Sparse spectral methods for fractional PDEs

PDE CDT Students \& Alumni Reunion Event

${ }^{1}$ Imperial College London; ${ }^{2}$ University of Oxford; ${ }^{3} \mathrm{UCL}$

My timeline

Imperial College
 London

MSc

- Mathematical modelling and scientific computing

PDE CDT

- Nonconvex optimisation problems with PDE constraints
- Existence, regularity \& FEM analysis

Postdoc

- Fractional PDEs \& spectral methods

Are fractional PDEs physical?

Imperial College London

FPDEs describe wave absorption in the brain ${ }^{1}$.

[^0]
Other applications?

- Equilibrium measures;
- Dispersive transport of ions;
- Replacing total variation regularization in imaging;
- Geophysics problems with long range effects;
- Neural networks where all the layers are connected to every other layer.

Other applications?

- Equilibrium measures;
- Dispersive transport of ions;
- Replacing total variation regularization in imaging;
- Geophysics problems with long range effects;
- Neural networks where all the layers are connected to every other layer.

Other applications?

- Equilibrium measures;
- Dispersive transport of ions;
- Replacing total variation regularization in imaging;
- Geophysics problems with long range effects;
- Neural networks where all the layers are connected to every other layer.

Other applications?

- Equilibrium measures;
- Dispersive transport of ions;
- Replacing total variation regularization in imaging;
- Geophysics problems with long range effects;
- Neural networks where all the layers are connected to every other layer.

Other applications?

- Equilibrium measures;
- Dispersive transport of ions;
- Replacing total variation regularization in imaging;
- Geophysics problems with long range effects;
- Neural networks where all the layers are connected to every other layer.

The problem

The PDE

Find $u \in H^{1 / 2}(\mathbb{R})$ that satisfies, for $\lambda \in \mathbb{R}:\left(\lambda \mathcal{I}+(-\Delta)^{1 / 2}\right) u=f$.

Ten (or more) equivalent definitions of the fractional Laplacian
over \mathbb{R}^{d}. E.g. for $s \in(0,1)$,

$$
(-\Delta)^{s} u(x):=c_{d, s} f_{\mathbb{R}^{d}} \frac{u(x)-u(y)}{|x-y|^{d+2 s}} \mathrm{~d} y
$$

or

$$
\mathcal{F}\left[(-\Delta)^{s} u\right](\omega)=|\omega|^{2 s} \mathcal{F}[u](\omega)
$$

The problem

The PDE

Find $u \in H^{1 / 2}(\mathbb{R})$ that satisfies, for $\lambda \in \mathbb{R}:\left(\lambda \mathcal{I}+(-\Delta)^{1 / 2}\right) u=f$.

$(-\Delta)^{1 / 2}$

Ten (or more) equivalent definitions of the fractional Laplacian over \mathbb{R}^{d}. E.g. for $s \in(0,1)$,

$$
(-\Delta)^{s} u(x):=c_{d, s} f_{\mathbb{R}^{d}} \frac{u(x)-u(y)}{|x-y|^{d+2 s}} \mathrm{~d} y
$$

The problem

The PDE

Find $u \in H^{1 / 2}(\mathbb{R})$ that satisfies, for $\lambda \in \mathbb{R}:\left(\lambda \mathcal{I}+(-\Delta)^{1 / 2}\right) u=f$.

$(-\Delta)^{1 / 2}$

Ten (or more) equivalent definitions of the fractional Laplacian over \mathbb{R}^{d}. E.g. for $s \in(0,1)$,

$$
(-\Delta)^{s} u(x):=c_{d, s} f_{\mathbb{R}^{d}} \frac{u(x)-u(y)}{|x-y|^{d+2 s}} \mathrm{~d} y
$$

or

$$
\mathcal{F}\left[(-\Delta)^{s} u\right](\omega)=|\omega|^{2 s} \mathcal{F}[u](\omega)
$$

Fractional PDEs

Imperial College London

Observation
 Solutions of fractional PDEs are "nonlocal" and can exhibit singularities.

Consequence

The solutions can be difficult to approximate numerically

How do we compute them with fast convergence?

A spectral method based on a so-called sum space.

Fractional PDEs

Observation

Solutions of fractional PDEs are "nonlocal" and can exhibit singularities.

Consequence

The solutions can be difficult to approximate numerically.

How do we compute them with fast convergence?

A spectral method based on a so-called sum space.

Fractional PDEs

Observation

Solutions of fractional PDEs are "nonlocal" and can exhibit singularities.

Consequence

The solutions can be difficult to approximate numerically.

Challenge

How do we compute them with fast convergence?

A spectral method based on a so-called sum space.

Fractional PDEs

Observation

Solutions of fractional PDEs are "nonlocal" and can exhibit singularities.

Consequence

The solutions can be difficult to approximate numerically.

Challenge

How do we compute them with fast convergence?

Our proposal

A spectral method based on a so-called sum space.

Singularities and non-locality

The fractional Laplacian is not local. E.g.

