PDEs on evolving domains and evolving finite elements

Charlie Elliott

Mathematics Institute, University of Warwick

International Conference on PDES

Oxford July 2022 Develop unified methodology for numerical analysis and simulation of complex of interface and free boundary motion

- Functional analytic framework for abstract PDEs
- Time dependent function spaces
- Approximate time dependent space by evolving finite element spaces
- Evolving bulk and surface domains approximated by fitted triangulated domains
- Avoid unfitted finite elements and level set equations
- Link domain evolution to evolution equation on domains
- In this talk focus on evolving surfaces

Motivation I. - cell division by contractile ring formation

A bulk–surface model for cell division via surface diffusion of stress generated surface molecules (myosin II), see [Wittwer and Aland (2022)], [Bonati, Wittwer, Aland, and Fischer-Friedrich (2022)].

Experiment by E. Fischer-Friedrich (TU Dresden).

Motivation I. - cell division by contractile ring formation

A bulk–surface model for cell division via surface diffusion of stress generated surface molecules (myosin II), see [Wittwer and Aland (2022)], [Bonati, Wittwer, Aland, and Fischer-Friedrich (2022)].

Experiment by E. Fischer-Friedrich (TU Dresden).

Chemotaxis

Figure: Neutrophil chasing a bacteria. Rogers Lab [1952]

Figure: Multi cell chemotaxis. Firtel Lab.

Surface reaction diffusion and geometric evolution

Figure: Simulation of chemotaxis in a field of
obstacles : Roy. Soc. Interface [2012]Elliott, Stinner, Soc. Interface [2012] Elliott, Stinner, VenkataramanVenkataraman

For each $t \in [0, T]$, let $\Gamma(t) \subset \mathbb{R}^{n+1}$ be a compact (i.e., no boundary) *n*-dimensional hypersurface of class C^2 , and assume the existence of a flow $\Phi \colon [0, T] \times \mathbb{R}^{n+1} \to \mathbb{R}^{n+1}$ such that for all $t \in [0, T]$, with $\Gamma_0 := \Gamma(0)$, the map $\Phi_t^0(\cdot) := \Phi(t, \cdot) \colon \Gamma_0 \to \Gamma(t)$ is a C^2 -diffeomorphism that satisfies

$$\frac{d}{dt} \Phi_t^0(\cdot) = \mathbf{w}(t, \Phi_t^0(\cdot))$$

$$\Phi_0^0(\cdot) = \mathrm{Id}(\cdot).$$
(1)

We think of the map $\mathbf{w}: [0,T] \times \mathbb{R}^{n+1} \to \mathbb{R}^{n+1}$ as a velocity field, and we assume that it is C^2 and satisfies the uniform bound

$$|\nabla_{\Gamma(t)} \cdot \mathbf{w}(t)| \le C$$
 for all $t \in [0, T]$.

A normal vector field on the hypersurfaces is denoted by $v : [0,T] \times \mathbb{R}^{n+1} \to \mathbb{R}^{n+1}$. A bulk domain $\Omega(t)$ with boundary $\Gamma(t)$ may be viewed as sub manifold in \mathbb{R}^{n+2} . Let $\Gamma(t) \subset \mathbb{R}^3$ be a closed surface parametrised by *X* over an initial surface Γ^0 :

 $\Gamma[X] = \Gamma[X(\cdot,t)] = \{X(p,t) : p \in \Gamma^0\}.$

Surface velocity w satisfies, in x(t) = X(p,t), by

$$\partial_t X(p,t) = \mathbf{w}(X(p,t),t).$$

The surface $\Gamma[X(\cdot,t)]$ is a collection of points *x*, where x = X(p,t) is obtained by solving the above ODE from 0 to *t* for a fixed *p*.

Normal time derivative Suppose that the velocity field associated to the evolving hypersurface $\{\Gamma(t)\}$ is $\mathbf{w} = \mathbf{w}_{v} + \mathbf{w}_{\tau}$ where \mathbf{w}_{v} is a normal velocity field and \mathbf{w}_{τ} is a tangential velocity field. In this case, the formula

$$\partial^{\circ} u = u_t + \nabla u \cdot \mathbf{w}_v$$

defines the *normal time derivative* $\partial^{\circ} u$.

For our purposes the **material derivative** is associated with the parameterisation of the hypersurface and depends on the tangential velocity.

$$\partial^{\bullet} u = \partial^{\circ} u + \mathbf{w}_{\tau} \cdot \nabla_{\Gamma} u$$

A physical material derivative would be

$$\dot{u} = \partial^{\bullet} u + (\mathbf{v}_{\tau} - \mathbf{w}_{\tau}) \cdot \nabla_{\Gamma} u$$

where \mathbf{v}_{τ} is a tangential physical material velocity.

Choosing w_{τ} for some purpose of computation or analysis may be appropriate. In numerical methods this is called the *Arbitrary Lagrangian Eulerian (ALE)* approach where it is employed to yield *good meshes*.

Differential operators on $\Gamma[X]$

• Outward normal vector: $v = v_{\Gamma[X]}$

• Material derivative:
$$\partial^{\bullet} u(\cdot,t) = \frac{d}{dt} (u(X(\cdot,t),t))$$

- Tangential gradient: $\nabla_{\Gamma} u = \nabla_{\Gamma[X]} u = \nabla \overline{u} (\nabla \overline{u} \cdot v)v : \Gamma \to \mathbb{R}^3$
- Laplace–Beltrami operator: $\Delta_{\Gamma} u = \Delta_{\Gamma[X]} u = \nabla_{\Gamma[X]} \cdot \nabla_{\Gamma[X]} u$
- extended Weingarten map (3 × 3 symmetric matrix)

 $A(x) = \nabla_{\Gamma} v(x)$

mean curvature $H = \operatorname{tr}(A) = \kappa_1 + \kappa_2,$ and $|A|^2 = ||A||_F^2 = \kappa_1^2 + \kappa_2^2.$ Let $\Gamma(t)$ be a time (t) dependent *n*-dimensional hypersurface in \mathbb{R}^{n+1} .

 $\partial^{\circ} \mathbf{u} + \nabla_{\Gamma} \cdot (\mathscr{B}_{\Gamma} \mathbf{u}) - \nabla_{\Gamma} \cdot (\mathcal{A}_{\Gamma} \nabla \mathbf{u}) + \mathscr{C}_{\Gamma} \mathbf{u} = 0 \qquad \text{on } \Gamma(t)$

 $\mathbf{u}(\cdot, \mathbf{0}) = \mathbf{u}_0$ on $\Gamma_0 := \Gamma(\mathbf{0})$

 \mathcal{A}_{Γ} is a smooth diffusion tensor which maps the tangent space of Γ into itself,

 \mathscr{B}_{Γ} is a tangential vector field,

 \mathscr{C}_{Γ} is a smooth scalar field.

 ∂° u denotes the normal time derivative

i.e. the time derivative of a function along a trajectory on $\Gamma(t) \times t$ moving in the direction normal to $\Gamma(t)$.

Advection-diffusion on an evolving bulk-surface domain

Let $\Gamma(t) = \partial \Omega(t)$ where $\Omega(t)$ is a time dependent bulk domain in \mathbb{R}^{n+1} .

