10 July 2022

Sparse spectral methods for fractional **PDFs**

PDE CDT Students & Alumni Reunion Event

John Papadopoulos¹

Sheehan Olver¹ José Carrillo² Timon Gutleb² Bradley Treeby³

¹Imperial College London; ²University of Oxford; ³UCL

My timeline

My timeline

Imperial College London

MSc

• Mathematical modelling and scientific computing

PDE CDT

- Nonconvex optimisation problems with PDE constraints
- Existence, regularity & FEM analysis

Postdoc

 \bullet Fractional PDEs & spectral methods

Are fractional PDEs physical?

Imperial College London

FPDEs describe wave absorption in the brain¹.

¹ Images from https://clipart.world/brain-clipart/black-and-white-brain-clipart/, https://www.kindpng.com/imgv/iRoiRR_sound-wave-clipart-ultrasound-ultrasound-clip-art-hd/.

Imperial College London

• Equilibrium measures;

- Dispersive transport of ions;
- Replacing total variation regularization in imaging;
- Geophysics problems with long range effects;
- Neural networks where all the layers are connected to every other layer.

- Equilibrium measures;
- Dispersive transport of ions;
- Replacing total variation regularization in imaging;
- Geophysics problems with long range effects;
- Neural networks where all the layers are connected to every other layer.

- Equilibrium measures;
- Dispersive transport of ions;
- Replacing total variation regularization in imaging;
- Geophysics problems with long range effects;
- Neural networks where all the layers are connected to every other layer.

- Equilibrium measures;
- Dispersive transport of ions;
- Replacing total variation regularization in imaging;
- Geophysics problems with long range effects;
- Neural networks where all the layers are connected to every other layer.

- Equilibrium measures;
- Dispersive transport of ions;
- Replacing total variation regularization in imaging;
- Geophysics problems with long range effects;
- Neural networks where all the layers are connected to every other layer.

The problem

Imperial College London

The PDE

Find $u \in H^{1/2}(\mathbb{R})$ that satisfies, for $\lambda \in \mathbb{R}$: $(\lambda \mathcal{I} + (-\Delta)^{1/2})u = f$.

$-\Delta)^{1/2}$

Ten (or more) equivalent definitions of the fractional Laplacian over \mathbb{R}^d . E.g. for $s \in (0, 1)$,

$$(-\Delta)^{s}u(x) \coloneqq c_{d,s} \oint_{\mathbb{R}^d} \frac{u(x) - u(y)}{|x - y|^{d+2s}} \,\mathrm{d}y$$

or

$$\mathcal{F}[(-\Delta)^{s}u](\omega) = |\omega|^{2s}\mathcal{F}[u](\omega).$$

The problem

The PDE

Find $u \in H^{1/2}(\mathbb{R})$ that satisfies, for $\lambda \in \mathbb{R}$: $(\lambda \mathcal{I} + (-\Delta)^{1/2})u = f$.

$(-\Delta)^{1/2}$

Ten (or more) equivalent definitions of the fractional Laplacian over \mathbb{R}^d . E.g. for $s \in (0, 1)$,

$$(-\Delta)^{s}u(x) \coloneqq c_{d,s} \oint_{\mathbb{R}^d} \frac{u(x) - u(y)}{|x - y|^{d+2s}} \,\mathrm{d}y$$

or

$$\mathcal{F}[(-\Delta)^{s}u](\omega) = |\omega|^{2s} \mathcal{F}[u](\omega)$$

Imperial College

London

The problem

The PDE

Find $u \in H^{1/2}(\mathbb{R})$ that satisfies, for $\lambda \in \mathbb{R}$: $(\lambda \mathcal{I} + (-\Delta)^{1/2})u = f$.

$(-\Delta)^{1/2}$

Ten (or more) equivalent definitions of the fractional Laplacian over \mathbb{R}^d . E.g. for $s \in (0, 1)$,

$$(-\Delta)^{s}u(x) \coloneqq c_{d,s} \oint_{\mathbb{R}^d} \frac{u(x) - u(y)}{|x - y|^{d+2s}} \,\mathrm{d}y$$

or

$$\mathcal{F}[(-\Delta)^{s}u](\omega) = |\omega|^{2s} \mathcal{F}[u](\omega).$$

Imperial College

London

Observation

Solutions of fractional PDEs are "nonlocal" and can exhibit singularities.

Consequence

The solutions can be difficult to approximate numerically.

Challenge

How do we compute them with fast convergence?

Our proposal

Observation

Solutions of fractional PDEs are "nonlocal" and can exhibit singularities.

Consequence

The solutions can be difficult to approximate numerically.

Challenge

How do we compute them with fast convergence?

Our proposal

Observation

Solutions of fractional PDEs are "nonlocal" and can exhibit singularities.

Consequence

The solutions can be difficult to approximate numerically.