$u(x)=0$ for $|x| \geq 1$ but $(-\Delta)^{1 / 2} u(x) \neq 0$ for all $x \in \mathbb{R}$.

Singularities

As $x \downarrow 1$ and $x \uparrow-1$, then $\left|(-\Delta)^{1 / 2} u(x)\right| \rightarrow \infty$

Singularities and non-locality

The fractional Laplacian is not local. E.g.

Nonlocal
$u(x)=0$ for $|x| \geq 1$ but $(-\Delta)^{1 / 2} u(x) \neq 0$ for all $x \in \mathbb{R}$.

Singularities

Singularities and non-locality

The fractional Laplacian is not local. E.g.

Nonlocal
$u(x)=0$ for $|x| \geq 1$ but $(-\Delta)^{1 / 2} u(x) \neq 0$ for all $x \in \mathbb{R}$.

Singularities

As $x \downarrow 1$ and $x \uparrow-1$, then $\left|(-\Delta)^{1 / 2} u(x)\right| \rightarrow \infty$.

Spectral methods

Imperial College
 London

Pick an orthogonal set of polynomials, e.g. the so-called ChebyshevT polynomials, denoted $\left\{T_{n}(x)\right\}$. These satisfy
$\int_{-1}^{1} \frac{T_{n}(x) T_{m}(x)}{\sqrt{1-x^{2}}} \mathrm{~d} x=\delta_{n m} ; T_{0}(x)=1, T_{1}(x)=x, T_{n+1}(x)=2 x T_{n}(x)-T_{n-1}(x)$.

Spectral methods

Imperial College
 London

Pick an orthogonal set of polynomials, e.g. the so-called ChebyshevT polynomials, denoted $\left\{T_{n}(x)\right\}$. These satisfy
$\int_{-1}^{1} \frac{T_{n}(x) T_{m}(x)}{\sqrt{1-x^{2}}} \mathrm{~d} x=\delta_{n m} ; T_{0}(x)=1, T_{1}(x)=x, \quad T_{n+1}(x)=2 x T_{n}(x)-T_{n-1}(x)$.
For $x \in[-1,1]$, consider the approximation: $\mathrm{e}^{-x^{2}} \sin (x) \approx \sum_{k=0}^{n} c_{k} T_{k}(x)$.

Sparse spectral methods

Many spectral methods for differential equations induce dense matrices X. Consider solving

$$
-u^{\prime}(x)=f(x), \quad u(-1)=0
$$

A spectral method recipe

(1) Expand $f(x)$ in the ChebyshevT polynomial basis, truncate, and collect the coefficients in vector \mathbf{f}.
(2) Construct the differential operator D via a collocation method. D is dense.
(3) Solve $D \mathbf{u}=\mathbf{f}$ for the coefficients \mathbf{u} in the ChebyshevT expansion of $u(x)$.

Sparse spectral methods

Many spectral methods for differential equations induce dense matrices \times. Consider solving

$$
-u^{\prime}(x)=f(x), \quad u(-1)=0
$$

A spectral method recipe :
(1) Expand $f(x)$ in the ChebyshevT polynomial basis, truncate, and collect the coefficients in vector \mathbf{f}.
(2) Construct the differential operator D via a collocation method. D is dense.
(3) Solve $D \mathbf{u}=\mathbf{f}$ for the coefficients \mathbf{u} in the ChebyshevT expansion of $u(x)$.

Sparse spectral methods

Many spectral methods for differential equations induce dense matrices \times. Consider solving

$$
-u^{\prime}(x)=f(x), \quad u(-1)=0
$$

A spectral method recipe :
(1) Expand $f(x)$ in the ChebyshevT polynomial basis, truncate, and collect the coefficients in vector \mathbf{f}.
(3) Construct the differential operator D via a collocation method. D is dense.
(3) Solve $D \mathbf{u}=\mathbf{f}$ for the coefficients \mathbf{u} in the ChebyshevT expansion of $u(x)$.

Sparse spectral methods

Many spectral methods for differential equations induce dense matrices \times. Consider solving

$$
-u^{\prime}(x)=f(x), \quad u(-1)=0
$$

A spectral method recipe
(1) Expand $f(x)$ in the ChebyshevT polynomial basis, truncate, and collect the coefficients in vector \mathbf{f}.
(2) Construct the differential operator D via a collocation method. D is dense.
(3) Solve $\mathrm{Du}=\mathrm{f}$ for the coefficients u in the ChebyshevT expansion of $u(x)$.

Sparse spectral methods

Many spectral methods for differential equations induce dense matrices X. Consider solving

$$
-u^{\prime}(x)=f(x), \quad u(-1)=0
$$

A spectral method recipe :
(1) Expand $f(x)$ in the ChebyshevT polynomial basis, truncate, and collect the coefficients in vector \mathbf{f}.
(2) Construct the differential operator D via a collocation method. D is dense.
(3) Solve $D \mathbf{u}=\mathbf{f}$ for the coefficients \mathbf{u} in the ChebyshevT expansion of $u(x)$.