 $\mathbf{u}_t + \nabla \cdot (\mathscr{B}_{\Omega} \mathbf{u}) - \nabla \cdot (\mathcal{A}_{\Omega} \nabla \mathbf{u}) + \mathscr{C}_{\Omega} \mathbf{u} = 0 \qquad \text{on } \Omega(t)$

 $(\mathcal{A}_{\Omega}\nabla \mathbf{u} - \mathscr{B}_{\Omega}\mathbf{u}) \cdot \mathbf{v} + \alpha \mathbf{u} - \beta \mathbf{v} = 0 \qquad \text{on } \Gamma(t)$

 $\mathbf{u}(\cdot,0) = \mathbf{u}_0$ on $\Omega_0 := \Omega(0)$

 $\partial^{\circ} \mathbf{v} + \nabla_{\Gamma} \cdot (\mathscr{B}_{\Gamma} \mathbf{v}) - \nabla_{\Gamma} (\mathcal{A}_{\Gamma} \mathbf{v}) + \mathscr{C}_{\Gamma} \mathbf{v} + (\mathcal{A}_{\Omega} \nabla \mathbf{u} - \mathscr{B}_{\Omega} \mathbf{u}) = 0 \qquad \text{on } \Gamma(t)$

 $v(\cdot,0) = v_0$ on $\Gamma_0 := \Gamma(0)$

where α and β are positive constants.

Let $\Gamma(t)$ be a time (t) dependent 2-dimensional hypersurface in \mathbb{R}^3 . Seek a triple (u, p_1, p_2) to the problem:

 $u \cdot v_{\Gamma} = V_{\Gamma}$ on $\bigcup_{t \in I} \{t\} \times \Gamma(t)$

 $\partial^{\circ} u + u \cdot \nabla_{\Gamma} u + \nabla_{\Gamma} p_1 + 2\mu_0 \nabla_{\Gamma} \cdot E(u) = -p_2 v + f$ on $\cup_{t \in I} \{t\} \times \Gamma(t)$

 $\nabla_{\Gamma} \cdot u = 0 \qquad \qquad \text{on } \cup_{t \in I} \{t\} \times \Gamma(t)$

$$E_{\Gamma}(\mathbf{v}) = \frac{\nabla_{\Gamma}\mathbf{v} + (\nabla_{\Gamma}\mathbf{v})^T}{2},.$$

Note: two Lagrange multipliers.

See Miura(2017) for a thin film derivation. Also Reusken et al (2021,2022).

Geometric gradient flow

Concentration dependent energy

$$\mathcal{E}(\Gamma, u) = \int_{\Gamma} G(u),$$

The (L^2, H^{-1}) -gradient flow of \mathcal{E} yields the *coupled geometric flow*:

$$\mathbf{v} = -g(u)H\mathbf{v}_{\Gamma} = V\mathbf{v}_{\Gamma},$$
$$\partial^{\bullet}u + uVH = \Delta_{\Gamma[X]}G'(u),$$

with g(u) = G(u) - uG'(u).

Combining surface evolution with surface processes

Two phase biomembrane energy:

$$E(\Gamma,\phi:\Gamma\to\mathbb{R}) = \int_{\Gamma} \underbrace{\frac{k_H(\phi)}{2} (H - H_s(\phi))^2 + k_g(\phi)g}_{\text{bending energy}} + \underbrace{\sigma\left(\frac{\varepsilon}{2} |\nabla_{\Gamma}\phi|^2 + \frac{1}{\varepsilon}W(\phi)\right)}_{\text{line energy}}$$

Gradient flow dynamics: Find $\{(\Gamma(t), \phi(t))\}_t$ such that for all (w, η)

$$\left((\mathbf{v},\partial^{\bullet}\phi),(w,\eta)\right)_{L^{2}}:=-\left\langle \delta F(\Gamma,\phi),(w,\eta)\right\rangle -\lambda\cdot\left\langle \delta C(\Gamma,\phi),(w,\eta)\right\rangle$$

Theorem: The strong equations of the gradient flow are

$$\begin{split} \mathbf{v} &= -\Delta_{\Gamma} \big(k_{H}(\phi)(H - H_{s}(\phi)) \big) - |\nabla_{\Gamma} \mathbf{v}|^{2} k_{H}(\phi)(H - H_{s}(\phi)) + \frac{1}{2} k_{H}(\phi)(H - H_{s}(\phi))^{2} H \\ &- \nabla_{\Gamma} \cdot \big(k_{g}'(\phi)(HI - \nabla_{\Gamma} \mathbf{v}) \nabla_{\Gamma} \phi \big) \\ &+ \sigma \varepsilon \nabla_{\Gamma} \phi \otimes \nabla_{\Gamma} \phi : \nabla_{\Gamma} \mathbf{v} + \sigma \big(\frac{\varepsilon}{2} |\nabla_{\Gamma} \phi|^{2} - \frac{1}{\varepsilon} W(\phi) \big) H \\ &- \lambda_{V} + \big(\lambda_{A} - \lambda_{\phi} h(\phi) \big) H, \\ \boldsymbol{\omega}(\varepsilon) \partial^{\bullet} \phi &= -\frac{1}{2} (H - H_{s}(\phi))^{2} k_{H}'(\phi) + k_{H}(\phi)(H - H_{s}(\phi)) H_{s}'(\phi) - g k_{g}'(\phi) \\ &+ \varepsilon \sigma \Delta_{\Gamma} \phi - \frac{\sigma}{\varepsilon} W'(\phi) - \lambda_{\phi} h'(\phi), \\ plus \ constraints. \end{split}$$

Abstract problem

Find
$$u(t) \in \mathcal{V}(t)$$

 $u(0) = u_0 \in \mathcal{V}(0)$
 $\partial^{\bullet} u + \mathcal{A}(t)u = f \in \mathcal{V}^*(t)$

written in a variational form as

$$\langle \partial^{\bullet} u, v \rangle_{\mathcal{V}^{*}(t), \mathcal{V}(t)} + a(t; u, v) = \langle f, v \rangle_{\mathcal{V}^{*}(t), \mathcal{V}(t)}$$
$$u(0) = u_{0}$$

with associated (arbitrary) family of Hilbert triples

$$\mathcal{V}(t) \subset \mathcal{H}(t) \subset \mathcal{V}^*(t), t \in [0,T]$$

parametrised by $t \in [0, T]$.

Alphonse, E., Stinner (2015) Port. Math. + I.F.B.

For $t \in \mathbb{R}_+$ let Y(t) and X(t) be, respectively, given families of evolving Hilbert and Banach spaces. We denote the dual X(t) as $X^*(t)$ and assume we have the *Gelfand triple* structure:

$$X(t) \subset Y(t) \subset X^*(t).$$

where we refer to Y(t) as the pivot space. Let Z(t) be an evolving Banach family. We are concerned with the *linear saddle-point* problem:

$$\begin{aligned} \partial^{\bullet} u(t) + A(t)u(t) + B^{*}(t)p(t) &= f(t) \quad \in X^{*}(t), \\ B(t)u(t) &= g(t) \quad \in Z^{*}(t), \\ u(0) &= u_{0} \in Y(0). \end{aligned}$$

with $\partial_t \cdot u$ denoting the material derivative and we seek a pair of solutions (u, p).