Challenge

How do we compute them with fast convergence?

Our proposal

Observation

Solutions of fractional PDEs are "nonlocal" and can exhibit singularities.

Consequence

The solutions can be difficult to approximate numerically.

Challenge

How do we compute them with fast convergence?

Our proposal

Singularities and non-locality

Imperial College London

The fractional Laplacian is not local. E.g.

Nonlocal

$$u(x) = 0$$
 for $|x| \ge 1$ but $(-\Delta)^{1/2}u(x) \ne 0$ for all $x \in \mathbb{R}$.

Singularities

As $x \downarrow 1$ and $x \uparrow -1$, then $|(-\Delta)^{1/2}u(x)| \to \infty$.

Singularities and non-locality

Imperial College London

The fractional Laplacian is not local. E.g.

Nonlocal

$$u(x)=0$$
 for $|x|\geq 1$ but $(-\Delta)^{1/2}u(x)
eq 0$ for all $x\in\mathbb{R}.$

Singularities

As $x \downarrow 1$ and $x \uparrow -1$, then $|(-\Delta)^{1/2}u(x)| \to \infty$.

Singularities and non-locality

Imperial College London

The fractional Laplacian is not local. E.g.

Nonlocal

$$u(x)=0$$
 for $|x|\geq 1$ but $(-\Delta)^{1/2}u(x)
eq 0$ for all $x\in\mathbb{R}.$

Singularities

As $x \downarrow 1$ and $x \uparrow -1$, then $|(-\Delta)^{1/2}u(x)| \to \infty$.

Spectral methods

Imperial College London

Pick an orthogonal set of polynomials, e.g. the so-called *ChebyshevT* polynomials, denoted $\{T_n(x)\}$. These satisfy

$$\int_{-1}^{1} \frac{T_n(x)T_m(x)}{\sqrt{1-x^2}} \, \mathrm{d}x = \delta_{nm}; \ T_0(x) = 1, \ T_1(x) = x, \ T_{n+1}(x) = 2xT_n(x) - T_{n-1}(x).$$

For $x \in [-1, 1]$, consider the approximation: $e^{-x^2} \sin(x) \approx \sum_{k=0}^n c_k T_k(x)$.

Spectral methods

Imperial College London

Pick an orthogonal set of polynomials, e.g. the so-called *ChebyshevT* polynomials, denoted $\{T_n(x)\}$. These satisfy

$$\int_{-1}^{1} \frac{T_n(x)T_m(x)}{\sqrt{1-x^2}} \, \mathrm{d}x = \delta_{nm}; \ T_0(x) = 1, \ T_1(x) = x, \ T_{n+1}(x) = 2xT_n(x) - T_{n-1}(x).$$

For $x \in [-1, 1]$, consider the approximation: $e^{-x^2} \sin(x) \approx \sum_{k=0}^n c_k T_k(x)$.

Many spectral methods for differential equations induce *dense* matrices \times . Consider solving

$$-u'(x) = f(x), u(-1) = 0.$$

- Expand f(x) in the ChebyshevT polynomial basis, truncate, and collect the coefficients in vector f.
- Construct the differential operator D via a collocation method. D is dense.
- Solve $D\mathbf{u} = \mathbf{f}$ for the coefficients \mathbf{u} in the ChebyshevT expansion of u(x).

Many spectral methods for differential equations induce *dense* matrices \times . Consider solving

$$-u'(x) = f(x), u(-1) = 0.$$

- Expand f(x) in the ChebyshevT polynomial basis, truncate, and collect the coefficients in vector f.
- Construct the differential operator D via a collocation method. D is dense.
- Solve $D\mathbf{u} = \mathbf{f}$ for the coefficients \mathbf{u} in the ChebyshevT expansion of u(x).

Many spectral methods for differential equations induce *dense* matrices \times . Consider solving

$$-u'(x) = f(x), u(-1) = 0.$$

- Expand f(x) in the ChebyshevT polynomial basis, truncate, and collect the coefficients in vector f.
- Construct the differential operator D via a collocation method. D is dense.
- Solve $D\mathbf{u} = \mathbf{f}$ for the coefficients \mathbf{u} in the ChebyshevT expansion of u(x).

Many spectral methods for differential equations induce *dense* matrices \times . Consider solving

$$-u'(x) = f(x), u(-1) = 0.$$

- Expand f(x) in the ChebyshevT polynomial basis, truncate, and collect the coefficients in vector f.
- Construct the differential operator D via a collocation method. D is dense.
- Solve Du = f for the coefficients u in the ChebyshevT expansion of u(x).

Many spectral methods for differential equations induce *dense* matrices \times . Consider solving

$$-u'(x) = f(x), u(-1) = 0.$$

- Expand f(x) in the ChebyshevT polynomial basis, truncate, and collect the coefficients in vector f.
- Construct the differential operator D via a collocation method. D is dense.
- Solve $D\mathbf{u} = \mathbf{f}$ for the coefficients \mathbf{u} in the ChebyshevT expansion of u(x).