Sparse spectral methods

Imperial College London

An observation

Let $\left\{U_{n}\right\}$ denote the Chebyshev U orthogonal polynomial basis. Then, for $n \geq 1, T_{n}^{\prime}(x)=n U_{n-1}(x)$.

A sparse spectral method recipe
(1) Expand $f(x)$ in the ChebyshevU polynomial basis, truncate, and collect the coefficients in vector \mathbf{f}.
(2) Construct the differential operator D via ChebyshevT/U relationship. D is sparse with one dense row related to the $B C$.
(3) Solve $D \mathbf{u}=\mathbf{f}$ for the coefficients \mathbf{u} in the Chebyshev T
expansion of $u(x)$

Sparse spectral methods

Imperial College London

An observation

Let $\left\{U_{n}\right\}$ denote the Chebyshev U orthogonal polynomial basis. Then, for $n \geq 1, T_{n}^{\prime}(x)=n U_{n-1}(x)$. Or in quasimatrix form:

$$
\left(\begin{array}{llll}
T_{0}^{\prime}(x) & T_{1}^{\prime}(x) & T_{2}^{\prime}(x) & \ldots
\end{array}\right)\left(\begin{array}{ccccc}
0 & 1 & & & \\
& & 2 & & \\
& & & 3 & \\
& & & & \ddots
\end{array}\right)=\left(\begin{array}{lll}
\left(U_{0}(x)\right. & U_{1}(x) & U_{2}(x)
\end{array} \ldots\right)
$$

A sparse spectral method recipe

(1) Expand $f(x)$ in the ChebyshevU polynomial basis, truncate, and collect the coefficients in vector \mathbf{f}.
(2) Construct the differential operator D via ChebyshevT/U
\square

Sparse spectral methods

Imperial College London

An observation

Let $\left\{U_{n}\right\}$ denote the Chebyshev U orthogonal polynomial basis. Then, for $n \geq 1, T_{n}^{\prime}(x)=n U_{n-1}(x)$. Or in quasimatrix form:

$$
\left(T_{0}^{\prime}(x) T_{1}^{\prime}(x) T_{2}^{\prime}(x) \ldots\right)\left(\begin{array}{ccccc}
0 & 1 & & & \\
& & 2 & & \\
& & & 3 & \\
& & & & \ddots
\end{array}\right)=\left(\begin{array}{lll}
\left(U_{0}(x)\right. & U_{1}(x) & U_{2}(x)
\end{array} \ldots\right)
$$

A sparse spectral method recipe

Sparse spectral methods

An observation

Let $\left\{U_{n}\right\}$ denote the Chebyshev U orthogonal polynomial basis. Then, for $n \geq 1, T_{n}^{\prime}(x)=n U_{n-1}(x)$. Or in quasimatrix form:

$$
\left(\begin{array}{llll}
T_{0}^{\prime}(x) & T_{1}^{\prime}(x) & T_{2}^{\prime}(x) & \ldots
\end{array}\right)\left(\begin{array}{ccccc}
0 & 1 & & & \\
& & 2 & & \\
& & & 3 & \\
& & & & \ddots
\end{array}\right)=\left(\begin{array}{lll}
\left(U_{0}(x)\right. & U_{1}(x) & U_{2}(x)
\end{array} \ldots\right)
$$

A sparse spectral method recipe
(1) Expand $f(x)$ in the ChebyshevU polynomial basis, truncate, and collect the coefficients in vector \mathbf{f}.
(2) Construct the differential operator D via ChebyshevT/U
\square

Sparse spectral methods

An observation

Let $\left\{U_{n}\right\}$ denote the Chebyshev U orthogonal polynomial basis. Then, for $n \geq 1, T_{n}^{\prime}(x)=n U_{n-1}(x)$. Or in quasimatrix form:

A sparse spectral method recipe
(1) Expand $f(x)$ in the ChebyshevU polynomial basis, truncate, and collect the coefficients in vector \mathbf{f}.
(2) Construct the differential operator D via ChebyshevT/U relationship. D is sparse with one dense row related to the $B C$.

Sparse spectral methods

An observation

Let $\left\{U_{n}\right\}$ denote the Chebyshev U orthogonal polynomial basis. Then, for $n \geq 1, T_{n}^{\prime}(x)=n U_{n-1}(x)$. Or in quasimatrix form:

$$
\left(\begin{array}{llll}
T_{0}^{\prime}(x) & T_{1}^{\prime}(x) & T_{2}^{\prime}(x) & \ldots
\end{array}\right)\left(\begin{array}{ccccc}
0 & 1 & & & \\
& & 2 & & \\
& & & 3 & \\
& & & & \ddots
\end{array}\right)=\left(\begin{array}{lll}
\left(U_{0}(x)\right. & U_{1}(x) & U_{2}(x)
\end{array} \ldots\right)
$$

A sparse spectral method recipe
(1) Expand $f(x)$ in the ChebyshevU polynomial basis, truncate, and collect the coefficients in vector \mathbf{f}.
(2) Construct the differential operator D via ChebyshevT/U relationship. D is sparse with one dense row related to the $B C$.
(3) Solve $D \mathbf{u}=\mathbf{f}$ for the coefficients \mathbf{u} in the ChebyshevT expansion of $u(x)$.