$\mathcal{Z}(t) \subset \mathcal{Z}_0(t) \subset \mathcal{V}(t) \subset \mathcal{H}(t)$

- $\mathcal{H}(t)$ pivot space
- $\mathcal{V}(t)$ solution spaces
- $\mathcal{Z}_0(t)$ regularity space for dual problem
- $\mathcal{Z}(t)$ higher regularity space for solution with specific data

Gerd Dziuk

Bjoern Stinner, Tom Ranner, Hans Fritz

Amal Alphonse, Ana Djurdjevac, Diogo Caetano,

Balas Kovacs, Harald Garcke

Pierre Stepanov,

PDE and Finite Element setting

- Domain and function spaces
- PDE: Initial value problem
- Bilinear forms and transport formulae
- Variational formulation
- Verify assumptions
- Evolving bulk finite element spaces
- Lifted bulk finite element spaces
- Evolving surface finite element spaces
- Lifted surface finite element spaces
- Discrete material derivatives and transport formulae

All these require precise definitions.

ABC Methodology

- Construct finite dimensional spaces as analogues of the continuous spaces
- Approximation theory
- · Construct discrete analogues of bilinear forms in variational setting
- Well posedness of discrete problem
- Perturbation bounds for bilinear forms
- · Error analysis via well posedness of continous problem and consistency

Model abstract discrete problem

Abstract problem

Find
$$u_h(t) \in \mathcal{V}_h(t)$$

 $u_h(0) = u_0^h \in \mathcal{V}_h(0)$
 $\partial_h^{\bullet} u_h + \mathcal{A}_h(t)u_h = f_h \in \mathcal{V}_h^*(t)$

written in a variational form as

$$\langle \partial_h^{\bullet} u_h, \mathbf{v} \rangle_{\mathcal{V}_h^*(t), \mathcal{V}_h(t)} + a_h(t; u_h, \mathbf{v}) = \langle f_h, \mathbf{v} \rangle_{\mathcal{V}_h^*(t), \mathcal{V}_h(t)}$$
$$u_h(0) = u_0^h$$

with associated (arbitrary) family of Hilbert triples

$$\mathcal{V}_h(t) \subset \mathcal{H}_h(t) \subset \mathcal{V}_h^*(t), t \in [0,T]$$

parametrised by $t \in [0, T]$.

Dziuk+E. (2007) ESFEM

Abstract lifted problem

Find
$$u_h^{\ell}(t) \in \mathcal{V}_h^{\ell}(t)$$

 $u_h^{\ell}(0) = u_0^{h,\ell} \in \mathcal{V}_h^{\ell}(0)$
 $\partial_h^{\bullet,\ell} u_h^{\ell} + \mathcal{A}_h^{\ell}(t) u_h^{\ell} = f_h^{\ell}$

written in a variational form as

$$\begin{split} \langle \partial_h^{\bullet,\ell} u_h^{\ell}, \mathbf{v} \rangle_{\mathcal{V}^*(t), \mathcal{V}(t)} + a_h^{\ell}(t; u_h, \mathbf{v}) &= \langle f_h^{\ell}, \mathbf{v} \rangle_{\mathcal{V}^*(t), \mathcal{V}(t)}, \forall \mathbf{v} \in \mathcal{V}_h^{\ell}(t) \\ u_h^{\ell}(0) &= u_0^{h,\ell} \\ \mathcal{V}_h^{\ell}(t) \subset \mathcal{V}(t) \end{split}$$

Dziuk+E.(2013), E.+Ranner(2021)

The relationships between evolving function spaces

 \subset denotes subspace inclusion \hookrightarrow denotes continuous embedding \leftrightarrow denotes that the lift is a bijection between these spaces.

Definition (Compatibility)

For $t \in [0,T]$, let $\mathcal{X}(t)$ be a separable Hilbert space and denote by $\mathcal{X}_0 := \mathcal{X}(0)$. Let $\phi_t : \mathcal{X}_0 \to \mathcal{X}(t)$ be a family of invertible, linear homeomorphisms, with inverse $\phi_{-t} : \mathcal{X}(t) \to \mathcal{X}_0$, such that there exists $C_{\mathcal{X}} > 0$ such that for every $t \in [0,T]$

 $\begin{aligned} ||\phi_t \eta||_{\mathcal{X}(t)} &\leq C_{\mathcal{X}} ||\eta||_{\mathcal{X}_0} & \text{for all } \eta \in \mathcal{X}_0 \\ ||\phi_{-t} \eta||_{\mathcal{X}_0} &\leq C_{\mathcal{X}}^{-1} ||\eta||_{\mathcal{X}(t)} & \text{for all } \eta \in \mathcal{X}(t), \end{aligned}$

and such that the map $t \mapsto ||\phi_t \eta||_{\mathcal{X}(t)}$ is continuous for all $\eta \in \mathcal{X}_0$. Under these circumstances, we call the pair $(\mathcal{X}(t), \phi_t)_{t \in [0,T]}$ compatible. We call the map ϕ_t the push-forward operator and ϕ_{-t} the pull-back operator.

Remark

If S(t) be a closed subspace in $\mathcal{H}(t)$ for each $t \in [0,T]$ and ϕ_t maps $S_0 := S(0) \to S(t)$, then $(S(t), \phi_t|_{S_0})_{t \in [0,T]}$ form a compatible pair.

Definition (Bochner-type spaces)

Define the spaces

$$\begin{split} L^2_X &= \{ u : [0,T] \to \bigcup_{t \in [0,T]} X(t) \times \{t\}, t \mapsto (\bar{u}(t),t) \mid \phi_{-(\cdot)}\bar{u}(\cdot) \in L^2(0,T;X_0) \} \\ L^2_{X^*} &= \{ f : [0,T] \to \bigcup_{t \in [0,T]} X^*(t) \times \{t\}, t \mapsto (\bar{f}(t),t) \mid \phi^*_{(\cdot)}\bar{f}(\cdot) \in L^2(0,T;X_0^*) \}. \end{split}$$

More precisely, these spaces consist of equivalence classes of functions agreeing almost everywhere in [0,T], just like ordinary Bochner spaces.

For $u \in L^2_X$, we will make an abuse of notation and identify $u(t) = (\bar{u}(t), t)$ with $\bar{u}(t)$ (and likewise for $f \in L^2_{X^*}$).

Theorem

The spaces L_X^2 and $L_{X^*}^2$ are Hilbert spaces with the inner products

$$(u,v)_{L_X^2} = \int_0^T (u(t),v(t))_{X(t)} dt$$

$$(f,g)_{L_{X^*}^2} = \int_0^T (f(t),g(t))_{X^*(t)} dt.$$
 (2)

Definition (Spaces of pushed-forward continuously differentiable functions)

Define the spaces

$$C_X^k = \{ \xi \in L_X^2 \mid \phi_{-(\cdot)}\xi(\cdot) \in C^k([0,T];X_0) \} \quad for \ k \in \{0,1,...\}$$
$$\mathcal{D}_X(0,T) = \{ \eta \in L_X^2 \mid \phi_{-(\cdot)}\eta(\cdot) \in \mathcal{D}((0,T);X_0) \}$$
$$\mathcal{D}_X[0,T] = \{ \eta \in L_X^2 \mid \phi_{-(\cdot)}\eta(\cdot) \in \mathcal{D}([0,T];X_0) \}.$$

Since $\mathcal{D}((0,T);X_0) \subset \mathcal{D}([0,T];X_0)$, we have

 $\mathcal{D}_X(0,T) \subset \mathcal{D}_X[0,T] \subset C_X^k.$

Abstract strong and weak material derivatives

Definition (Strong material derivative)

For $\xi \in C^1_X$ define the strong material derivative $\dot{\xi} \in C^0_X$ by

$$\dot{\xi}(t) := \phi_t \left(\frac{d}{dt} (\phi_{-t} \xi(t)) \right)$$

• We see that the space C_X^1 is the space of functions with a strong material derivative, justifying the notation.