Imperial College London

An observation

Let $\{U_n\}$ denote the *ChebyshevU* orthogonal polynomial basis. Then, for $n \ge 1$, $T'_n(x) = nU_{n-1}(x)$. Or in *quasimatrix* form:

$$(T'_0(x) \ T'_1(x) \ T'_2(x) \ \dots) \begin{pmatrix} 0 & 1 & & \\ & 2 & & \\ & & 3 & \\ & & & \ddots \end{pmatrix} = (U_0(x) \ U_1(x) \ U_2(x) \ \dots)$$

- Expand f(x) in the ChebyshevU polynomial basis, truncate, and collect the coefficients in vector f.
- Construct the differential operator D via ChebyshevT/U relationship. D is sparse with one dense row related to the BC
- Solve Du = f for the coefficients u in the ChebyshevT expansion of u(x).

Imperial College London

An observation

Let $\{U_n\}$ denote the *ChebyshevU* orthogonal polynomial basis. Then, for $n \ge 1$, $T'_n(x) = nU_{n-1}(x)$. Or in *quasimatrix* form:

$$(T'_0(x) \ T'_1(x) \ T'_2(x) \ \dots) \begin{pmatrix} 0 & 1 & & \\ & 2 & & \\ & & 3 & \\ & & & \ddots \end{pmatrix} = (U_0(x) \ U_1(x) \ U_2(x) \ \dots)$$

- Expand f(x) in the ChebyshevU polynomial basis, truncate, and collect the coefficients in vector f.
- Construct the differential operator D via ChebyshevT/U relationship. D is sparse with one dense row related to the BC
- Solve Du = f for the coefficients u in the ChebyshevT expansion of u(x).

Imperial College London

An observation

Let $\{U_n\}$ denote the *ChebyshevU* orthogonal polynomial basis. Then, for $n \ge 1$, $T'_n(x) = nU_{n-1}(x)$. Or in *quasimatrix* form:

$$(T'_0(x) \ T'_1(x) \ T'_2(x) \ \dots) \begin{pmatrix} 0 & 1 & & \\ & 2 & & \\ & & 3 & \\ & & & \ddots \end{pmatrix} = (U_0(x) \ U_1(x) \ U_2(x) \ \dots)$$

- Expand f(x) in the ChebyshevU polynomial basis, truncate, and collect the coefficients in vector f.
- Construct the differential operator D via ChebyshevT/U relationship. D is sparse with one dense row related to the BC
- Solve Du = f for the coefficients u in the ChebyshevT expansion of u(x).

Imperial College London

An observation

Let $\{U_n\}$ denote the *ChebyshevU* orthogonal polynomial basis. Then, for $n \ge 1$, $T'_n(x) = nU_{n-1}(x)$. Or in *quasimatrix* form:

$$(T'_0(x) \ T'_1(x) \ T'_2(x) \ \dots) \begin{pmatrix} 0 & 1 & & \\ & 2 & & \\ & & 3 & \\ & & & \ddots \end{pmatrix} = (U_0(x) \ U_1(x) \ U_2(x) \ \dots)$$

- Expand f(x) in the ChebyshevU polynomial basis, truncate, and collect the coefficients in vector f.
- Construct the differential operator D via ChebyshevT/U relationship. D is sparse with one dense row related to the BC.
- Solve Du = f for the coefficients u in the ChebyshevT expansion of u(x).

Imperial College London

An observation

Let $\{U_n\}$ denote the *ChebyshevU* orthogonal polynomial basis. Then, for $n \ge 1$, $T'_n(x) = nU_{n-1}(x)$. Or in *quasimatrix* form:

$$(T'_0(x) \ T'_1(x) \ T'_2(x) \ \dots) \begin{pmatrix} 0 & 1 & & \\ & 2 & & \\ & & 3 & \\ & & & \ddots \end{pmatrix} = (U_0(x) \ U_1(x) \ U_2(x) \ \dots)$$

- Expand f(x) in the ChebyshevU polynomial basis, truncate, and collect the coefficients in vector f.
- Construct the differential operator D via ChebyshevT/U relationship. D is sparse with one dense row related to the BC.
- Solve Du = f for the coefficients u in the ChebyshevT expansion of u(x).

