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Idea

Develop unified methodology for numerical analysis and simulation of complex of interface and
free boundary motion

• Functional analytic framework for abstract PDEs
• Time dependent function spaces
• Approximate time dependent space by evolving finite element spaces
• Evolving bulk and surface domains approximated by fitted triangulated domains
• Avoid unfitted finite elements and level set equations
• Link domain evolution to evolution equation on domains
• In this talk focus on evolving surfaces



Motivation I. – cell division by contractile ring formation

A bulk–surface model for cell division via surface diffusion of stress generated surface
molecules (myosin II), see [Wittwer and Aland (2022)], [Bonati, Wittwer, Aland, and Fischer-Friedrich (2022)].

Experiment by E. Fischer-Friedrich (TU Dresden).
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Chemotaxis

Chemotaxis

Figure: Neutrophil chasing a bacteria. Rogers Lab
[1952] Figure: Multi cell chemotaxis. Firtel Lab.



Chemotaxis

Surface reaction diffusion and geometric evolution

Figure: Simulation of chemotaxis in a field of
obstacles : Roy. Soc. Interface [2012]Elliott, Stinner,
Venkataraman

Figure: Simulation of multi-cell chemotaxis: Roy.
Soc. Interface [2012] Elliott, Stinner, Venkataraman



Evolving compact hypersurfaces

For each t ∈ [0,T ], let Γ(t)⊂ Rn+1 be a compact (i.e., no boundary) n-dimensional
hypersurface of class C2, and assume the existence of a flow Φ : [0,T ]×Rn+1→ Rn+1 such
that for all t ∈ [0,T ], with Γ0 := Γ(0), the map Φ0

t (·) := Φ(t, ·) : Γ0→ Γ(t) is a
C2-diffeomorphism that satisfies

d
dt

Φ
0
t (·) = w(t,Φ0

t (·))

Φ
0
0(·) = Id(·).

(1)

We think of the map w : [0,T ]×Rn+1→ Rn+1 as a velocity field, and we assume that it is C2

and satisfies the uniform bound

|∇Γ(t) ·w(t)| ≤C for all t ∈ [0,T ].

A normal vector field on the hypersurfaces is denoted by ν : [0,T ]×Rn+1→ Rn+1.
A bulk domain Ω(t) with boundary Γ(t) may be viewed as sub manifold in Rn+2.



Parameterised evolving surfaces

Let Γ (t)⊂ R3 be a closed surface parametrised by X over an initial surface Γ 0:

Γ [X ] = Γ [X(·, t)] = {X(p, t) : p ∈ Γ
0}.

Surface velocity w satisfies, in x(t) = X(p, t), by

∂tX(p, t) = w(X(p, t), t).

The surface Γ [X(·, t)] is a collection of points x, where
x = X(p, t) is obtained by solving the above ODE from 0 to t for a fixed p.

Γ 0

time t = 0

p

Γ [X(·, t)]

time t

x

trajectory of p



Material derivative

Normal time derivative Suppose that the velocity field associated to the evolving hypersurface
{Γ(t)} is w = wν +wτ where wν is a normal velocity field and wτ is a tangential velocity field.
In this case, the formula

∂
◦u = ut +∇u ·wν

defines the normal time derivative ∂ ◦u.
For our purposes the material derivative is associated with the parameterisation of the
hypersurface and depends on the tangential velocity.

∂
•u = ∂

◦u+wτ ·∇Γu

A physical material derivative would be

u̇ = ∂
•u+(vτ −wτ ) ·∇Γu

where vτ is a tangential physical material velocity.
Choosing wτ for some purpose of computation or analysis may be appropriate. In numerical
methods this is called the Arbitrary Lagrangian Eulerian (ALE) approach where it is employed
to yield good meshes.



Differential operators on Γ [X ]

• Outward normal vector: ν = νΓ [X ]

• Material derivative: ∂ •u(·, t) = d
dt
(
u(X(·, t), t)

)
• Tangential gradient: ∇Γ u = ∇Γ [X ]u = ∇u− (∇u ·ν)ν : Γ → R3

• Laplace–Beltrami operator: ∆Γu = ∆Γ [X ]u = ∇Γ [X ] ·∇Γ [X ]u

• extended Weingarten map (3×3 symmetric matrix)

A(x) = ∇Γ ν(x)

•

mean curvature H = tr(A) = κ1 +κ2,

and |A|2 = ‖A‖2
F = κ

2
1 +κ

2
2 .