Sparse spectral method for FPDE

ChebyshevT

$T_{n}(x)=$ Chebyshev T, polynomials of order $n, x \in[-1,1]$, orthogonal w.r.t. $1 / \sqrt{1-x^{2}}$. Extend by 0 to \mathbb{R} outside $[-1,1]$.
$U_{n}(x)=$ Chebyshev U, polynomials of order $n, x \in[-1,1]$,
orthogonal w.r.t. $\sqrt{1-x^{2}}$. Extend by 0 to \mathbb{R} outside $[-1,1]$
$\tilde{T}_{n}(x)$ and $\tilde{U}_{n}(x)$ are carefully chosen extensions of $T_{n}(x)$ and $U_{n}(x)$, respectively, for $x \in \mathbb{R}$.

Sparse spectral method for FPDE

ChebyshevT

$T_{n}(x)=$ Chebyshev T, polynomials of order $n, x \in[-1,1]$, orthogonal w.r.t. $1 / \sqrt{1-x^{2}}$. Extend by 0 to \mathbb{R} outside $[-1,1]$.

ChebyshevU

$U_{n}(x)=$ ChebyshevU, polynomials of order $n, x \in[-1,1]$, orthogonal w.r.t. $\sqrt{1-x^{2}}$. Extend by 0 to \mathbb{R} outside $[-1,1]$.

$\tilde{T}_{n}(x)$
$U_{n}(x)$,and $\tilde{U}_{n}(x)$ are carefully chosen extensions of $T_{n}(x)$ and respectively, for $x \in \mathbb{R}$.

Sparse spectral method for FPDE

ChebyshevT

$T_{n}(x)=$ Chebyshev T, polynomials of order $n, x \in[-1,1]$, orthogonal w.r.t. $1 / \sqrt{1-x^{2}}$. Extend by 0 to \mathbb{R} outside $[-1,1]$.

ChebyshevU

$U_{n}(x)=$ ChebyshevU, polynomials of order $n, x \in[-1,1]$, orthogonal w.r.t. $\sqrt{1-x^{2}}$. Extend by 0 to \mathbb{R} outside $[-1,1]$.

Extended Chebyshev functions on \mathbb{R}

$\tilde{T}_{n}(x)$ and $\tilde{U}_{n}(x)$ are carefully chosen extensions of $T_{n}(x)$ and $U_{n}(x)$, respectively, for $x \in \mathbb{R}$.

Extended Chebyshev functions

$$
\tilde{T}_{n}(x):= \begin{cases}T_{n}(x) & |x| \leq 1, \\ \left(x-\operatorname{sgn}(x) \sqrt{x^{2}-1}\right)^{n} & |x|>1 .\end{cases}
$$

$$
\tilde{U}_{n}(x):=\tilde{T}_{n}(x)-\tilde{U}_{n-2}(x), \quad n \geq 0,
$$

where

Extended Chebyshev functions

Imperial College London

$$
\tilde{T}_{n}(x):= \begin{cases}T_{n}(x) & |x| \leq 1, \\ \left(x-\operatorname{sgn}(x) \sqrt{x^{2}-1}\right)^{n} & |x|>1\end{cases}
$$

$\tilde{U}_{n}(x):=\tilde{T}_{n}(x)-\tilde{U}_{n-2}(x), \quad n \geq 0$,
where

Extended Chebyshev functions

Imperial College London

$$
\tilde{T}_{n}(x):= \begin{cases}T_{n}(x) & |x| \leq 1, \\ \left(x-\operatorname{sgn}(x) \sqrt{x^{2}-1}\right)^{n} & |x|>1 .\end{cases}
$$

$\tilde{U}_{n}(x):=\tilde{T}_{n}(x)-\tilde{U}_{n-2}(x), \quad n \geq 0$,
where

Extended Chebyshev functions

Imperial College London

$$
\tilde{T}_{n}(x):= \begin{cases}T_{n}(x) & |x| \leq 1, \\ \left(x-\operatorname{sgn}(x) \sqrt{x^{2}-1}\right)^{n} & |x|>1 .\end{cases}
$$

$\tilde{U}_{n}(x):=\tilde{T}_{n}(x)-\tilde{U}_{n-2}(x), \quad n \geq 0$,
where

Extended Chebyshev functions

Imperial College London

$$
\begin{aligned}
& \tilde{T}_{n}(x):= \begin{cases}T_{n}(x) & |x| \leq 1, \\
\left(x-\operatorname{sgn}(x) \sqrt{x^{2}-1}\right)^{n} & |x|>1 .\end{cases} \\
& \tilde{U}_{n}(x):=\tilde{T}_{n}(x)-\tilde{U}_{n-2}(x), \quad n \geq 0,
\end{aligned}
$$

where

$$
\begin{aligned}
& \hat{U}_{-1}(x):= \begin{cases}0 & |x| \leq 1, \\
-\frac{\operatorname{sgn}(x)}{\sqrt{x^{2}-1}} & |x|>1,\end{cases} \\
& \hat{U}_{-2}(x):=x \hat{U}_{-1}(x) .
\end{aligned}
$$