Imperial College London

An observation

Let $\{U_n\}$ denote the *ChebyshevU* orthogonal polynomial basis. Then, for $n \ge 1$, $T'_n(x) = nU_{n-1}(x)$. Or in *quasimatrix* form:

$$(T'_0(x) \ T'_1(x) \ T'_2(x) \ \dots) \begin{pmatrix} 0 & 1 & & \\ & 2 & & \\ & & 3 & \\ & & & \ddots \end{pmatrix} = (U_0(x) \ U_1(x) \ U_2(x) \ \dots)$$

- Expand f(x) in the ChebyshevU polynomial basis, truncate, and collect the coefficients in vector f.
- Construct the differential operator D via ChebyshevT/U relationship. D is sparse with one dense row related to the BC.
- Solve Du = f for the coefficients u in the ChebyshevT expansion of u(x).

Sparse spectral method for FPDE

ChebyshevT

 $T_n(x) = \text{ChebyshevT}$, polynomials of order $n, x \in [-1, 1]$, orthogonal w.r.t. $1/\sqrt{1-x^2}$. Extend by 0 to \mathbb{R} outside [-1, 1].

ChebyshevU

 $U_n(x) =$ ChebyshevU, polynomials of order $n, x \in [-1, 1]$, orthogonal w.r.t. $\sqrt{1-x^2}$. Extend by 0 to \mathbb{R} outside [-1, 1].

Extended Chebyshev functions on ${\mathbb R}$

 $\tilde{T}_n(x)$ and $\tilde{U}_n(x)$ are carefully chosen extensions of $T_n(x)$ and $U_n(x)$, respectively, for $x \in \mathbb{R}$.

Sparse spectral method for FPDE

ChebyshevT

 $T_n(x) = \text{ChebyshevT}$, polynomials of order $n, x \in [-1, 1]$, orthogonal w.r.t. $1/\sqrt{1-x^2}$. Extend by 0 to \mathbb{R} outside [-1, 1].

ChebyshevU

 $U_n(x) = \text{ChebyshevU}$, polynomials of order $n, x \in [-1, 1]$, orthogonal w.r.t. $\sqrt{1-x^2}$. Extend by 0 to \mathbb{R} outside [-1, 1].

Extended Chebyshev functions on ${\mathbb R}$

 $\tilde{T}_n(x)$ and $\tilde{U}_n(x)$ are carefully chosen extensions of $T_n(x)$ and $U_n(x)$, respectively, for $x \in \mathbb{R}$.

Sparse spectral method for FPDE

ChebyshevT

 $T_n(x) = \text{ChebyshevT}$, polynomials of order $n, x \in [-1, 1]$, orthogonal w.r.t. $1/\sqrt{1-x^2}$. Extend by 0 to \mathbb{R} outside [-1, 1].

ChebyshevU

 $U_n(x) = \text{ChebyshevU}$, polynomials of order $n, x \in [-1, 1]$, orthogonal w.r.t. $\sqrt{1-x^2}$. Extend by 0 to \mathbb{R} outside [-1, 1].

Extended Chebyshev functions on $\mathbb R$

 $\tilde{T}_n(x)$ and $\tilde{U}_n(x)$ are carefully chosen extensions of $T_n(x)$ and $U_n(x)$, respectively, for $x \in \mathbb{R}$.

Imperial College London

$$ilde{T}_n(x) := egin{cases} T_n(x) & |x| \leq 1, \ (x - \mathrm{sgn}(x)\sqrt{x^2 - 1})^n & |x| > 1. \end{cases}$$

$$\tilde{U}_n(x) \coloneqq \tilde{T}_n(x) - \tilde{U}_{n-2}(x), \ n \ge 0,$$

where

$$\begin{split} \hat{U}_{-1}(x) &\coloneqq \begin{cases} 0 & |x| \leq 1, \\ -\frac{\mathrm{sgn}(x)}{\sqrt{x^2 - 1}} & |x| > 1, \end{cases} \\ \hat{U}_{-2}(x) &\coloneqq x \hat{U}_{-1}(x). \end{split}$$

Imperial College London

$$ilde{T}_n(x) \coloneqq egin{cases} T_n(x) & |x| \leq 1, \ (x-\operatorname{sgn}(x)\sqrt{x^2-1})^n & |x| > 1. \end{cases}$$

$$\tilde{U}_n(x) \coloneqq \tilde{T}_n(x) - \tilde{U}_{n-2}(x), \ n \ge 0,$$

where

$$\hat{U}_{-1}(x) := \begin{cases} 0 & |x| \le 1, \\ -\frac{\operatorname{sgn}(x)}{\sqrt{x^2 - 1}} & |x| > 1, \end{cases} \\ \hat{U}_{-2}(x) := x \hat{U}_{-1}(x).$$

$ilde{\mathcal{T}}_n(x) \coloneqq egin{cases} \mathcal{T}_n(x) & |x| \leq 1, \ (x - \mathrm{sgn}(x)\sqrt{x^2 - 1})^n & |x| > 1. \end{cases}$

$$\tilde{U}_n(x)\coloneqq\tilde{T}_n(x)-\tilde{U}_{n-2}(x),\ n\ge 0,$$

where

$$\hat{U}_{-1}(x) \coloneqq \begin{cases} 0 & |x| \le 1, \\ -\frac{\operatorname{sgn}(x)}{\sqrt{x^2 - 1}} & |x| > 1, \end{cases} \\ \hat{U}_{-2}(x) \coloneqq x \hat{U}_{-1}(x).$$