Advection-diffusion on an evolving surface

Let Γ(t) be a time (t) dependent n−dimensional hypersurface in Rn+1.

∂
◦u+∇Γ · (BΓu)−∇Γ · (AΓ∇u)+CΓu = 0 on Γ(t)

u(·,0) = u0 on Γ0 := Γ(0)

AΓ is a smooth diffusion tensor which maps the tangent space of Γ into itself,
BΓ is a tangential vector field,
CΓ is a smooth scalar field.
∂ ◦u denotes the normal time derivative
i.e. the time derivative of a function along a trajectory on Γ(t)× t moving in the direction
normal to Γ(t).



Advection-diffusion on an evolving bulk-surface domain

Let Γ(t) = ∂Ω(t)where Ω(t) is a time dependent bulk domain in Rn+1.

ut +∇ · (BΩu)−∇ · (AΩ∇u)+CΩu = 0 on Ω(t)

(AΩ∇u−BΩu) ·ν +αu−βv = 0 on Γ(t)

u(·,0) = u0 on Ω0 := Ω(0)

∂
◦v+∇Γ · (BΓv)−∇Γ(AΓv)+CΓv+(AΩ∇u−BΩu) = 0 on Γ(t)

v(·,0) = v0 on Γ0 := Γ(0)

where α and β are positive constants.



Surface Navier-Stokes equations

Let Γ(t) be a time (t) dependent 2−dimensional hypersurface in R3.
Seek a triple (u, p1, p2) to the problem:

u ·νΓ =VΓ on ∪t∈I {t}×Γ(t)

∂
◦u+u ·∇Γu+∇Γ p1 +2µ0∇Γ ·E(u) =−p2ν + f on ∪t∈I {t}×Γ(t)

∇Γ ·u = 0 on ∪t∈I {t}×Γ(t)

EΓ(v) =
∇Γv+(∇Γv)T

2
, .

Note: two Lagrange multipliers.
See Miura(2017) for a thin film derivation. Also Reusken et al (2021,2022).



Combining surface evolution with surface processes

Geometric gradient flow

Concentration dependent energy

E(Γ,u) =
∫

Γ

G(u),

The (L2,H−1)-gradient flow of E yields the coupled geometric flow:

v =−g(u)HνΓ =V νΓ ,

∂
•u+uV H = ∆Γ [X ]G

′(u),

with g(u) = G(u)−uG′(u).



Combining surface evolution with surface processes

Two phase biomembrane energy:

E(Γ,φ : Γ→ R) =
∫

Γ

kH(φ)

2
(
H−Hs(φ)

)2
+ kg(φ)g︸ ︷︷ ︸

bending energy

+σ

(
ε

2
|∇Γφ |2 + 1

ε
W (φ)

)
︸ ︷︷ ︸

line energy

Gradient flow dynamics: Find {(Γ(t),φ(t))}t such that for all (w,η)(
(v,∂ •φ),(w,η)

)
L2 :=−

〈
δF(Γ,φ),(w,η)

〉
−λ ·

〈
δC(Γ,φ),(w,η)

〉

Theorem: The strong equations of the gradient flow are

v =−∆Γ

(
kH(φ)(H−Hs(φ))

)
−|∇Γν |2kH(φ)(H−Hs(φ))+

1
2 kH(φ)(H−Hs(φ))

2H

−∇Γ ·
(
k′g(φ)(HI−∇Γν)∇Γφ

)
+σε∇Γφ ⊗∇Γφ : ∇Γν +σ

(
ε

2 |∇Γφ |2− 1
ε
W (φ)

)
H

−λV +
(
λA−λφ h(φ)

)
H,

ω(ε)∂ •φ =− 1
2 (H−Hs(φ))

2k′H(φ)+ kH(φ)(H−Hs(φ))H ′s(φ)−gk′g(φ)

+ εσ∆Γφ − σ

ε
W ′(φ)−λφ h′(φ),

plus constraints.