•

Definition (Weak material derivative)

For $u \in L^2_{\mathcal{V}}$, if there exists a function $g \in L^2_{\mathcal{V}^*}$ such that

$$\int_0^T \langle g(t), \boldsymbol{\eta}(t) \rangle_{\mathcal{V}^*(t), \mathcal{V}(t)} = -\int_0^T (u(t), \dot{\boldsymbol{\eta}}(t))_{\mathcal{H}(t)} - \int_0^T \lambda(t; u(t), \boldsymbol{\eta}(t))$$

holds for all $\eta \in \mathcal{D}_{\mathcal{V}}(0,T)$, then we say that g is the weak material derivative of u, and we write $\dot{u} = g$ or $\partial^{\bullet} u = g$.

The form λ is identified using the push forward map. This concept of a weak material derivative is indeed well-defined: if it exists, it is unique, and every strong material derivative is also a weak material derivative.

Theorem (Transport theorem and formula of partial integration)

For all $u, v \in W(\mathcal{V}, \mathcal{V}^*)$, the map

$$t \mapsto (u(t), v(t))_{\mathcal{H}(t)}$$

is absolutely continuous on [0,T] and

$$\frac{d}{dt}(u(t),v(t))_{\mathcal{H}(t)t} = \langle \partial^{\bullet} u(t),v(t) \rangle_{\mathcal{V}^{*},\mathcal{V}(t)} + \langle \partial^{\bullet} v(t),u(t) \rangle_{\mathcal{V}^{*}(t),\mathcal{V}(t)} + \lambda(t;u(t),v(t))$$

for almost every $t \in [0,T]$. For all $u, v \in W(\mathcal{V}, \mathcal{V}^*)$, the following formula of partial integration holds

$$\begin{aligned} (u(T), v(T))_{\mathcal{H}(T)} &- (u(0), v(0))_{\mathcal{H}_0} \\ &= \int_0^T \langle \partial^{\bullet} u(t), v(t) \rangle_{\mathcal{V}^*(t)\mathcal{V}(t)} + \langle \partial^{\bullet} v(t), u(t) \rangle_{\mathcal{V}^*(t)\mathcal{V}(t)} \\ &+ \lambda(t; u(t), v(t)) \, \mathrm{d}t. \end{aligned}$$

Finite element space

• For each $h \in (0, h_0)$, numerical method is based in a finite dimensional subspace $S_h(t)$ with constructed Hilbert spaces $(\mathcal{H}_h(t), || \cdot ||_{\mathcal{H}_h(t)})$ and $(\mathcal{V}_h(t), || \cdot ||_{\mathcal{V}_h(t)})$ for all $t \in [0, T]$ and

$$\mathcal{S}_h(t) \subset \mathcal{V}_h(t) \subset \mathcal{H}_h(t).$$

• Push forward map ϕ_t^h : $\mathcal{H}_{h,0} := \mathcal{H}_h(0) \to \mathcal{H}_h(t)$. $\{\mathcal{S}_h(t)\}_{t \in [0,T]}$, evolving, finite-dimensional space subspace of $\mathcal{V}_h(t)$ satisfying $\phi_t^h(\mathcal{S}_{h,0}) = \mathcal{S}_h(t)$ (where $\mathcal{S}_{h,0} = \mathcal{S}_h(0)$).

$$\|\eta_h\|_{\mathcal{H}_h(t)} \leq c \, \|\eta_h\|_{\mathbb{V}_h(t)}$$
 for all $\eta_h \in \mathcal{V}_h(t)$.

• $(\mathcal{H}_h(t), \phi_t^h)_{t \in [0,T]}$ and $(\mathcal{V}_h(t), \phi_t^h|_{\mathcal{V}_{h,0}})_{t \in [0,T]}$ are compatible pairs uniformly in *h*:

$$c^{-1} \|\eta_h\|_{\mathcal{H}_{h,0}} \le \left\|\phi_t^h \eta_h\right\|_{\mathcal{H}_{h}(t)} \le c \|\eta_h\|_{\mathcal{H}_{h,0}} \quad \text{for all } \eta_h \in \mathcal{H}_{h,0}$$
$$c^{-1} \|\eta_h\|_{\mathcal{V}_{h,0}} \le \left\|\phi_t^h \eta_h\right\|_{\mathcal{V}_{h}(t)} \le c \|\eta_h\|_{\mathbb{V}_{h,0}} \quad \text{for all } \eta_h \in \mathcal{V}_{h,0}.$$

- Since S_h(t) is a closed subspace of V_h(t) it is a Hilbert space and forms a compatible pair (S_h(t), φ_t^h|<sub>S_{h,0})_{t∈[0,T]}.
 </sub>
- Well defined spaces $L^2_{S_h}$ and $C^1_{S_h}$ and the material derivative $\partial_h^{\bullet} \chi_h$ is well defined for $\chi_h \in C^1_{S_h}$.
- Defines the spaces L²_{H_h}, L²_{V_h} and C¹_{H_h}, C¹_{V_h}. For η_h ∈ C¹_{H_h}, we denote by ∂[•]_hη_h the (strong) material derivative) with respect to the push-forward map φ^h_t defined by

$$\partial_h^{ullet} \eta_h := \phi_t^h(rac{d}{dt}\phi_{-t}^h\eta_h)$$

Let $\{\chi_i(\cdot, 0)\}_{i=1}^N$ be a basis of $S_{h,0}$ and push-forward to construct a time dependent basis $\{\chi_i(\cdot, t)\}_{i=1}^N$ of $S_h(t)$ by

$$\boldsymbol{\chi}_i(\cdot,t) = \boldsymbol{\phi}_t^h(\boldsymbol{\chi}_i(\cdot,0)).$$

It follows that

$$\partial_h^{\bullet} \chi_i = 0$$

so that for a decomposition

$$\chi_h(t) := \sum_{i=1}^N \gamma_i(t) \chi_i(t)$$
 for all $\chi_h \in \mathcal{S}_h(t)$,

we compute that

$$\partial_h^{ullet} \chi_h = \sum_{i=1}^N \dot{\gamma}_i(t) \chi_i(t) \qquad ext{ for all } \chi_h \in C^1_{\mathcal{S}_h}.$$

Another discrete material derivative approipriate for analysis

 $\partial_{\ell}^{\bullet} \eta$ denotes the material derivative for the push-forward map ϕ_{ℓ}^{ℓ} .

$$\partial_{\ell}^{\bullet}\eta := \phi_t^{\ell} rac{d}{dt} (\phi_{-t}^{\ell}\eta) \qquad ext{for all } \eta \in C^1_{(\mathcal{H},\phi^{\ell})}.$$

This is a different material derivative to the material derivative defined with respect to the push-forward map ϕ_t^h .