-0.5

$$ilde{T}_n(x) \coloneqq egin{cases} T_n(x) & |x| \leq 1, \ (x - \operatorname{sgn}(x) \sqrt{x^2 - 1})^n & |x| > 1. \end{cases}$$

$$\tilde{U}_n(x)\coloneqq \tilde{T}_n(x)-\tilde{U}_{n-2}(x), \ n\geq 0,$$

where

$$\hat{U}_{-1}(x) \coloneqq \begin{cases} 0 & |x| \le 1, \\ -rac{\operatorname{sgn}(x)}{\sqrt{x^2 - 1}} & |x| > 1, \end{cases}$$

 $\hat{U}_{-2}(x) \coloneqq x \hat{U}_{-1}(x).$

$$ilde{T}_n(x) \coloneqq egin{cases} T_n(x) & |x| \leq 1, \ (x - \operatorname{sgn}(x) \sqrt{x^2 - 1})^n & |x| > 1. \end{cases}$$

$$\tilde{U}_n(x) \coloneqq \tilde{T}_n(x) - \tilde{U}_{n-2}(x), \ n \ge 0,$$

where

$$\hat{U}_{-1}(x) \coloneqq egin{cases} 0 & |x| \leq 1, \ -rac{\mathrm{sgn}(x)}{\sqrt{x^2-1}} & |x| > 1, \ \hat{U}_{-2}(x) \coloneqq x \hat{U}_{-1}(x). \end{cases}$$

Imperial College London

Denote the Hilbert transform: $\mathcal{H}[u](x) \coloneqq \frac{1}{\pi} \int_{\mathbb{R}} \frac{u(y)}{x-y} dy$. Let $W_n(x) \coloneqq (1-x^2)^{1/2}_+ U_n(x)$.

Property 1

•
$$\mathcal{H}[W_n](x) = \tilde{T}_{n+1}(x)$$
 for all $x \in \mathbb{R}$.
• $\mathcal{H}[\tilde{T}_{n+1}](x) = -W_n(x)$ for all $x \in \mathbb{R}$

Property 2

Modulo some assumptions: $\frac{d}{dx}\mathcal{H} = (-\Delta)^{1/2}$ in 1D.

Property 3

•
$$\frac{\mathrm{d}}{\mathrm{d}x}[W_n](x) = (n+1)(1-x^2)_+^{-1/2}T_{n+1}(x).$$

Imperial College London

Denote the Hilbert transform: $\mathcal{H}[u](x) \coloneqq \frac{1}{\pi} \int_{\mathbb{R}} \frac{u(y)}{x-y} dy$. Let $W_n(x) \coloneqq (1-x^2)^{1/2}_+ U_n(x)$.

Property 1

- $\mathcal{H}[W_n](x) = \tilde{T}_{n+1}(x)$ for all $x \in \mathbb{R}$.
- $\mathcal{H}[\tilde{T}_{n+1}](x) = -W_n(x)$ for all $x \in \mathbb{R}$.

Property 2

Modulo some assumptions: $\frac{d}{dx}\mathcal{H} = (-\Delta)^{1/2}$ in 1D.

Property 3

•
$$\frac{\mathrm{d}}{\mathrm{d}x}[W_n](x) = (n+1)(1-x^2)_+^{-1/2}T_{n+1}(x).$$

Imperial College London

Denote the Hilbert transform: $\mathcal{H}[u](x) \coloneqq \frac{1}{\pi} \int_{\mathbb{R}} \frac{u(y)}{x-y} dy$. Let $W_n(x) \coloneqq (1-x^2)^{1/2}_+ U_n(x)$.

Property 1

•
$$\mathcal{H}[W_n](x) = \tilde{T}_{n+1}(x)$$
 for all $x \in \mathbb{R}$.

•
$$\mathcal{H}[\tilde{\mathcal{T}}_{n+1}](x) = -W_n(x)$$
 for all $x \in \mathbb{R}$.

Property 2

Modulo some assumptions: $\frac{d}{dx}\mathcal{H} = (-\Delta)^{1/2}$ in 1D.

Property 3

•
$$\frac{\mathrm{d}}{\mathrm{dx}}[W_n](x) = (n+1)(1-x^2)_+^{-1/2}T_{n+1}(x).$$

Imperial College London

Denote the Hilbert transform: $\mathcal{H}[u](x) \coloneqq \frac{1}{\pi} \int_{\mathbb{R}} \frac{u(y)}{x-y} dy$. Let $W_n(x) \coloneqq (1-x^2)^{1/2}_+ U_n(x)$.