Model abstract problem

Abstract problem
Find u(t) ∈ V(t)

u(0) = u0 ∈ V(0)
∂
•u+A(t)u = f ∈ V∗(t)

written in a variational form as

〈∂ •u,v〉V∗(t),V(t)+a(t;u,v) = 〈 f ,v〉V∗(t),V(t)

u(0) = u0

with associated (arbitrary) family of Hilbert triples

V(t)⊂H(t)⊂ V∗(t), t ∈ [0,T ]

parametrised by t ∈ [0,T ].

Alphonse, E., Stinner (2015) Port. Math. + I.F.B.



Model abstract problem: Saddle point problem

For t ∈ R+ let Y (t) and X(t) be, respectively, given families of evolving Hilbert and Banach
spaces. We denote the dual X(t) as X∗(t) and assume we have the Gelfand triple structure:

X(t)⊂ Y (t)⊂ X∗(t).

where we refer to Y (t) as the pivot space. Let Z(t) be an evolving Banach family. We are
concerned with the linear saddle-point problem:

∂
•u(t)+A(t)u(t)+B∗(t)p(t) = f (t) ∈ X∗(t),

B(t)u(t) = g(t) ∈ Z∗(t),

u(0) = u0 ∈ Y (0).

with ∂ •t u denoting the material derivative and we seek a pair of solutions (u, p).



Spaces

Z(t)⊂Z0(t)⊂ V(t)⊂H(t)

• H(t) pivot space
• V(t) solution spaces
• Z0(t) regularity space for dual problem
• Z(t) higher regularity space for solution with specific data



Collaborators

Gerd Dziuk

Bjoern Stinner, Tom Ranner, Hans Fritz

Amal Alphonse, Ana Djurdjevac, Diogo Caetano,

Balas Kovacs, Harald Garcke

Pierre Stepanov,



PDE and Finite Element setting

• Domain and function spaces
• PDE: Initial value problem
• Bilinear forms and transport formulae
• Variational formulation
• Verify assumptions

• Evolving bulk finite element spaces
• Lifted bulk finite element spaces
• Evolving surface finite element spaces
• Lifted surface finite element spaces
• Discrete material derivatives and transport formulae

All these require precise definitions.



Analysis Based Computation

ABC Methodology

• Construct finite dimensional spaces as analogues of the continuous spaces
• Approximation theory
• Construct discrete analogues of bilinear forms in variational setting
• Well posedness of discrete problem
• Perturbation bounds for bilinear forms
• Error analysis via well posedness of continous problem and consistency



Model abstract discrete problem

Abstract problem
Find uh(t) ∈ Vh(t)

uh(0) = uh
0 ∈ Vh(0)

∂
•
h uh +Ah(t)uh = fh ∈ V∗h (t)

written in a variational form as

〈∂ •h uh,v〉V∗h (t),Vh(t)+ah(t;uh,v) = 〈 fh,v〉V∗h (t),Vh(t)

uh(0) = uh
0

with associated (arbitrary) family of Hilbert triples

Vh(t)⊂Hh(t)⊂ V∗h (t), t ∈ [0,T ]

parametrised by t ∈ [0,T ].

Dziuk+E. (2007) ESFEM



Model abstract lifted discrete problem

Abstract lifted problem

Find u`h(t) ∈ V`
h(t)

u`h(0) = uh,`
0 ∈ V`

h(0)

∂
•,`
h u`h +A`

h(t)u
`
h = f `h

written in a variational form as

〈∂ •,`h u`h,v〉V∗(t),V(t)+a`h(t;uh,v) = 〈 f `h ,v〉V∗(t),V(t),∀v ∈ V`
h(t)

u`h(0) = uh,`
0

V`
h(t)⊂ V(t)

Dziuk+E.(2013), E.+Ranner(2021)



The relationships between evolving function spaces

H(t) V(t) Z0(t) Z(t)

S`
h(t)

Sh(t)

Hh(t) Vh(t)
⊂

⊃

⊂ denotes subspace inclusion
↪→ denotes continuous embedding

↔ denotes that the lift is a bijection between these spaces.