Motivation for choice of functions

Imperial College London

Denote the Hilbert transform: $\mathcal{H}[u](x):=\frac{1}{\pi} f_{\mathbb{R}} \frac{u(y)}{x-y} \mathrm{~d} y$. Let $W_{n}(x):=\left(1-x^{2}\right)_{+}^{1 / 2} U_{n}(x)$.

```
- \mathcal{H}[\mp@subsup{W}{n}{}](x)=\mp@subsup{\tilde{T}}{n+1}{}(x)\mathrm{ for all }x\in\mathbb{R}
- \mathcal{H}[\mp@subsup{\tilde{T}}{n+1}{}](x)=-\mp@subsup{W}{n}{}(x)\mathrm{ for all }x\in\mathbb{R}\mathrm{ .}
```


Property 2

Modulo some assumptions: $\frac{\mathrm{d}}{\mathrm{d} x} \mathcal{H}=(-\Delta)^{1 / 2}$ in 1D

Motivation for choice of functions

Denote the Hilbert transform: $\mathcal{H}[u](x):=\frac{1}{\pi} f_{\mathbb{R}} \frac{u(y)}{x-y} \mathrm{~d} y$. Let $W_{n}(x):=\left(1-x^{2}\right)_{+}^{1 / 2} U_{n}(x)$.

Property 1

- $\mathcal{H}\left[W_{n}\right](x)=\tilde{T}_{n+1}(x)$ for all $x \in \mathbb{R}$.
- $\mathcal{H}\left[\tilde{T}_{n+1}\right](x)=-W_{n}(x)$ for all $x \in \mathbb{R}$.

Property 2

Modulo some assumptions: $\frac{\mathrm{d}}{\mathrm{dx}} \mathcal{H}=(-\Delta)^{1 / 2}$ in 1D.

Motivation for choice of functions

Denote the Hilbert transform: $\mathcal{H}[u](x):=\frac{1}{\pi} f_{\mathbb{R}} \frac{u(y)}{x-y} \mathrm{~d} y$. Let $W_{n}(x):=\left(1-x^{2}\right)_{+}^{1 / 2} U_{n}(x)$.

Property 1

- $\mathcal{H}\left[W_{n}\right](x)=\tilde{T}_{n+1}(x)$ for all $x \in \mathbb{R}$.
- $\mathcal{H}\left[\tilde{T}_{n+1}\right](x)=-W_{n}(x)$ for all $x \in \mathbb{R}$.

Property 2

Modulo some assumptions: $\frac{\mathrm{d}}{\mathrm{dx}} \mathcal{H}=(-\Delta)^{1 / 2}$ in 1D.

Motivation for choice of functions

Denote the Hilbert transform: $\mathcal{H}[u](x):=\frac{1}{\pi} f_{\mathbb{R}} \frac{u(y)}{x-y} \mathrm{~d} y$. Let $W_{n}(x):=\left(1-x^{2}\right)_{+}^{1 / 2} U_{n}(x)$.

Property 1

- $\mathcal{H}\left[W_{n}\right](x)=\tilde{T}_{n+1}(x)$ for all $x \in \mathbb{R}$.
- $\mathcal{H}\left[\tilde{T}_{n+1}\right](x)=-W_{n}(x)$ for all $x \in \mathbb{R}$.

Property 2

Modulo some assumptions: $\frac{\mathrm{d}}{\mathrm{dx}} \mathcal{H}=(-\Delta)^{1 / 2}$ in 1 D .

Property 3

- $\frac{\mathrm{d}}{\mathrm{d} x}\left[W_{n}\right](x)=(n+1)\left(1-x^{2}\right)_{+}^{-1 / 2} T_{n+1}(x)$.
- $\frac{\mathrm{d}}{\mathrm{d} x}\left[\tilde{T}_{n+1}\right](x)=n \tilde{U}_{n-1}(x)$.

A sparse spectral method for an FPDE

$$
(-\Delta)^{1 / 2}
$$

$$
\begin{aligned}
\left\{\left(1-x^{2}\right)_{+}^{1 / 2} U_{n}(x)\right\} & \xrightarrow{(-\Delta)^{1 / 2}}\left\{\tilde{U}_{n}(x)\right\}, \\
\left\{\tilde{T}_{n}(x)\right\} & \xrightarrow{(-\Delta)^{1 / 2}}\left\{\left(1-x^{2}\right)_{+}^{-1 / 2} T_{n}(x)\right\} .
\end{aligned}
$$

Identity

$$
\begin{aligned}
\left\{\left(1-x^{2}\right)_{+}^{1 / 2} U_{n}(x)\right\} & \xrightarrow{I}\left\{\left(1-x^{2}\right)_{+}^{-1 / 2} T_{n}(x)\right\}, \\
\left\{\tilde{T}_{n}(x)\right\} & \xrightarrow{I}\left\{\tilde{U}_{n}(x)\right\} .
\end{aligned}
$$

A sparse spectral method for an FPDE
Key idea: use sum space $\left\{\tilde{T}_{n}(x)\right\} \cup\left\{\left(1-x^{2}\right)_{+}^{1 / 2} U_{n}(x)\right\}$.

