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Are fractional PDEs physical?

FPDEs describe wave absorption in the brain1.

1
Images from https://clipart.world/brain-clipart/black-and-white-brain-clipart/,

https://www.kindpng.com/imgv/iRoiRR_sound-wave-clipart-ultrasound-ultrasound-clip-art-hd/.
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Other applications?

Equilibrium measures;

Dispersive transport of ions;

Replacing total variation regularization in imaging;

Geophysics problems with long range effects;

Neural networks where all the layers are connected to every
other layer.
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The problem

The PDE

Find u ∈ H1/2(R) that satisfies, for λ ∈ R: (λI + (−∆)1/2)u = f .

(−∆)1/2

Ten (or more) equivalent definitions of the fractional Laplacian
over Rd . E.g. for s ∈ (0, 1),

(−∆)su(x) := cd ,s−
∫
Rd

u(x)− u(y)

|x − y |d+2s
dy

or

F [(−∆)su](ω) = |ω|2sF [u](ω).
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Fractional PDEs

Observation

Solutions of fractional PDEs are “nonlocal” and can exhibit
singularities.

Consequence

The solutions can be difficult to approximate numerically.

Challenge

How do we compute them with fast convergence?

Our proposal

A spectral method based on a so-called sum space.
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Singularities and non-locality
The fractional Laplacian is not local. E.g.

Nonlocal

u(x) = 0 for |x | ≥ 1 but (−∆)1/2u(x) 6= 0 for all x ∈ R.

Singularities

As x ↓ 1 and x ↑ −1, then |(−∆)1/2u(x)| → ∞.
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Spectral methods
Pick an orthogonal set of polynomials, e.g. the so-called ChebyshevT
polynomials, denoted {Tn(x)}. These satisfy∫ 1

−1

Tn(x)Tm(x)√
1− x2

dx = δnm;T0(x) = 1, T1(x) = x , Tn+1(x) = 2xTn(x)− Tn−1(x).

For x ∈ [−1, 1], consider the approximation: e−x2

sin(x) ≈
∑n

k=0 ckTk(x).
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Sparse spectral methods

Many spectral methods for differential equations induce dense
matrices . Consider solving

−u′(x) = f (x), u(−1) = 0.

A spectral method recipe :

1 Expand f (x) in the ChebyshevT polynomial basis, truncate,
and collect the coefficients in vector f.

2 Construct the differential operator D via a collocation
method. D is dense.

3 Solve Du = f for the coefficients u in the ChebyshevT
expansion of u(x).
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Sparse spectral methods

An observation

Let {Un} denote the ChebyshevU orthogonal polynomial basis.
Then, for n ≥ 1, T ′n(x) = nUn−1(x). Or in quasimatrix form:

(
T ′0(x) T

′
1(x) T

′
2(x) . . .

)

0 1

2
3

. . .

 = (U0(x) U1(x) U2(x) . . . )

A sparse spectral method recipe :
1 Expand f (x) in the ChebyshevU polynomial basis, truncate,

and collect the coefficients in vector f.
2 Construct the differential operator D via ChebyshevT/U

relationship. D is sparse with one dense row related to the BC.
3 Solve Du = f for the coefficients u in the ChebyshevT

expansion of u(x).
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Sparse spectral method for FPDE

ChebyshevT

Tn(x) = ChebyshevT, polynomials of order n, x ∈ [−1, 1],
orthogonal w.r.t. 1/

√
1− x2. Extend by 0 to R outside [−1, 1].

ChebyshevU

Un(x) = ChebyshevU, polynomials of order n, x ∈ [−1, 1],
orthogonal w.r.t.

√
1− x2. Extend by 0 to R outside [−1, 1].

Extended Chebyshev functions on R
T̃n(x) and Ũn(x) are carefully chosen extensions of Tn(x) and
Un(x), respectively, for x ∈ R.
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Extended Chebyshev functions

T̃n(x) :=

{
Tn(x) |x | ≤ 1,

(x − sgn(x)
√
x2 − 1)n |x | > 1.