Pullback and pushforward maps

Definition (Compatibility)

For t ∈ [0,T ], let X (t) be a separable Hilbert space and denote by X0 := X (0). Let
φt : X0→ X (t) be a family of invertible, linear homeomorphisms, with inverse
φ−t : X (t)→ X0, such that there exists CX > 0 such that for every t ∈ [0,T ]

||φtη ||X (t) ≤CX ||η ||X0 for all η ∈ X0

||φ−tη ||X0 ≤C−1
X ||η ||X (t) for all η ∈ X (t),

and such that the map t 7→ ||φtη ||X (t) is continuous for all η ∈ X0. Under these circumstances,
we call the pair (X (t),φt)t∈[0,T ] compatible. We call the map φt the push-forward operator and
φ−t the pull-back operator.

Remark
If S(t) be a closed subspace in H(t) for each t ∈ [0,T ] and φt maps S0 := S(0)→ S(t), then
(S(t),φt |S0)t∈[0,T ] form a compatible pair.



Evolving Bochner spaces

Definition (Bochner-type spaces)

Define the spaces

L2
X = {u : [0,T ]→

⋃
t∈[0,T ]

X(t)×{t}, t 7→ (ū(t), t) | φ−(·)ū(·) ∈ L2(0,T ;X0)}

L2
X∗ = { f : [0,T ]→

⋃
t∈[0,T ]

X∗(t)×{t}, t 7→ ( f̄ (t), t) | φ∗(·) f̄ (·) ∈ L2(0,T ;X∗0 )}.

More precisely, these spaces consist of equivalence classes of functions agreeing almost
everywhere in [0,T ], just like ordinary Bochner spaces.

For u ∈ L2
X , we will make an abuse of notation and identify u(t) = (ū(t), t) with ū(t) (and

likewise for f ∈ L2
X∗ ).

Theorem
The spaces L2

X and L2
X∗ are Hilbert spaces with the inner products

(u,v)L2
X
=
∫ T

0
(u(t),v(t))X(t) dt

( f ,g)L2
X∗

=
∫ T

0
( f (t),g(t))X∗(t) dt.

(2)



Pushed-forward continuously differentiable functions

Definition (Spaces of pushed-forward continuously differentiable functions)

Define the spaces

Ck
X = {ξ ∈ L2

X | φ−(·)ξ (·) ∈Ck([0,T ];X0)} for k ∈ {0,1, ...}

DX (0,T ) = {η ∈ L2
X | φ−(·)η(·) ∈D((0,T );X0)}

DX [0,T ] = {η ∈ L2
X | φ−(·)η(·) ∈D([0,T ];X0)}.

Since D((0,T );X0)⊂D([0,T ];X0), we have

DX (0,T )⊂DX [0,T ]⊂Ck
X .



Abstract strong and weak material derivatives

Definition (Strong material derivative)

For ξ ∈C1
X define the strong material derivative ξ̇ ∈C0

X by

ξ̇ (t) := φt

(
d
dt

(φ−tξ (t))
)
.

• We see that the space C1
X is the space of functions with a strong material derivative,

justifying the notation.
•

Definition (Weak material derivative)

For u ∈ L2
V , if there exists a function g ∈ L2

V∗ such that∫ T

0
〈g(t),η(t)〉V∗(t),V(t) =−

∫ T

0
(u(t), η̇(t))H(t)−

∫ T

0
λ (t;u(t),η(t))

holds for all η ∈DV (0,T ), then we say that g is the weak material derivative of u, and we write
u̇ = g or ∂ •u = g.

The form λ is identified using the push forward map. This concept of a weak material derivative
is indeed well-defined: if it exists, it is unique, and every strong material derivative is also a
weak material derivative.



Transport theorem/Integration by parts

Theorem (Transport theorem and formula of partial integration)

For all u, v ∈W (V,V∗), the map
t 7→ (u(t),v(t))H(t)

is absolutely continuous on [0,T ] and

d
dt

(u(t),v(t))H(t)t = 〈∂ •u(t),v(t)〉V∗,V(t)+ 〈∂ •v(t),u(t)〉V∗(t),V(t)

+λ (t;u(t),v(t))

for almost every t ∈ [0,T ]. For all u, v ∈W (V,V∗), the following formula of partial integration
holds

(u(T ),v(T ))H(T )− (u(0),v(0))H0

=
∫ T

0
〈∂ •u(t),v(t)〉V∗(t)V(t)+ 〈∂ •v(t),u(t)〉V∗(t)V(t)

+λ (t;u(t),v(t)) dt.