Property 1

- $\mathcal{H}[W_n](x) = \tilde{T}_{n+1}(x)$ for all $x \in \mathbb{R}$.
- $\mathcal{H}[\tilde{T}_{n+1}](x) = -W_n(x)$ for all $x \in \mathbb{R}$.

Property 2

Modulo some assumptions: $\frac{d}{dx}\mathcal{H} = (-\Delta)^{1/2}$ in 1D.

Property 3

•
$$\frac{\mathrm{d}}{\mathrm{d}x}[W_n](x) = (n+1)(1-x^2)_+^{-1/2}T_{n+1}(x).$$

A sparse spectral method for an FPDE Imperial College London

 $(-\Delta)^{1/2}$

$$\{ (1 - x^2)^{1/2}_+ U_n(x) \} \xrightarrow{(-\Delta)^{1/2}} \{ \tilde{U}_n(x) \},$$

$$\{ \tilde{T}_n(x) \} \xrightarrow{(-\Delta)^{1/2}} \{ (1 - x^2)^{-1/2}_+ T_n(x) \}$$

dentity

$$\{(1-x^2)^{1/2}_+ U_n(x)\} \xrightarrow{\mathcal{I}} \{(1-x^2)^{-1/2}_+ T_n(x)\},$$
$$\{\tilde{T}_n(x)\} \xrightarrow{\mathcal{I}} \{\tilde{U}_n(x)\}.$$

$\lambda \mathcal{I} + (-\Delta)^{1/2}$

$$\underbrace{\{\tilde{T}_n(x)\} \cup \{(1-x^2)_+^{1/2} U_n(x)\}}_{\text{sum space}} \xrightarrow{\lambda \mathcal{I} + (-\Delta)^{1/2}} \underbrace{\{\tilde{U}_n(x)\} \cup \{(1-x^2)_+^{-1/2} T_n(x)\}}_{\text{dual sum space}}.$$

- Expand f in the dual sum space, truncate, and collect coefficients in vector f.
- Construct the truncated **sparse** matrix *D* induced by $(\lambda \mathcal{I} + (-\Delta)^{1/2})$.
- Solve $D\mathbf{u} = \mathbf{f}$ for the coefficients \mathbf{u} in the sum space expansion of $u(x), x \in \mathbb{R}$.

$\lambda \mathcal{I} + (-\Delta)^{1/2}$

$$\underbrace{\{\tilde{\mathcal{T}}_n(x)\}\cup\{(1-x^2)_+^{1/2}\mathcal{U}_n(x)\}}_{\text{sum space}}\xrightarrow{\lambda\mathcal{I}+(-\Delta)^{1/2}}\underbrace{\{\tilde{\mathcal{U}}_n(x)\}\cup\{(1-x^2)_+^{-1/2}\mathcal{T}_n(x)\}}_{\text{dual sum space}}.$$

- Expand f in the dual sum space, truncate, and collect coefficients in vector f.
- Construct the truncated **sparse** matrix *D* induced by $(\lambda \mathcal{I} + (-\Delta)^{1/2})$.
- Solve $D\mathbf{u} = \mathbf{f}$ for the coefficients \mathbf{u} in the sum space expansion of $u(x), x \in \mathbb{R}$.

$$\begin{split} \lambda \mathcal{I} &+ (-\Delta)^{1/2} \\ \underbrace{\{\tilde{\mathcal{T}}_n(x)\} \cup \{(1-x^2)_+^{1/2} \mathcal{U}_n(x)\}}_{\text{sum space}} \xrightarrow{\lambda \mathcal{I} + (-\Delta)^{1/2}} \underbrace{\{\tilde{\mathcal{U}}_n(x)\} \cup \{(1-x^2)_+^{-1/2} \mathcal{T}_n(x)\}}_{\text{dual sum space}}. \end{split}$$

- Expand f in the dual sum space, truncate, and collect coefficients in vector f.
- Construct the truncated sparse matrix *D* induced by $(\lambda \mathcal{I} + (-\Delta)^{1/2})$.
- Solve Du = f for the coefficients u in the sum space expansion of u(x), x ∈ ℝ.

$$\begin{split} &\lambda \mathcal{I} + (-\Delta)^{1/2} \\ &\underbrace{\{\tilde{\mathcal{T}}_n(x)\} \cup \{(1-x^2)_+^{1/2} \mathcal{U}_n(x)\}}_{\text{sum space}} \xrightarrow{\lambda \mathcal{I} + (-\Delta)^{1/2}} \underbrace{\{\tilde{\mathcal{U}}_n(x)\} \cup \{(1-x^2)_+^{-1/2} \mathcal{T}_n(x)\}}_{\text{dual sum space}}. \end{split}$$