$\lambda I+(-\Delta)^{1 / 2}$

$\underbrace{\left\{\tilde{\tau}_{n}(x)\right\} \cup\left\{\left(1-x^{2}\right)_{+}^{1 / 2} U_{n}(x)\right\}}_{\text {sum space }} \xrightarrow{\lambda I+(-\Delta)^{1 / 2}} \underbrace{\left\{\tilde{U}_{n}(x)\right\} \cup\left\{\left(1-x^{2}\right)_{+}^{-1 / 2} T_{n}(x)\right\}}_{\text {dual sum space }}$.
A sparse spectral method recipe
(1) Expand f in the dual sum space, truncate, and collect coefficients in vector \mathbf{f}
(2) Construct the truncated sparse matrix D induced by $\left(\lambda I+(-\Delta)^{1 / 2}\right)$.
(3) Solve $D \mathbf{u}=\mathbf{f}$ for the coefficients \mathbf{u} in the sum space expansion of $u(x), x \in \mathbb{R}$.

A sparse spectral method for an FPDE
Key idea: use sum space $\left\{\tilde{T}_{n}(x)\right\} \cup\left\{\left(1-x^{2}\right)_{+}^{1 / 2} U_{n}(x)\right\}$.

$\lambda I+(-\Delta)^{1 / 2}$

$$
\underbrace{\left\{\tilde{I}_{n}(x)\right\} \cup\left\{\left(1-x^{2}\right)_{+}^{1 / 2} U_{n}(x)\right\}}_{\text {sum space }} \xrightarrow{\lambda I+(-\Delta)^{1 / 2}} \underbrace{\left\{\tilde{U}_{n}(x)\right\} \cup\left\{\left(1-x^{2}\right)_{+}^{-1 / 2} T_{n}(x)\right\}}_{\text {dual sum space }} .
$$

A sparse spectral method recipe
(1) Expand f in the dual sum space, truncate, and collect coefficients in vector \mathbf{f}.
a Construct the truncated sparse matrix D induced by $\left(\lambda I+(-\Delta)^{1 / 2}\right)$.
(3) Solve $D \mathbf{u}=\mathbf{f}$ for the coefficients \mathbf{u} in the sum space expansion of $u(x), x \in \mathbb{R}$.

A sparse spectral method for an FPDE

Key idea: use sum space $\left\{\tilde{T}_{n}(x)\right\} \cup\left\{\left(1-x^{2}\right)_{+}^{1 / 2} U_{n}(x)\right\}$.

$\lambda I+(-\Delta)^{1 / 2}$

$$
\underbrace{\left\{\tilde{I}_{n}(x)\right\} \cup\left\{\left(1-x^{2}\right)_{+}^{1 / 2} U_{n}(x)\right\}}_{\text {sum space }} \xrightarrow{\lambda I+(-\Delta)^{1 / 2}} \underbrace{\left\{\tilde{U}_{n}(x)\right\} \cup\left\{\left(1-x^{2}\right)_{+}^{-1 / 2} T_{n}(x)\right\}}_{\text {dual sum space }} .
$$

A sparse spectral method recipe
(1) Expand f in the dual sum space, truncate, and collect coefficients in vector \mathbf{f}.
(2) Construct the truncated sparse matrix D induced by $\left(\lambda I+(-\Delta)^{1 / 2}\right)$.
(3) Solve $D \mathbf{u}=\mathbf{f}$ for the coefficients \mathbf{u} in the sum space expansion of $u(x), x \in \mathbb{R}$.

A sparse spectral method for an FPDE

Key idea: use sum space $\left\{\tilde{T}_{n}(x)\right\} \cup\left\{\left(1-x^{2}\right)_{+}^{1 / 2} U_{n}(x)\right\}$.

$\lambda I+(-\Delta)^{1 / 2}$

$$
\underbrace{\left\{\tilde{I}_{n}(x)\right\} \cup\left\{\left(1-x^{2}\right)_{+}^{1 / 2} U_{n}(x)\right\}}_{\text {sum space }} \xrightarrow{\lambda I+(-\Delta)^{1 / 2}} \underbrace{\left\{\tilde{U}_{n}(x)\right\} \cup\left\{\left(1-x^{2}\right)_{+}^{-1 / 2} T_{n}(x)\right\}}_{\text {dual sum space }} .
$$

A sparse spectral method recipe
(1) Expand f in the dual sum space, truncate, and collect coefficients in vector f.
(2) Construct the truncated sparse matrix D induced by $\left(\lambda \mathcal{I}+(-\Delta)^{1 / 2}\right)$.
© Solve $\mathrm{Du}=\mathrm{f}$ for the coefficients \mathbf{u} in the sum space expansion of $u(x), x \in \mathbb{R}$.