Important observation of Dziuk and Elliott, the following commutation result holds:

$$\partial_\ell^{ullet}(\eta_h^\ell) = (\partial_h^{ullet}\eta_h)^\ell \qquad ext{for all } \eta_h \in C^1_{\mathcal{H}_h}.$$

Indeed:

$$\partial_{\ell}^{\bullet}(\eta_{h}^{\ell}) = \phi_{t}^{\ell} \frac{\mathrm{d}}{\mathrm{d}t} \left(\phi_{-t}^{\ell}(\eta_{h}^{\ell}) \right) = \left(\phi_{t}^{h} \left(\left(\frac{\mathrm{d}}{\mathrm{d}t} (\phi_{-t}^{h} \eta_{h})^{\ell} \right)^{-\ell} \right) \right)^{\ell} = \left(\phi_{t}^{h} \left(\frac{\mathrm{d}}{\mathrm{d}t} (\phi_{-t}^{h} \eta_{h}) \right) \right)^{\ell} = (\partial_{h}^{\bullet} \eta_{h})^{\ell},$$

since the lift at time t = 0 and time derivative commute and $(\cdot)^{\ell}$ and $(\cdot)^{-\ell}$ are inverses.

Lemma

$$\eta_h \in C^1_{\mathcal{H}_h}$$
 if, and only if, $\eta_h^\ell \in C^1_{(\mathcal{H},\phi^\ell)}$, and $\eta_h \in C^1_{\mathcal{V}_h}$ if, and only if, $\eta_h^\ell \in C^1_{(\mathcal{V},\phi^\ell)}$.

Tasks for realisation of abstract theory

Define

- Evolving finite element
- Evolving triangulation
- Evolving finite element space

Establish

- Approximation properties
- Lifted evolving spaces

Realise

Ω_h(t) and Γ_h(t) by interpolation, for example.
 Evolving nodes on initial triangulations by velocity field

• $S_h(t)$

Establish

- Discrete bilinear forms
- Approximation estimates
- Ritz projection and for material derivative

Surface finite elements

Figure: Examples of different surface finite elements in the case n = 2. Left shows a reference finite element (in green), centre shows an affine finite element and right shows an isoparametric surface finite element with a quadratic F_K . The plot shows the element domains in red and the location of nodes in blue.

Evolving isoparametric surface finite element

Figure: Examples of construction of an isoparametric evolving surface finite element for k = 3. The Lagrange nodes $a_i(t)$ follow the dashed black trajectories from the initial element $K_0 \subset \Gamma_{h,0}$ to a element $K(t) \subset \Gamma_h(t)$.
For every $\varphi(\cdot,t) \in H^1(\Gamma(t))$ Weak form

$$\int_{\Gamma(t)} \partial^{\bullet} u \varphi + \int_{\Gamma(t)} u \varphi \nabla_{\Gamma} \cdot v + \int_{\Gamma(t)} \nabla_{\Gamma} u \cdot \nabla_{\Gamma} \varphi = 0$$

Variational form

$$\frac{d}{dt}\int_{\Gamma(t)}u\boldsymbol{\varphi}+\int_{\Gamma(t)}\nabla_{\Gamma}\boldsymbol{u}\cdot\nabla_{\Gamma}\boldsymbol{\varphi}=\int_{\Gamma(t)}u\partial^{\bullet}\boldsymbol{\varphi}$$

Abstract variational form

$$\frac{d}{dt}m(u,\varphi) + a(u,\varphi) = m(u,\partial^{\bullet}\varphi).$$

For each *t* we have the finite element spaces Space on triangulated surface

$$S_h(t) = \left\{ \phi_h \in C^0(\Gamma_h(t)) | \phi_h|_E \text{ is linear affine for each } E \in \mathcal{T}_h(t) \right\}$$

Lifted space on smooth surface

$$S_h^l(t) = \left\{ \varphi_h = \phi_h^l | \phi_h \in S_h(t) \right\}$$

Note that $S_h^l(t) \subset H^1(\Gamma(t))$ and that for each $\varphi_h \in S_h^l$ there is a unique $\phi_h \in S_h$ such that $\varphi_h = \phi_h^l$.

Discrete surface

$$\frac{d}{dt}\int_{\Gamma_h(t)}f=\int_{\Gamma_h(t)}\partial_h^{\bullet}f+f\nabla_{\Gamma_h}\cdot V_h.$$

Abstract form: discrete surface

$$\frac{d}{dt}m_h(\phi, W_h) = m_h(\partial_h^{\bullet}\phi, W_h) + m_h(\phi, \partial_h^{\bullet}W_h) + g_h(V_h; \phi, W_h)$$
$$\frac{d}{dt}a_h(\phi, W_h) = a_h(\partial_h^{\bullet}\phi, W_h) + a_h(\phi, \partial_h^{\bullet}W_h) + b_h(V_h; \phi, W_h)$$

Finite element method

$$\frac{d}{dt}m_h(U_h,\phi_h) + a_h(U_h,\phi_h) = m_h(U_h,\partial_h^{\bullet}\phi_h), \quad U_h(\cdot,0) = U_{h0}.$$
(3)

Evolving mass matrix

$$M(t)_{jk} = \int_{\Gamma_h(t)} \chi_j \chi_k,$$

Evolving stiffness matrix

$$\mathcal{S}(t)_{jk} = \int_{\Gamma_h(t)} \nabla_{\Gamma_h} \chi_j \nabla_{\Gamma_h} \chi_k$$

 $U_h = \sum_{j=1}^N \alpha_j \chi_j, \, \alpha = (\alpha_1, \dots, \alpha_N)$ Algebraic form

$$\frac{d}{dt}\left(M(t)\alpha\right) + \mathcal{S}(t)\alpha = 0,\tag{4}$$

which does not explicitly involve the velocity of the surface.

Error analysis: Not quite but near!!

$$\frac{1}{2}\frac{d}{dt}m_h(\theta,\theta)+a_h(\theta,\theta)=F_h(\theta).$$

Theorem

Let u be a sufficiently smooth solution satisfying

$$\int_0^T \|u\|_{H^2(\Gamma)}^2 + \|\partial^{\bullet} u\|_{H^2(\Gamma)}^2 dt < \infty$$

and let $u_h(t) = U_h^l(\cdot, t), t \in [0, T]$ be the spatially discrete solution with initial data $u_{h0} = U_{h0}^l$ satisfying

$$||u(\cdot,0) - u_{h0}||_{L^2(\Gamma(0))} \le ch^2$$

Then the error estimate

$$\sup_{t\in(0,T)} \|u(\cdot,t)-u_h(\cdot,t)\|_{L^2(\Gamma(t))} \le ch^2$$

holds for a constant c independent of h.

Geometric equations satisfied by evolving surfaces

Following [Huisken (1984)], for a regular evolving surface $\Gamma[X]$ the identities hold:

$$\nabla_{\Gamma} H = \Delta_{\Gamma} v + |A|^2 v, \quad \text{and} \quad (5)$$

$$\partial^{\bullet} v = -\nabla_{\Gamma} V. \quad (6)$$

$$\partial^{\bullet} v = -\nabla_{\Gamma} V, \tag{6}$$

$$V = -H,$$

$$\partial^{\bullet} v \stackrel{(2)}{=} -\nabla_{\Gamma} V \qquad (4a)$$

$$\stackrel{(4a)}{=} -\nabla_{\Gamma} (-H)$$

$$\stackrel{(1)}{=} \Delta_{\Gamma} v + |A|^{2} v.$$

A regular surface $\Gamma[X]$ moving under mean curvature flow satisfies:

 $\partial_t X = v \circ X,$ v = -Hv.