- Expand f in the dual sum space, truncate, and collect coefficients in vector f.
- **②** Construct the truncated sparse matrix *D* induced by $(\lambda \mathcal{I} + (-\Delta)^{1/2})$.
- Solve $D\mathbf{u} = \mathbf{f}$ for the coefficients \mathbf{u} in the sum space expansion of $u(x), x \in \mathbb{R}$.

$$\begin{split} \lambda \mathcal{I} &+ (-\Delta)^{1/2} \\ \underbrace{\{\tilde{\mathcal{T}}_n(x)\} \cup \{(1-x^2)_+^{1/2} \mathcal{U}_n(x)\}}_{\text{sum space}} \xrightarrow{\lambda \mathcal{I} + (-\Delta)^{1/2}} \underbrace{\{\tilde{\mathcal{U}}_n(x)\} \cup \{(1-x^2)_+^{-1/2} \mathcal{T}_n(x)\}}_{\text{dual sum space}}. \end{split}$$

- Expand f in the dual sum space, truncate, and collect coefficients in vector f.
- **②** Construct the truncated sparse matrix *D* induced by $(\lambda \mathcal{I} + (-\Delta)^{1/2})$.
- Solve Du = f for the coefficients u in the sum space expansion of u(x), x ∈ ℝ.

- $\{\tilde{T}_n^i\}$ and $\{W_n^i\}$, i = 1, 2, are the spaces of affine transformed functions of the spaces $\{\tilde{T}_n\}$ and $\{\sqrt{1 x^2}U_n\}$, respectively, centred at the interval midpoints of I_1 and I_2 .
- W_n^i are supported on I_i , i = 1, 2.
- \tilde{T}_n^i are not only supported on I_i and interact with other functions centred on other intervals.

Imperial College London

• $\{\tilde{T}_n^i\}$ and $\{W_n^i\}$, i = 1, 2, are the spaces of affine transformed functions of the spaces $\{\tilde{T}_n\}$ and $\{\sqrt{1-x^2}U_n\}$, respectively, centred at the interval midpoints of I_1 and I_2 .

•
$$W_n^i$$
 are supported on I_i , $i = 1, 2$.

• \tilde{T}_n^i are not only supported on I_i and interact with other functions centred on other intervals.

Imperial College London

• $\{\tilde{T}_n^i\}$ and $\{W_n^i\}$, i = 1, 2, are the spaces of affine transformed functions of the spaces $\{\tilde{T}_n\}$ and $\{\sqrt{1 - x^2}U_n\}$, respectively, centred at the interval midpoints of I_1 and I_2 .

•
$$W_n^i$$
 are supported on I_i , $i = 1, 2$.

• \tilde{T}_n^i are not only supported on I_i and interact with other functions centred on other intervals.

Imperial College London

$$\begin{array}{c|c} I_1 & I_2 \\ \hline \\ \hline \{\tilde{T}_n^1\} \cup \{W_n^1\} & \{\tilde{T}_n^2\} \cup \{W_n^2\} \end{array} \rightarrow$$

 $\lambda \mathcal{I} + (-\Delta)^{1/2}$ induces a block-diagonal matrix. Each block corresponds to the sum space centred at one interval.

$$\begin{pmatrix} D_1 \\ D_2 \end{pmatrix} \begin{pmatrix} \mathsf{u}_1 \\ \mathsf{u}_2 \end{pmatrix} = \begin{pmatrix} \mathsf{f}_1 \\ \mathsf{f}_2 \end{pmatrix}.$$

This decomposes to

$$D_1\mathbf{u}_1=\mathbf{f}_1, \quad D_2\mathbf{u}_2=\mathbf{f}_2.$$

Imperial College London

$$\begin{array}{c|c} I_1 & I_2 \\ \hline \\ \hline \{\tilde{T}_n^1\} \cup \{W_n^1\} & \{\tilde{T}_n^2\} \cup \{W_n^2\} \end{array} \rightarrow$$

 $\lambda I + (-\Delta)^{1/2}$ induces a block-diagonal matrix. Each block corresponds to the sum space centred at one interval.

$$\begin{pmatrix} D_1 \\ D_2 \end{pmatrix} \begin{pmatrix} \mathbf{u}_1 \\ \mathbf{u}_2 \end{pmatrix} = \begin{pmatrix} \mathbf{f}_1 \\ \mathbf{f}_2 \end{pmatrix}.$$

This decomposes to

$$D_1\mathbf{u}_1=\mathbf{f}_1, \quad D_2\mathbf{u}_2=\mathbf{f}_2.$$

Imperial College London

$$\begin{array}{c|c} I_1 & I_2 \\ \hline \\ \hline \\ \{\tilde{T}_n^1\} \cup \{W_n^1\} & \{\tilde{T}_n^2\} \cup \{W_n^2\} \end{array} \rightarrow$$