A sparse spectral method for an FPDE

Key idea: use sum space $\left\{\tilde{T}_{n}(x)\right\} \cup\left\{\left(1-x^{2}\right)_{+}^{1 / 2} U_{n}(x)\right\}$.

$\lambda I+(-\Delta)^{1 / 2}$

$$
\underbrace{\left\{\tilde{I}_{n}(x)\right\} \cup\left\{\left(1-x^{2}\right)_{+}^{1 / 2} U_{n}(x)\right\}}_{\text {sum space }} \xrightarrow{\lambda I+(-\Delta)^{1 / 2}} \underbrace{\left\{\tilde{U}_{n}(x)\right\} \cup\left\{\left(1-x^{2}\right)_{+}^{-1 / 2} T_{n}(x)\right\}}_{\text {dual sum space }} .
$$

A sparse spectral method recipe
(1) Expand f in the dual sum space, truncate, and collect coefficients in vector f.
(2) Construct the truncated sparse matrix D induced by $\left(\lambda I+(-\Delta)^{1 / 2}\right)$.
(3) Solve $D \mathbf{u}=\mathbf{f}$ for the coefficients \mathbf{u} in the sum space expansion of $u(x), x \in \mathbb{R}$.

Combining different intervals

- $\left\{\tilde{T}_{n}^{i}\right\}$ and $\left\{W_{n}^{i}\right\}, i=1,2$, are the spaces of affine transformed functions of the spaces $\left\{\tilde{T}_{n}\right\}$ and $\left\{\sqrt{1-x^{2}} U_{n}\right\}$, respectively, centred at the interval midpoints of I_{1} and I_{2}.
- W_{n}^{i} are supported on $I_{i}, i=1,2$.
- \tilde{T}_{n}^{i} are not only supported on I_{i} and interact with other functions centred on other intervals.

Combining different intervals

- $\left\{\tilde{T}_{n}^{i}\right\}$ and $\left\{W_{n}^{i}\right\}, i=1,2$, are the spaces of affine transformed functions of the spaces $\left\{\tilde{T}_{n}\right\}$ and $\left\{\sqrt{1-x^{2}} U_{n}\right\}$, respectively, centred at the interval midpoints of I_{1} and I_{2}.
- W_{n}^{i} are supported on $I_{i}, i=1,2$.
- \tilde{T}_{n}^{i} are not only supported on I_{i} and interact with other functions centred on other intervals.

Combining different intervals

- $\left\{\tilde{T}_{n}^{i}\right\}$ and $\left\{W_{n}^{i}\right\}, i=1,2$, are the spaces of affine transformed functions of the spaces $\left\{\tilde{T}_{n}\right\}$ and $\left\{\sqrt{1-x^{2}} U_{n}\right\}$, respectively, centred at the interval midpoints of I_{1} and I_{2}.
- W_{n}^{i} are supported on $I_{i}, i=1,2$.
- \tilde{T}_{n}^{i} are not only supported on I_{i} and interact with other functions centred on other intervals.

Combining different intervals

$\lambda \mathcal{I}+(-\Delta)^{1 / 2}$ induces a block-diagonal matrix. Each block corresponds to the sum space centred at one interval.

This decomposes to

$$
D_{1} u_{1}=f_{1}, \quad D_{2} \mathbf{u}_{2}=f_{2}
$$

Combining different intervals

$\lambda \mathcal{I}+(-\Delta)^{1 / 2}$ induces a block-diagonal matrix. Each block corresponds to the sum space centred at one interval.

$$
\left(\begin{array}{ll}
D_{1} & \\
& D_{2}
\end{array}\right)\binom{\mathbf{u}_{1}}{\mathbf{u}_{2}}=\binom{\mathbf{f}_{1}}{\mathbf{f}_{2}} .
$$

This decomposes to

$$
D_{1} \mathbf{u}_{1}=\mathbf{f}_{1}, \quad D_{2} \mathbf{u}_{2}=\mathbf{f}_{2}
$$

Combining different intervals

$\lambda \mathcal{I}+(-\Delta)^{1 / 2}$ induces a block-diagonal matrix. Each block corresponds to the sum space centred at one interval.

$$
\left(\begin{array}{ll}
D_{1} & \\
& D_{2}
\end{array}\right)\binom{\mathbf{u}_{1}}{\mathbf{u}_{2}}=\binom{\mathbf{f}_{1}}{\mathbf{f}_{2}} .
$$

This decomposes to

$$
D_{1} \mathbf{u}_{1}=\mathbf{f}_{1}, \quad D_{2} \mathbf{u}_{2}=\mathbf{f}_{2}
$$

Example: the Gaussian

$$
\left(\mathcal{I}+(-\Delta)^{1 / 2}\right) u(x)=\mathrm{e}^{-x^{2}}+\frac{2}{\sqrt{\pi}}{ }_{1} F_{1}\left(1 ; 1 / 2 ;-x^{2}\right)
$$

${ }_{1} F_{1}$ is the Kummer confluent hypergeometric function.