Heat-like equation, using that on any $\Gamma: -Hv = \Delta_{\Gamma} x_{\Gamma}$ (where $x_{\Gamma} = id_{\Gamma}$):

 $\partial_t X(p,t) = \Delta_{\Gamma[X]} x_{\Gamma[X]}.$

[Dziuk (1990)]

Simple and elegant algorithm; computes all geometry from surface via evolving surface finite elements.

Inspired by [Huisken (1984)], consider the coupled system:

 $\mathbf{v} = -H\mathbf{v},$ $\partial^{\bullet}\mathbf{v} = \Delta_{\Gamma[X]}\mathbf{v} + |A|^{2}\mathbf{v},$ $\partial^{\bullet}H = \Delta_{\Gamma[X]}H + |A|^{2}H,$ $\partial_{t}X = \mathbf{v} \circ X.$

The equations for v and H are solved using evolving surface finite element formulation on a surface computed

First convergence proof for MCF in [Kovacs Li, and Lubich (2019)]: optimal-order H^1 norm error estimates (for evolving surface FEM of order $k \ge 2$ and BDF of order 2 to 5).

Leads to a less simple, but natural algorithm; computes all geometry from evolution equations.

A geometric gradient flow involving diffusion on surface

Consider the energy

$$\mathcal{E}(\Gamma[X], \boldsymbol{u}) = \int_{\Gamma[X]} G(\boldsymbol{u})$$

where

- $\Gamma[X]$ is an evolving surface;
- *u* is a concentration on the surface $\Gamma[X]$.

The (L^2, H^{-1}) -gradient flow of \mathcal{E} yields the *coupled geometric flow*:

$$v = -g(u)Hv_{\Gamma} = Vv_{\Gamma},$$

$$\partial^{\bullet}u + uVH = \Delta_{\Gamma[X]}G'(u),$$

with g(u) = G(u) - uG'(u).

Derivation and analytic theory in [Bürger (2021)].

(i) Conservation of mean-convexity: [both] if $H(\cdot,0) > 0$, then $H(\cdot,t) > 0, \forall t$. (i) Loss of convexity: [MCF preserves] if Γ^0 is convex, then $\Gamma[X(\cdot,t)]$ is not necessarily convex. (iii) Formation of self-intersections are possible. [not for MCF] (iv) Concentration properties: [irrelevant for MCF] $\frac{\mathrm{d}}{\mathrm{d}t}\int_{\Gamma[\mathbf{Y}]} u = 0, \qquad u(\cdot, 0) \ge 0 \Rightarrow u(\cdot, t) \ge 0, \ \forall t, \qquad \min\{u\} \nearrow.$ [Huisken (1984)] All observable in numerical experiments. [Bürger (2021)]

Mean curvature flow and the coupled geometric flow

Mean curvature flow and the coupled geometric flow

Loss of convexity, while preserving mean convexity

Loss of convexity, while preserving mean convexity

Slow diffusion through a tight neck

cf. [Ecker (2008)]

Slow diffusion through a tight neck

cf. [Ecker (2008)]

Self-intersection

A regular surface $\Gamma[X]$ moving under mean curvature flow satisfies:

 $\partial_t X = v \circ X,$ v = -Hv.

Heat-like equation, using that on any $\Gamma: -Hv = \Delta_{\Gamma} x_{\Gamma}$ (where $x_{\Gamma} = id_{\Gamma}$):

 $\partial_t X(p,t) = \Delta_{\Gamma[X]} x_{\Gamma[X]}.$

[Dziuk (1990)]

Simple and elegant algorithm; computes all geometry from surface.

Inspired by [Huisken (1984)], consider the coupled system:

v = -Hv, $\partial^{\bullet}v = \Delta_{\Gamma[X]}v + |A|^{2}v,$ $\partial^{\bullet}H = \Delta_{\Gamma[X]}H + |A|^{2}H,$ $\partial_{t}X = v \circ X.$

First convergence proof for MCF in [K., Li, and Lubich (2019)]: optimal-order H^1 norm error estimates (for evolving surface FEM of order $k \ge 2$ and BDF of order 2 to 5).

Leads to a less simple, but natural algorithm; computes all geometry from evolution equations. Inspired by [Huisken (1984)], consider the coupled system:

v = -Hv, $\partial^{\bullet}v = \Delta_{\Gamma[X]}v + |A|^{2}v,$ $\partial^{\bullet}H = \Delta_{\Gamma[X]}H + |A|^{2}H,$ $\partial_{t}X = v \circ X.$

First convergence proof for MCF in [K., Li, and Lubich (2019)]: optimal-order H^1 norm error estimates (for evolving surface FEM of order $k \ge 2$ and BDF of order 2 to 5).

Leads to a less simple, but natural algorithm; computes all geometry from evolution equations.

Coupled system for

the interaction of mean curvature flow and diffusion

Instead of mean curvature flow

 $v = (-H)v_{\Gamma},$

consider now the generalised mean curvature flow

$$v = V v_{\Gamma}$$
 with $V = -F(u, H)$

with a given function F.

The real question is: How robust is our approach from [KLL (2019)]?

Brief answer: Very!!

Instead of mean curvature flow

 $v = (-H)v_{\Gamma},$

consider now the generalised mean curvature flow

$$v = V v_{\Gamma}$$
 with $V = -F(u, H)$

with a given function F.

The real question is: How robust is our approach from [KLL (2019)]?

Brief answer: Very!!

Instead of mean curvature flow

 $v = (-H)v_{\Gamma},$

consider now the generalised mean curvature flow

$$v = V v_{\Gamma}$$
 with $V = -F(u, H)$

with a given function F.

The real question is: How robust is our approach from [KLL (2019)]?

Brief answer: Very!!

Following [Huisken (1984)], for a regular surface $\Gamma[X]$ the identities hold:

$$\nabla_{\Gamma} H = \Delta_{\Gamma} v + |A|^2 v, \quad \text{and} \quad (8)$$

$$\partial^{\bullet} v = -\nabla_{\Gamma} V, \tag{9}$$

$$\partial^{\bullet} H = -\Delta_{\Gamma} V - |A|^2 V. \tag{10}$$

$$V = -H. \tag{4a}$$

$$\partial^{\bullet} v \stackrel{(2)}{=} -\nabla_{\Gamma} V$$

$$\stackrel{(4a)}{=} -\nabla_{\Gamma} (-H)$$

$$\stackrel{(1)}{=} \Delta_{\Gamma} v + |A|^{2} v$$

Following [Huisken (1984)], for a regular surface $\Gamma[X]$ the identities hold:

$$\nabla_{\Gamma} H = \Delta_{\Gamma} v + |A|^2 v, \quad \text{and} \quad (8)$$

$$\partial^{\bullet} v = -\nabla_{\Gamma} V, \tag{9}$$

$$\partial^{\bullet} H = -\Delta_{\Gamma} V - |A|^2 V. \tag{10}$$

$$V = -H. \tag{4a}$$

$$\partial^{\bullet} \mathbf{v} \stackrel{(2)}{=} -\nabla_{\Gamma} V$$

$$\stackrel{(4a)}{=} -\nabla_{\Gamma} (-H)$$

$$\stackrel{(1)}{=} \Delta_{\Gamma} \mathbf{v} + |A|^{2} \mathbf{v}$$

Following [Huisken (1984)], for a regular surface $\Gamma[X]$ the identities hold:

