant depending on the cross section B only. In

particular, f(c|-|? = f) is bounded if f € L' N L°°.

Boltzmann rewritten

(@ +v- V) = LE+ h
~—

with va=/< —f(V)> Ke™'(v/ = v)d v/ %
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Non-degeneracy from hydro controls
Q(f,f) = [(F(V') = f(v))Ke(V/ — v)dV + h

1
~ Y+2s5+1
V) ~ PASEES /M/J_Vl_vf(v—i—w)fw\ d

Ke(v' —

S

Hydro controls yields {f > ¢} has positive measure close to 0

{f=4
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Non-degeneracy from hydro controls

Q(f,f) = [(F(V') = F(v))Ke(V/ — v)dV + h

Ke(v' —

1

V)= v/ — v]d+2s

/ f(v + W)|W|'y+2s+1dw
wlv/—v

B~ X

by A

In this cone =

K¢ bounded below

(1+‘V‘)’)’+2s+1

|V/_V|d+2s



Non-degeneracy from hydro controls

Q(f,f) = [(F(V') = F(v))Ke(V/ — v)dV + h

N 1
v) = v/ — v|d+2s

Ke(v' — / F(v + w)|w| T2 dw
wlv/—v

B~ X

In this cone =
K¢ bounded below

(1+‘V‘)’)’+2s+1

by A= e




The non-divergence form for Boltzmann

Qf, F) = //(f*’f’ B ) Bdvado
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The non-divergence form for Boltzmann

Qf.f) = //(f*’f’ — £.f)Bdv.do
_ /(f(v’) — F(V)Ke(V — v)av + h
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The non-divergence form for Boltzmann

Qf, F) = //(f*’f’ B ) Bdvado

(F(vV') — F(V))Ke(V — v)dV' + h

/
i /(f(v L 7Y — (V) K (z)dale
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The non-divergence form for Boltzmann

Q(f,f) // f' — f.f)Bdv,.do

_ /(f(v ) — FO)Ke(V — v)dv' + h
— [(Fv+2) = FKi()dz +

| Ke(2) = Ke(—2)
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The non-divergence form for Boltzmann

Q(f,f) // f' — f.f)Bdv,.do

_ /(f(v ) — FO)Ke(V — v)dv' + h
— [(Fv+2) = FKi()dz +

| Ke(2) = Ke(—2)

1
= v+2z)+1(v—2z)— fVZ 21
f f 2f(v))Ke(v, z)d.
2 ENS



Barriers

QUf.H)=1%] (f(v +2z)+f(v—2z)— 2f(v)> K¢(v,z)dz+ h
See Silvestre '15, Schwab-Silvestre '16 (also Cl-Silvestre '16)
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Barriers

QUf.H)=1%] (f(v +2z)+f(v—2z)— 2f(v)> K¢(v,z)dz+ h
See Silvestre '15, Schwab-Silvestre '16 (also Cl-Silvestre '16)

e Important property: If f is smooth, then Q(f,f) is bounded

a(r, ) < 10 [

z|<

]z|2Kf(v,z)dz+HfHOO/ Ke(v,z)dz+h
1 |z|>1
e Barriers: If f < g with g smooth and f(v) = g(w), then

Q(f,f) < ;/ <g(v +2z)+g(v—2)— 2g(v)> K¢(v,z)dz + hg

at v = vy

’Maximum principle‘ %
\
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Strategy

Goal: Prove f(t,x,v) < N(t)(1+ |v|)~ 9
—_———

g(v)

Method: consider the barrier g and use the maximum principle

@ Choose N and g such that f < g at initial time

o Consider the first time t, where f < g fails

= (0¢ + vVx)f > (0¢ + vVx)g at some (s, X, Vi)

= N'(t)(1 +|w])~9 < Q(f, )