Finite element space

• For each h ∈ (0,h0), numerical method is based in a finite dimensional subspace Sh(t) with
constructed Hilbert spaces (Hh(t), || · ||Hh(t)) and (Vh(t), || · ||Vh(t)) for all t ∈ [0,T ] and

Sh(t)⊂ Vh(t)⊂Hh(t).

• Push forward map φ h
t : Hh,0 :=Hh(0)→Hh(t).

{Sh(t)}t∈[0,T ], evolving, finite-dimensional space subspace of Vh(t) satisfying
φ h

t (Sh,0) = Sh(t) (where Sh,0 = Sh(0)).
•

‖ηh‖Hh(t) ≤ c‖ηh‖Vh(t) for all ηh ∈ Vh(t).

• (Hh(t),φ h
t )t∈[0,T ] and (Vh(t),φ h

t |Vh,0)t∈[0,T ] are compatible pairs uniformly in h:

c−1 ‖ηh‖Hh,0
≤
∥∥∥φ

h
t ηh

∥∥∥
Hh(t)

≤ c‖ηh‖Hh,0
for all ηh ∈Hh,0

c−1 ‖ηh‖Vh,0
≤
∥∥∥φ

h
t ηh

∥∥∥
Vh(t)

≤ c‖ηh‖Vh,0
for all ηh ∈ Vh,0.



Discrete material derivative

• Since Sh(t) is a closed subspace of Vh(t) it is a Hilbert space and forms a compatible pair
(Sh(t),φ h

t |Sh,0)t∈[0,T ].

• Well defined spaces L2
Sh

and C1
Sh

and the material derivative ∂ •h χh is well defined for
χh ∈C1

Sh
.

• Defines the spaces L2
Hh

,L2
Vh

and C1
Hh

,C1
Vh

. For ηh ∈C1
Hh

, we denote by ∂ •h ηh the (strong)
material derivative ) with respect to the push-forward map φ h

t defined by

∂
•
h ηh := φ

h
t (

d
dt

φ
h
−tηh).



Basis functions and transport property

Let {χi(·,0)}N
i=1 be a basis of Sh,0 and push-forward to construct a time dependent basis

{χi(·, t)}N
i=1 of Sh(t) by

χi(·, t) = φ
h
t (χi(·,0)).

It follows that
∂
•
h χi = 0

so that for a decomposition

χh(t) :=
N

∑
i=1

γi(t)χi(t) for all χh ∈ Sh(t),

we compute that

∂
•
h χh =

N

∑
i=1

γ̇i(t)χi(t) for all χh ∈C1
Sh
.



Another discrete material derivative approipriate for analysis

∂ •` η denotes the material derivative for the push-forward map φ `
t .

∂
•
` η := φ

`
t

d
dt

(φ `
−tη) for all η ∈C1

(H,φ `).

This is a different material derivative to the material derivative defined with respect to the
push-forward map φ h

t .
Important observation of Dziuk and Elliott, the following commutation result holds:

∂
•
` (η

`
h) = (∂ •h ηh)

` for all ηh ∈C1
Hh

.

Indeed:

∂
•
` (η

`
h) = φ

`
t

d
dt

(
φ
`
−t(η

`
h)
)
=

(
φ

h
t

(( d
dt
(φ h
−tηh)

`
)−`))`

=

(
φ

h
t

( d
dt
(φ h
−tηh)

))`

= (∂ •h ηh)
`,

since the lift at time t = 0 and time derivative commute and (·)` and (·)−` are inverses.

Lemma
ηh ∈C1

Hh
if, and only if, η`

h ∈C1
(H,φ `)

, and ηh ∈C1
Vh

if, and only if, η`
h ∈C1

(V ,φ `)
.



Tasks for realisation of abstract theory

Define
• Evolving finite element
• Evolving triangulation
• Evolving finite element space

Establish
• Approximation properties
• Lifted evolving spaces

Realise
• Ωh(t) and Γh(t) by interpolation, for example.

Evolving nodes on initial triangulations by velocity field
• Sh(t)

Establish
• Discrete bilinear forms
• Approximation estimates
• Ritz projection and for material derivative



Surface finite elements

Figure: Examples of different surface finite elements in the case n = 2. Left shows a reference finite element
(in green), centre shows an affine finite element and right shows an isoparametric surface finite element with
a quadratic FK . The plot shows the element domains in red and the location of nodes in blue.