$$\nabla_{\Gamma} H = \Delta_{\Gamma} v + |A|^2 v, \quad \text{and} \quad (8)$$

$$\partial^{\bullet} v = -\nabla_{\Gamma} V, \tag{9}$$

$$\partial^{\bullet} H = -\Delta_{\Gamma} V - |A|^2 V. \tag{10}$$

$$V = -H. \tag{4a}$$

$$\partial^{\bullet} \mathbf{v} \stackrel{(2)}{=} -\nabla_{\Gamma} V$$

$$\stackrel{(4a)}{=} -\nabla_{\Gamma} (-H)$$

$$\stackrel{(1)}{=} \Delta_{\Gamma} v + |A|^{2} v$$

Following [Huisken (1984)], for a regular surface $\Gamma[X]$ the identities hold:

$$\nabla_{\Gamma} H = \Delta_{\Gamma} v + |A|^2 v, \quad \text{and} \quad (8)$$

$$\partial^{\bullet} v = -\nabla_{\Gamma} V, \tag{9}$$

$$\partial^{\bullet} H = -\Delta_{\Gamma} V - |A|^2 V. \tag{10}$$

$$V = -H. \tag{4a}$$

$$\partial^{\bullet} \mathbf{v} \stackrel{(2)}{=} -\nabla_{\Gamma} V$$
$$\stackrel{(4a)}{=} -\nabla_{\Gamma} (-H)$$
$$\stackrel{(1)}{=} \Delta_{\Gamma} \mathbf{v} + |A|^{2} \mathbf{v}$$

Would this approach work for this problem?

Following [Huisken (1984)], for a regular surface $\Gamma[X]$ the identities hold:

$$\nabla_{\Gamma} H = \Delta_{\Gamma} v + |A|^2 v, \quad \text{and} \quad (1)$$

$$\partial^{\bullet} v = -\nabla_{\Gamma} V, \tag{2}$$

$$\partial^{\bullet} H = -\Delta_{\Gamma} V - |A|^2 V. \tag{3}$$

$$V = F(u,H) = -g(u)H.$$
 (4b)

$$\partial^{\bullet} v \stackrel{(2)}{=} -\nabla_{\Gamma} V$$

$$\stackrel{(4b)}{=} -\nabla_{\Gamma} (-g(u)H)$$

$$= g(u)\nabla_{\Gamma} H + H\nabla_{\Gamma} (g(u))$$

$$\stackrel{(1)}{=} g(u) \left(\Delta_{\Gamma} v + |A|^{2} v \right) + H\nabla_{\Gamma} (g(u)). \quad (/g(u) > 0)$$

Would this approach work for this problem?

Following [Huisken (1984)], for a regular surface $\Gamma[X]$ the identities hold:

$$\nabla_{\Gamma} H = \Delta_{\Gamma} v + |A|^2 v, \quad \text{and} \quad (1)$$

$$\partial^{\bullet} v = -\nabla_{\Gamma} V, \tag{2}$$

$$\partial^{\bullet} H = -\Delta_{\Gamma} V - |A|^2 V. \tag{3}$$

$$V = F(u,H) = -g(u)H.$$
(4b)

$$\partial^{\bullet} \mathbf{v} \stackrel{(2)}{=} -\nabla_{\Gamma} \mathbf{V}$$

$$\stackrel{(4b)}{=} -\nabla_{\Gamma} (-g(u)H)$$

$$= g(u)\nabla_{\Gamma} H + H\nabla_{\Gamma} (g(u))$$

$$\stackrel{(1)}{=} g(u) \left(\Delta_{\Gamma} \mathbf{v} + |A|^{2} \mathbf{v} \right) + H\nabla_{\Gamma} (g(u)). \quad (/g(u) > 0)$$

Would this approach work for this problem?

Following [Huisken (1984)], for a regular surface $\Gamma[X]$ the identities hold:

$$\nabla_{\Gamma} H = \Delta_{\Gamma} v + |A|^2 v, \quad \text{and} \quad (1)$$

$$\partial^{\bullet} v = -\nabla_{\Gamma} V, \tag{2}$$

$$\partial^{\bullet} H = -\Delta_{\Gamma} V - |A|^2 V. \tag{3}$$

$$V = F(u,H) = -g(u)H.$$
 (4b)

$$\partial^{\bullet} \mathbf{v} \stackrel{(2)}{=} -\nabla_{\Gamma} \mathbf{V}$$

$$\stackrel{(4b)}{=} -\nabla_{\Gamma} (-g(u)H)$$

$$= g(u)\nabla_{\Gamma}H + H\nabla_{\Gamma}(g(u))$$

$$\stackrel{(1)}{=} g(u) \left(\Delta_{\Gamma} \mathbf{v} + |A|^{2}\mathbf{v}\right) + H\nabla_{\Gamma}(g(u)). \quad (/g(u) > 0)$$

Would this approach work for this problem?

Following [Huisken (1984)], for a regular surface $\Gamma[X]$ the identities hold:

$$\nabla_{\Gamma} H = \Delta_{\Gamma} v + |A|^2 v, \quad \text{and} \quad (1)$$

$$\partial^{\bullet} v = -\nabla_{\Gamma} V, \tag{2}$$

$$\partial^{\bullet} H = -\Delta_{\Gamma} V - |A|^2 V. \tag{3}$$

$$V = F(u,H) = -g(u)H.$$
(4b)

$$\partial^{\bullet} \mathbf{v} \stackrel{(2)}{=} -\nabla_{\Gamma} V$$

$$\stackrel{(4b)}{=} -\nabla_{\Gamma} (-g(u)H)$$

$$= g(u)\nabla_{\Gamma} H + H\nabla_{\Gamma} (g(u))$$

$$\stackrel{(1)}{=} g(u) \left(\Delta_{\Gamma} \mathbf{v} + |A|^{2} \mathbf{v} \right) + H\nabla_{\Gamma} (g(u)). \quad (/g(u) > 0)$$

Would this approach work for this problem?

Following [Huisken (1984)], for a regular surface $\Gamma[X]$ the identities hold:

 $\nabla_{\Gamma} H = \Delta_{\Gamma} v + |A|^2 v, \quad \text{and} \quad (1)$

$$\partial^{\bullet} v = -\nabla_{\Gamma} V, \tag{2}$$

$$\partial^{\bullet} H = -\Delta_{\Gamma} V - |A|^2 V. \tag{3}$$

$$V = F(u,H) = -g(u)H.$$
 (4b)

$$\partial^{\bullet} \mathbf{v} \stackrel{(2)}{=} -\nabla_{\Gamma} V$$

$$\stackrel{(4b)}{=} -\nabla_{\Gamma} (-g(u)H)$$

$$= g(u)\nabla_{\Gamma} H + H\nabla_{\Gamma} (g(u))$$

$$\stackrel{(1)}{=} g(u) \left(\Delta_{\Gamma} \mathbf{v} + |A|^{2} \mathbf{v} \right) + H\nabla_{\Gamma} (g(u)). \quad (/g(u) > 0)$$

Evolving surface finite elements and matrix–vector formulation
We use dynamic variables to determine the geometric quantities in the surface velocity $v_h \approx V_h v_h$.