@ contradict this inequality by using
f<g

F(te; Xe, Vi) = gLk, X, Vi) %

ENS



The good term

f f / |V — v|d+2s {/J_ y f(v+ W)|W‘7+25+1dw} dv+h

=G(f,f) + (bad terms) + h

' dv’
FLf) ~ f y+2s / F(v') — L S
G(f.f) /|V+w|gcq\v| (v+w)lw| { (V_V)LW( (") f(V))‘V,,V|d_1+2s dw

G(f,f) = The kernel adds |v|"% & the operator differentiates 25 times
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The good term

Q(f,f) ~ /| % |d+25 {/L / f(V+W)|WW+25+1dW} dv+h

= G(f,f)|+ (bad terms) + h

O(F, F) /

Jv4+w|<cqlv|

W {/( & (r(v | f(v))iv;%} o

V=

G(f,f) = The kernel adds |v|”™* & the operator differentiates 2s times
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The good term

vedl = \ ‘
Pick ¢, <'1 / \

/
e Grey circle of radius ¢4|v| ( B v
vVt w / ‘

\ i
AN &, |

o Circle of radius 1|v|

dv’
gf,f 2/ fV+W W’Y+2$ / fV,ffV AV a: S0
( ) [v+w|<cq|v| ( )| | (v/—v)Lw( ( ) ( )) |V’ — V|d*1+2s

s / dVl
5/ f(V+W)|W|’Y+2 {/ (g(V)—g(V))‘ T |d_1+25}dw
[v+w|<cqlv| (v —v)Llw v v

’ if v/ ~ v, the function g is concave‘ & ‘ if not, use its decay‘

s 12 dV,
5/ (v + w)lw|" "2 {/wv)m (g(V)—g(V))|,d_1+25}dV‘
vtw|<cqlv] | VsV

v/ —v|>rg|v|

i X 0
< g @



@ Cl-Mouhot-Silvestre. Decay estimates for large velocities in
the Boltzmann equation without cut-off. Journal de I'Ecole
Polytechnique — Mathématiques, Volume 7, p. 143-184 (2020)
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@ Cl-Mouhot-Silvestre. Decay estimates for large velocities in
the Boltzmann equation without cut-off. Journal de I'Ecole
Polytechnique — Mathématiques, Volume 7, p. 143-184 (2020)

Thank you for your attention
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The Weak Harnack inequality

Theorem (Cl-Silvestre)

Let f be a non-negative supersolution of the
linear kinetic equation in (—1,0] x By x Bj.

Assume that the kernel satisfies the coercivity, .
upper bound, cancellation and non-degeneracy
conditions. Then

Ity < € (igfF + il

where € and C only depends on dimension, A
and .

Comments

@ Weak Harnack implies Holder @
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Weak Harnack inequality: comments

e Kinetic parabolic equations: 9;f + v - V4 f = V,(AV,f)
o L°° bound: Pascucci, Polidoro (2004)
o Holder continuity: Wang, Zhang (2008, 2009, 2011)
e Harnack inequality: Golse, Cl, Mouhot, Vasseur (2015/2016)

the full Harnack inequality may not hold true
e Fact: | for integro-differential equations,
see for instance Bogdan, Sztonyk (2005)

@ Main ideas involved in the proof

o Use ideas from de Giorgi (first lemma)
e Transfer of regularity from v to x (kinetic theory)
o Use ideas from non-div form equations (Krylov, Safonov)
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Weak Harnack inequality: further comments

@ First results for kinetic integro-differential equations
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Weak Harnack inequality: further comments

@ First results for kinetic integro-differential equations

o New regularity results for integro-differential equations in
divergence form, even in the homogeneous case

o very mild assumptions on the kernel
e nonsymmetric kernels with cancellation conditions
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Weak Harnack inequality: further comments

@ First results for kinetic integro-differential equations

o New regularity results for integro-differential equations in
divergence form, even in the homogeneous case

o very mild assumptions on the kernel
e nonsymmetric kernels with cancellation conditions

@ Our results apply to the Boltzmann equation without cut-off

e This is the reason why we are forced to work with so mild

assumptions on the nonsymmetric kernel
@
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