Evolving isoparametric surface finite element

Figure: Examples of construction of an isoparametric evolving surface finite element for k = 3. The
Lagrange nodes ai(t) follow the dashed black trajectories from the initial element K0 ⊂ Γh,0 to a element
K(t)⊂ Γh(t).



Weak and variational formulation of the advection diffusion equation

For every ϕ(·, t) ∈ H1(Γ(t))
Weak form ∫

Γ(t)
∂
•uϕ +

∫
Γ(t)

uϕ ∇Γ · v+
∫

Γ(t)
∇Γu ·∇Γϕ = 0

Variational form

d
dt

∫
Γ(t)

uϕ +
∫

Γ(t)
∇Γu ·∇Γϕ =

∫
Γ(t)

u∂
•
ϕ

Abstract variational form
d
dt

m(u,ϕ)+a(u,ϕ) = m(u,∂ •ϕ).



Finite element space

For each t we have the finite element spaces
Space on triangulated surface

Sh(t) =
{

φh ∈C0(Γh(t))|φh|E is linear affine for each E ∈ Th(t)
}

Lifted space on smooth surface

Sl
h(t) =

{
ϕh = φ

l
h|φh ∈ Sh(t)

}
Note that Sl

h(t)⊂H1(Γ(t)) and that for each ϕh ∈ Sl
h there is a unique φh ∈ Sh such that ϕh = φ l

h.



Discrete transport formulae

Discrete surface
d
dt

∫
Γh(t)

f =
∫

Γh(t)
∂
•
h f + f ∇Γh ·Vh.

Abstract form: discrete surface

d
dt

mh(φ ,Wh) = mh(∂
•
h φ ,Wh)+mh(φ ,∂

•
h Wh)+gh(Vh;φ ,Wh)

d
dt

ah(φ ,Wh) = ah(∂
•
h φ ,Wh)+ah(φ ,∂

•
h Wh)+bh(Vh;φ ,Wh)



ESFEM

Finite element method

d
dt

mh(Uh,φh)+ah(Uh,φh) = mh(Uh,∂
•
h φh), Uh(·,0) =Uh0. (3)

Evolving mass matrix

M(t) jk =
∫

Γh(t)
χ jχk,

Evolving stiffness matrix

S(t) jk =
∫

Γh(t)
∇Γh χ j∇Γh χk,

Uh = ∑
N
j=1 α jχ j, α = (α1, . . . ,αN)

Algebraic form
d
dt

(M(t)α)+S(t)α = 0, (4)

which does not explicitly involve the velocity of the surface.



Error analysis: Not quite but near!!

1
2

d
dt

mh(θ ,θ)+ah(θ ,θ) = Fh(θ).

Theorem
Let u be a sufficiently smooth solution satisfying∫ T

0
‖u‖2

H2(Γ)+‖∂
•u‖2

H2(Γ)dt < ∞

and let uh(, t) =U l
h(·, t), t ∈ [0,T ] be the spatially discrete solution with initial data uh0 =U l

h0
satisfying

‖u(·,0)−uh0‖L2(Γ(0)) ≤ ch2.

Then the error estimate

sup
t∈(0,T )

‖u(·, t)−uh(·, t)‖L2(Γ(t)) ≤ ch2

holds for a constant c independent of h.



Geometric equations satisfied by evolving surfaces

Following [Huisken (1984)], for a regular evolving surface Γ [X ] the identities hold:

∇Γ H = ∆Γ ν + |A|2ν , and (5)

∂
•
ν = −∇Γ V, (6)

(7)

For example:

V = −H,

∂
•
ν

(2)
= −∇Γ V (4a)

(4a)
= −∇Γ (−H)

(1)
= ∆Γ ν + |A|2ν .



MCF and Dziuk’s algorithm

A regular surface Γ [X ] moving under mean curvature flow satisfies:

∂tX = v◦X ,

v = −Hν .

Heat-like equation, using that on any Γ : −Hν = ∆Γ xΓ (where xΓ = idΓ ):

∂tX(p, t) = ∆Γ [X ]xΓ [X ].