Example: the Gaussian

$$
\left(\mathcal{I}+(-\Delta)^{1 / 2}\right) u(x)=\mathrm{e}^{-x^{2}}+\frac{2}{\sqrt{\pi}}{ }_{1} F_{1}\left(1 ; 1 / 2 ;-x^{2}\right)
$$

${ }_{1} F_{1}$ is the Kummer confluent hypergeometric function. The solution is $u(x)=\mathrm{e}^{-x^{2}}$.

Example: wave propagation

Consider the FPDE $(u(x, t) \rightarrow 0$ as $|x| \rightarrow \infty)$:

$$
\left[(-\Delta)^{1 / 2}+\mathcal{H}+\frac{\partial^{2}}{\partial t^{2}}\right] u(x, t)=\left(1-x^{2}\right)_{+}^{1 / 2} U_{4}(x) \mathrm{e}^{-t^{2}}
$$

A Fourier transform in time gives $(\hat{u}(x, \omega) \rightarrow 0$ as $|x| \rightarrow \infty)$:

Example: wave propagation

Imperial College London

Consider the FPDE $(u(x, t) \rightarrow 0$ as $|x| \rightarrow \infty)$:

$$
\left[(-\Delta)^{1 / 2}+\mathcal{H}+\frac{\partial^{2}}{\partial t^{2}}\right] u(x, t)=\left(1-x^{2}\right)_{+}^{1 / 2} U_{4}(x) \mathrm{e}^{-t^{2}}
$$

A Fourier transform in time gives $(\hat{u}(x, \omega) \rightarrow 0$ as $|x| \rightarrow \infty)$:

$$
\left[(-\Delta)^{1 / 2}+\mathcal{H}-\omega^{2}\right] \hat{u}(x, \omega)=\sqrt{\pi}\left(1-x^{2}\right)_{+}^{1 / 2} U_{4}(x) \mathrm{e}^{-\omega^{2} / 4}
$$

Example: wave propagation

Imperial College London

Consider the FPDE $(u(x, t) \rightarrow 0$ as $|x| \rightarrow \infty)$:

$$
\left[(-\Delta)^{1 / 2}+\mathcal{H}+\frac{\partial^{2}}{\partial t^{2}}\right] u(x, t)=\left(1-x^{2}\right)_{+}^{1 / 2} U_{4}(x) \mathrm{e}^{-t^{2}}
$$

A Fourier transform in time gives $(\hat{u}(x, \omega) \rightarrow 0$ as $|x| \rightarrow \infty)$:

$$
\left[(-\Delta)^{1 / 2}+\mathcal{H}-\omega^{2}\right] \hat{u}(x, \omega)=\sqrt{\pi}\left(1-x^{2}\right)_{+}^{1 / 2} U_{4}(x) \mathrm{e}^{-\omega^{2} / 4}
$$

Example: wave propagation

Imperial College London

Consider the FPDE $(u(x, t) \rightarrow 0$ as $|x| \rightarrow \infty)$:

$$
\left[(-\Delta)^{1 / 2}+\mathcal{H}+\frac{\partial^{2}}{\partial t^{2}}\right] u(x, t)=\left(1-x^{2}\right)_{+}^{1 / 2} U_{4}(x) \mathrm{e}^{-t^{2}}
$$

A Fourier transform in time gives $(\hat{u}(x, \omega) \rightarrow 0$ as $|x| \rightarrow \infty)$:

$$
\left[(-\Delta)^{1 / 2}+\mathcal{H}-\omega^{2}\right] \hat{u}(x, \omega)=\sqrt{\pi}\left(1-x^{2}\right)_{+}^{1 / 2} U_{4}(x) \mathrm{e}^{-\omega^{2} / 4}
$$

Conclusions

Imperial College
 London

- A sparse spectral method for solving the identity + half-Laplacian;
- Based on a carefully chosen sum space.
- An efficient implementation written in Julia \propto see https: //github.com/ioannisPApapadopoulos/SumSpaces.jl;
- Generalization to $(-\Delta)^{s}$ with $s \in(0,1)$;
- Generalization to higher dimensions.

Conclusions

- A sparse spectral method for solving the identity + half-Laplacian;
- Based on a carefully chosen sum space.

Still to come

- An efficient implementation written in Julia \& see https: //github.com/ioannisPApapadopoulos/SumSpaces.jl;
- Generalization to $(-\Delta)^{s}$ with $s \in(0,1)$;
- Generalization to higher dimensions.

Thank you for listening!

© ioannis.papadopoulos13@imperial.ac.uk

[^0]: ${ }^{1}$ Images from https://clipart.world/brain-clipart/black-and-white-brain-clipart/, https://www.kindpng.com/imgv/iRoiRR_sound-wave-clipart-ultrasound-ultrasound-clip-art-hd/.