 $\lambda I + (-\Delta)^{1/2}$ induces a block-diagonal matrix. Each block corresponds to the sum space centred at one interval.

$$\begin{pmatrix} D_1 \\ D_2 \end{pmatrix} \begin{pmatrix} \mathbf{u}_1 \\ \mathbf{u}_2 \end{pmatrix} = \begin{pmatrix} \mathbf{f}_1 \\ \mathbf{f}_2 \end{pmatrix}.$$

This decomposes to

$$D_1\mathbf{u}_1=\mathbf{f}_1,\quad D_2\mathbf{u}_2=\mathbf{f}_2.$$

Example: the Gaussian

Imperial College London

$$(\mathcal{I} + (-\Delta)^{1/2})u(x) = e^{-x^2} + \frac{2}{\sqrt{\pi}} F_1(1; 1/2; -x^2).$$

 $_{1}F_{1}$ is the Kummer confluent hypergeometric function. The solution is $u(x) = e^{-x^{2}}$.

Example: the Gaussian

Imperial College London

$$(\mathcal{I} + (-\Delta)^{1/2})u(x) = e^{-x^2} + \frac{2}{\sqrt{\pi}} F_1(1; 1/2; -x^2).$$

 $_1F_1$ is the Kummer confluent hypergeometric function. The solution is $u(x) = e^{-x^2}$.

Example: wave propagation

Consider the FPDE $(u(x, t) \rightarrow 0 \text{ as } |x| \rightarrow \infty)$:

$$[(-\Delta)^{1/2} + \mathcal{H} + \frac{\partial^2}{\partial t^2}]u(x,t) = (1-x^2)_+^{1/2}U_4(x)e^{-t^2}.$$

A Fourier transform in time gives $(\hat{u}(x,\omega) \to 0 \text{ as } |x| \to \infty)$:

Example: wave propagation

Consider the FPDE $(u(x, t) \rightarrow 0 \text{ as } |x| \rightarrow \infty)$:

$$[(-\Delta)^{1/2} + \mathcal{H} + \frac{\partial^2}{\partial t^2}]u(x,t) = (1-x^2)^{1/2}_+ U_4(x) e^{-t^2}.$$

A Fourier transform in time gives $(\hat{u}(x,\omega) \rightarrow 0 \text{ as } |x| \rightarrow \infty)$:

$$[(-\Delta)^{1/2} + \mathcal{H} - \omega^2]\hat{u}(x,\omega) = \sqrt{\pi}(1-x^2)^{1/2}_+ U_4(x) e^{-\omega^2/4}.$$

Example: wave propagation

Consider the FPDE $(u(x, t) \rightarrow 0 \text{ as } |x| \rightarrow \infty)$:

$$[(-\Delta)^{1/2} + \mathcal{H} + \frac{\partial^2}{\partial t^2}]u(x,t) = (1-x^2)_+^{1/2}U_4(x)e^{-t^2}.$$

A Fourier transform in time gives $(\hat{u}(x,\omega) \rightarrow 0 \text{ as } |x| \rightarrow \infty)$:

$$[(-\Delta)^{1/2} + \mathcal{H} - \omega^2]\hat{u}(x,\omega) = \sqrt{\pi}(1-x^2)_+^{1/2}U_4(x)e^{-\omega^2/4}.$$

Example: wave propagation

Consider the FPDE $(u(x, t) \rightarrow 0 \text{ as } |x| \rightarrow \infty)$:

$$[(-\Delta)^{1/2} + \mathcal{H} + \frac{\partial^2}{\partial t^2}]u(x,t) = (1-x^2)^{1/2}_+ U_4(x) e^{-t^2}.$$

A Fourier transform in time gives $(\hat{u}(x,\omega) \rightarrow 0 \text{ as } |x| \rightarrow \infty)$:

$$[(-\Delta)^{1/2} + \mathcal{H} - \omega^2]\hat{u}(x,\omega) = \sqrt{\pi}(1-x^2)^{1/2}_+ U_4(x) e^{-\omega^2/4}.$$

Conclusions

Imperial College London

- A sparse spectral method for solving the identity + half-Laplacian;
- Based on a carefully chosen sum space.

Still to come

- An efficient implementation written in Julia **&** see https: //github.com/ioannisPApapadopoulos/SumSpaces.jl;
- Generalization to $(-\Delta)^s$ with $s \in (0, 1)$;
- Generalization to higher dimensions.

Conclusions

- A sparse spectral method for solving the identity + half-Laplacian;
- Based on a carefully chosen sum space.

Still to come

- An efficient implementation written in Julia see https: //github.com/ioannisPApapadopoulos/SumSpaces.jl;
- Generalization to $(-\Delta)^s$ with $s \in (0,1)$;
- Generalization to higher dimensions.

Thank you for listening!

 \bowtie ioannis.papadopoulos13@imperial.ac.uk