[Dziuk (1990)]

Simple and elegant algorithm;
computes all geometry from surface via evolving surface finite elements.



A coupled system for mean curvature flow

Inspired by [Huisken (1984)], consider the coupled system:

v = −Hν ,

∂
•
ν = ∆Γ [X ]ν + |A|2 ν ,

∂
•H = ∆Γ [X ]H + |A|2H,

∂tX = v◦X .

The equations for ν and H are solved using evolving surface finite element formulation on a
surface computed

First convergence proof for MCF in [Kovacs Li, and Lubich (2019)]: optimal-order H1 norm error
estimates (for evolving surface FEM of order k ≥ 2 and BDF of order 2 to 5).

Leads to a less simple, but natural algorithm;
computes all geometry from evolution equations.



A geometric gradient flow involving diffusion on surface

Consider the energy

E(Γ [X ],u) =
∫

Γ [X ]
G(u),

where
• Γ [X ] is an evolving surface;
• u is a concentration on the surface Γ [X ].

The (L2,H−1)-gradient flow of E yields the coupled geometric flow:

v = −g(u)HνΓ =V νΓ ,

∂
•u+uV H = ∆Γ [X ]G

′(u),

with g(u) = G(u)−uG′(u).

Derivation and analytic theory in [Bürger (2021)].



Properties of MCF and the gradient flow

(i) Conservation of mean-convexity: [both]

if H(·,0)≥ 0, then H(·, t)> 0, ∀t.

(i) Loss of convexity: [MCF preserves]

if Γ
0 is convex, then Γ [X(·, t)] is not necessarily convex.

(iii) Formation of self-intersections are possible. [not for MCF]

(iv) Concentration properties: [irrelevant for MCF]

d
dt

∫
Γ [X ]

u = 0, u(·,0)≥ 0 ⇒ u(·, t)≥ 0, ∀t, min{u}↗ .

[Huisken (1984)]

[Bürger (2021)]
All observable in numerical experiments.
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Loss of convexity, while preserving mean convexity



Loss of convexity, while preserving mean convexity



Qualitative properties of the fully discrete solution
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Slow diffusion through a tight neck

cf. [Ecker (2008)]
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MCF and Dziuk’s algorithm

A regular surface Γ [X ] moving under mean curvature flow satisfies:

∂tX = v◦X ,

v = −Hν .

Heat-like equation, using that on any Γ : −Hν = ∆Γ xΓ (where xΓ = idΓ ):

∂tX(p, t) = ∆Γ [X ]xΓ [X ].

[Dziuk (1990)]

Simple and elegant algorithm;
computes all geometry from surface.



A coupled system for mean curvature flow

Inspired by [Huisken (1984)], consider the coupled system:

v = −Hν ,

∂
•
ν = ∆Γ [X ]ν + |A|2 ν ,

∂
•H = ∆Γ [X ]H + |A|2H,

∂tX = v◦X .

First convergence proof for MCF in [K., Li, and Lubich (2019)]: optimal-order H1 norm error
estimates (for evolving surface FEM of order k ≥ 2 and BDF of order 2 to 5).

Leads to a less simple, but natural algorithm;
computes all geometry from evolution equations.
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Coupled system for

the interaction of mean curvature flow and diffusion



Interaction of mean curvature flow and diffusion

Instead of mean curvature flow

v = (−H)νΓ ,

consider now the generalised mean curvature flow

v = V νΓ with V =−F(u,H),

with a given function F .

The real question is:
How robust is our approach from [KLL (2019)]?

Brief answer: Very!!
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Not-so-brief answer – recap mean curvature flow

Following [Huisken (1984)], for a regular surface Γ [X ] the identities hold:

∇Γ H = ∆Γ ν + |A|2ν , and (8)

∂
•
ν = −∇Γ V, (9)

∂
•H = −∆Γ V −|A|2V. (10)

V = −H. (4a)

For example:

∂
•
ν

(2)
= −∇Γ V

(4a)
= −∇Γ (−H)

(1)
= ∆Γ ν + |A|2ν .
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Not-so-brief answer – Repeating for V =−g(u)H

Would this approach work for this problem?