	exact solution	approximation	geometry
surface:	$X(\cdot,t):\Gamma^0\to\mathbb{R}^3$	$X_h(\cdot,t): \Gamma_h^0 \to \mathbb{R}^3$ (collected into $\mathbf{x}(t)$)	
velocity:	$\mathbf{v}: \boldsymbol{\Gamma}[X] \to \mathbb{R}^3$	$\mathbf{v}_h: \varGamma_h[\mathbf{x}] \to \mathbb{R}^3$	
surface normal:	$v: \Gamma[X] \to \mathbb{S}^3$	$\mathbf{v}_h: \Gamma_h[\mathbf{x}] \to \mathbb{R}^3$	$\neq v_{\Gamma_h[\mathbf{x}]} \in \mathbb{S}^3$
normal velocity:	$V: \Gamma[X] \to \mathbb{R}$	$V_h:\Gamma_h[\mathbf{x}]\to\mathbb{R}$	$\neq V_{\Gamma_h[\mathbf{x}]}$

We use dynamic variables to determine the geometric quantities in the surface velocity $v_h \approx V_h v_h$.

	exact solution	approximation	geometry
surface:	$X(\cdot,t):\Gamma^0\to\mathbb{R}^3$	$X_h(\cdot,t): \Gamma_h^0 \to \mathbb{R}^3$ (collected into $\mathbf{x}(t)$)	
velocity:	$\mathbf{v}: \Gamma[X] \to \mathbb{R}^3$	$\mathbf{v}_h: \varGamma_h[\mathbf{x}] \to \mathbb{R}^3$	
surface normal:	$v: \Gamma[X] \to \mathbb{S}^3$	$\mathbf{v}_h: \Gamma_h[\mathbf{x}] \to \mathbb{R}^3$	$\neq v_{\Gamma_h[\mathbf{x}]} \in \mathbb{S}^3$
normal velocity:	$V:\Gamma[X] o \mathbb{R}$	$V_h:\Gamma_h[\mathbf{x}]\to\mathbb{R}$	$\neq V_{\Gamma_h[\mathbf{x}]}$

We use dynamic variables to determine the geometric quantities in the surface velocity $v_h \approx V_h v_h$.

	exact solution	approximation	geometry
surface:	$X(\cdot,t):\Gamma^0\to\mathbb{R}^3$	$X_h(\cdot,t): \Gamma_h^0 \to \mathbb{R}^3$ (collected into $\mathbf{x}(t)$)	
velocity:	$\mathbf{v}: \boldsymbol{\Gamma}[X] \to \mathbb{R}^3$	$\mathbf{v}_h: \varGamma_h[\mathbf{x}] \to \mathbb{R}^3$	
surface normal:	$v: \Gamma[X] \to \mathbb{S}^3$	$\mathbf{v}_h:\Gamma_h[\mathbf{x}]\to\mathbb{R}^3$	$\neq v_{\Gamma_h[\mathbf{x}]} \in \mathbb{S}^3$
normal velocity:	$V: \Gamma[X] \to \mathbb{R}$	$V_h:\Gamma_h[\mathbf{x}]\to\mathbb{R}$	$\neq V_{\Gamma_h[\mathbf{x}]}$

$$V = -F(u,H), H = -K(u,V), \mathbf{w} = (v, \mathbf{V})$$

Evolving surface FEM [Dziuk and Elliott], [Demlow (2009)]; nodal values $z_h \rightsquigarrow \mathbf{z}$ (for all finite element functions).

> $\partial_t X_h = v_h \circ X_h,$ with $v_h = \widetilde{I}_h(V_h v_h),$

for $w_h = (\mathbf{v}_h, \mathbf{V}_h)$ $\int_{\Gamma_h[\mathbf{x}]} \partial_2 K_h \partial_h^{\bullet} w_h \cdot \varphi_h^w + \int_{\Gamma_h[\mathbf{x}]} \nabla_{\Gamma_h[\mathbf{x}]} w_h \cdot \nabla_{\Gamma_h[\mathbf{x}]} \varphi_h^w$ $= \int_{\Gamma_h[\mathbf{x}]} |A_h|^2 w_h \cdot \varphi_h^w + \int_{\Gamma_h[\mathbf{x}]} f(\partial_1 K_h, w_h, u_h; \partial_h^{\bullet} u_h) \cdot \varphi_h^w,$ $\frac{\mathrm{d}}{\mathrm{d}t} \left(\int_{\Gamma_h[\mathbf{x}]} u_h \varphi_h^u \right) + \int_{\Gamma_h[\mathbf{x}]} D(u_h) \nabla_{\Gamma_h[\mathbf{x}]} u_h \cdot \nabla_{\Gamma_h[\mathbf{x}]} \varphi_h^u = \int_{\Gamma_h[\mathbf{x}]} u_h \partial_h^{\bullet} \varphi_h^u,$ Upon setting $\mathbf{w} = (\mathbf{n}, \mathbf{V})^T \in \mathbb{R}^{4N}$, the semi-discrete problem is equivalent to the following differential algebraic system:

$$\begin{split} \dot{\mathbf{x}} &= \mathbf{v}, \\ \mathbf{v} &= \mathbf{V} \bullet \mathbf{n}, \end{split}$$
$$\mathbf{M}(\mathbf{x}, \mathbf{u}, \mathbf{w}) \dot{\mathbf{w}} + \mathbf{A}(\mathbf{x}) \mathbf{w} &= \mathbf{f}(\mathbf{x}, \mathbf{w}, \mathbf{u}; \dot{\mathbf{u}}), \\ \frac{\mathrm{d}}{\mathrm{d}t} \left(\mathbf{M}(\mathbf{x}) \mathbf{u} \right) + \mathbf{A}(\mathbf{x}, \mathbf{u}) \mathbf{u} = 0. \end{split}$$

Used for computation and analysis.

A key issue is to compare different quantities on different meshes. For this we need pointwise $W^{1,\infty}$ norm bound on the position errors.

(i) Obtain pointwise H^1 norm stability estimates over $[0, T^*]$, using **energy estimates**, testing with time derivatives of the errors

(ii) Using an inverse estimate to establish bounds in the $W^{1,\infty}$ norm.

(iii) Prove that in fact $T^* = T$.

Similarly to [Kovacs, Li, and Lubich (2019,2020)] and [Binz and Kovacs (2021)] Consider the semi-discretisation of the coupled system for the interaction of mean curvature flow and diffusion using ESFEM of polynomial degree $k \ge 2$. Let the solutions (X, v, v, V, u) be sufficiently smooth. Then for sufficiently small *h* the following estimates hold for $0 \le t \le T$:

$$\begin{split} \| (x_h(\cdot,t_n))^L - \mathrm{id}_{\Gamma(t_n)} \|_{H^1(\Gamma(t_n))^3} &\leq Ch^k, \\ \| (v_h(\cdot,t_n))^L - v(\cdot,t_n) \|_{H^1(\Gamma(t_n))^3} &\leq Ch^k, \\ \| (v_h(\cdot,t_n))^L - v(\cdot,t_n) \|_{H^1(\Gamma(t_n))^3} &\leq Ch^k, \\ \| (V_h(\cdot,t_n))^L - V(\cdot,t_n) \|_{H^1(\Gamma(t_n))} &\leq Ch^k, \\ \| (u_h(\cdot,t_n))^L - u(\cdot,t_n) \|_{H^1(\Gamma(t_n))} &\leq Ch^k. \end{split}$$

The constant C > 0 is independent of *h*, but depends on the solution and on *T*.

E.+Garcke+ Kovacs (2022)

- Extend theory for systems of PDEs on prescribed evolving domains
- Nonlinear equations
- Coupling of bulk surface fluid problems in prescribed evolving domains
- General approach to coupling PDE equations to flow of function spaces
- Finding flow maps ϕ allowing good discrete flows