Following [Huisken (1984)], for a regular surface Γ [X ] the identities hold:

∇Γ H = ∆Γ ν + |A|2ν , and (1)

∂
•
ν = −∇Γ V, (2)

∂
•H = −∆Γ V −|A|2V. (3)

V = F(u,H) =−g(u)H. (4b)

For example

∂
•
ν

(2)
= −∇Γ V

(4b)
= −∇Γ (−g(u)H)

= g(u)∇Γ H +H∇Γ (g(u))
(1)
= g(u)

(
∆Γ ν + |A|2ν

)
+H∇Γ (g(u)). (/g(u)> 0)
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Evolving surface finite elements

and matrix–vector formulation



Key observations

We use dynamic variables to determine
the geometric quantities in the surface velocity vh ≈Vhνh.

exact solution approximation geometry

surface: X(·, t) : Γ 0→ R3 Xh(·, t) : Γ 0
h → R3

(collected into x(t))

velocity: v : Γ [X ]→ R3 vh : Γh[x]→ R3

surface normal: ν : Γ [X ]→ S3 νh : Γh[x]→ R3 6= νΓh[x] ∈ S3

normal velocity: V : Γ [X ]→ R Vh : Γh[x]→ R 6=VΓh[x]
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Semi-discrete problem

V =−F(u,H), H =−K(u,V ),w = (ν ,V)

Evolving surface FEM [Dziuk and Elliott], [Demlow (2009)];
nodal values zh z (for all finite element functions).

∂tXh = vh ◦Xh,

with vh = Ĩh(Vhνh),

for wh = (νh,Vh)∫
Γh[x]

∂2Kh ∂
•
h wh ·ϕw

h +
∫

Γh[x]
∇Γh[x]wh ·∇Γh[x]ϕ

w
h

=
∫

Γh[x]
|Ah|2wh ·ϕw

h +
∫

Γh[x]
f (∂1Kh,wh,uh;∂

•
h uh) ·ϕw

h ,

d
dt

(∫
Γh[x]

uh ϕ
u
h

)
+
∫

Γh[x]
D(uh)∇Γh[x]uh ·∇Γh[x]ϕ

u
h =

∫
Γh[x]

uh ∂
•
h ϕ

u
h ,



Matrix–vector formulation

Upon setting w =
(
n,V

)T ∈ R4N , the semi-discrete problem is equivalent to the following
differential algebraic system:

ẋ = v,

v = V•n,

M(x,u,w)ẇ+A(x)w = f(x,w,u; u̇),

d
dt

(
M(x)u

)
+A(x,u)u = 0.

Used for computation and analysis.



Stability via energy estimates

A key issue is to compare different quantities on different meshes.
For this we need pointwise W 1,∞ norm bound on the position errors.

(i) Obtain pointwise H1 norm stability estimates over [0,T ∗],

using energy estimates,
testing with time derivatives of the errors

(ii) Using an inverse estimate to establish bounds in the W 1,∞ norm.

(iii) Prove that in fact T ∗ = T .

Similarly to [Kovacs, Li, and Lubich (2019,2020)]

and [Binz and Kovacs (2021)]



Semi-discrete convergence estimates

Consider the semi-discretisation of the coupled system for the interaction of mean curvature
flow and diffusion using ESFEM of polynomial degree k ≥ 2.
Let the solutions (X ,v,ν ,V,u) be sufficiently smooth.
Then for sufficiently small h the following estimates hold for 0≤ t ≤ T :

‖(xh(·, tn))L− idΓ (tn)‖H1(Γ (tn))3≤Chk,

‖(vh(·, tn))L− v(·, tn)‖H1(Γ (tn))3≤Chk,

‖(νh(·, tn))L−ν(·, tn)‖H1(Γ (tn))3≤Chk,

‖(Vh(·, tn))L−V (·, tn)‖H1(Γ (tn))≤Chk,

‖(uh(·, tn))L−u(·, tn)‖H1(Γ (tn))≤Chk.

The constant C > 0 is independent of h, but depends on the solution and on T .

E.+Garcke+ Kovacs (2022)



Outlook

• Extend theory for systems of PDEs on prescribed evolving domains
• Nonlinear equations
• Coupling of bulk surface fluid problems in prescribed evolving domains
• General approach to coupling PDE equations to flow of function spaces
• Finding flow maps φ allowing good discrete flows
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