Ũn(x) := T̃n(x)− Ũn−2(x), n ≥ 0,

where

Û−1(x) :=

{
0 |x | ≤ 1,

− sgn(x)√
x2−1

|x | > 1,

Û−2(x) := xÛ−1(x).
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Û−1(x) :=

{
0 |x | ≤ 1,

− sgn(x)√
x2−1

|x | > 1,
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where
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Motivation for choice of functions
Denote the Hilbert transform: H[u](x) := 1

π
−
∫
R

u(y)
x−y dy . Let

Wn(x) := (1− x2)
1/2
+ Un(x).

Property 1

H[Wn](x) = T̃n+1(x) for all x ∈ R.

H[T̃n+1](x) = −Wn(x) for all x ∈ R.

Property 2

Modulo some assumptions: d
dxH = (−∆)1/2 in 1D.

Property 3

d
dx [Wn](x) = (n + 1)(1− x2)

−1/2
+ Tn+1(x).

d
dx [T̃n+1](x) = nŨn−1(x).
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A sparse spectral method for an FPDE

(−∆)1/2

{(1− x2)
1/2
+ Un(x)} (−∆)1/2

−−−−−→ {Ũn(x)},

{T̃n(x)} (−∆)1/2

−−−−−→ {(1− x2)
−1/2
+ Tn(x)}.

Identity

{(1− x2)
1/2
+ Un(x)} I−→ {(1− x2)

−1/2
+ Tn(x)},

{T̃n(x)} I−→ {Ũn(x)}.
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A sparse spectral method for an FPDE
Key idea: use sum space {T̃n(x)} ∪ {(1− x2)

1/2
+ Un(x)}.

λI + (−∆)1/2

{T̃n(x)} ∪ {(1− x2)
1/2
+ Un(x)}︸ ︷︷ ︸

sum space

λI+(−∆)1/2

−−−−−−−−→ {Ũn(x)} ∪ {(1− x2)
−1/2
+ Tn(x)}︸ ︷︷ ︸

dual sum space

.

A sparse spectral method recipe :

1 Expand f in the dual sum space, truncate, and collect coefficients in
vector f.

2 Construct the truncated sparse matrix D induced by
(λI + (−∆)1/2).

3 Solve Du = f for the coefficients u in the sum space expansion of
u(x), x ∈ R.
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Combining different intervals

{T̃ i
n} and {W i

n}, i = 1, 2, are the spaces of affine transformed
functions of the spaces {T̃n} and {

√
1− x2Un}, respectively,

centred at the interval midpoints of I1 and I2.

W i
n are supported on Ii , i = 1, 2.

T̃ i
n are not only supported on Ii and interact with other

functions centred on other intervals.

10 July 2022 16



Combining different intervals

{T̃ i
n} and {W i

n}, i = 1, 2, are the spaces of affine transformed
functions of the spaces {T̃n} and {

√
1− x2Un}, respectively,

centred at the interval midpoints of I1 and I2.

W i
n are supported on Ii , i = 1, 2.

T̃ i
n are not only supported on Ii and interact with other

functions centred on other intervals.

10 July 2022 16



Combining different intervals

{T̃ i
n} and {W i

n}, i = 1, 2, are the spaces of affine transformed
functions of the spaces {T̃n} and {

√
1− x2Un}, respectively,

centred at the interval midpoints of I1 and I2.

W i
n are supported on Ii , i = 1, 2.

T̃ i
n are not only supported on Ii and interact with other

functions centred on other intervals.

10 July 2022 16



Combining different intervals

λI + (−∆)1/2 induces a block-diagonal matrix. Each block
corresponds to the sum space centred at one interval.(

D1

D2

)(
u1

u2

)
=

(
f1

f2

)
.

This decomposes to

D1u1 = f1, D2u2 = f2.
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Example: the Gaussian

(I + (−∆)1/2)u(x) = e−x
2

+
2√
π

1F1(1; 1/2;−x2).

1F1 is the Kummer confluent hypergeometric function. The
solution is u(x) = e−x

2
.
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Example: wave propagation

Consider the FPDE (u(x , t)→ 0 as |x | → ∞):

[(−∆)1/2 +H+
∂2

∂t2
]u(x , t) = (1− x2)

1/2
+ U4(x)e−t

2
.

A Fourier transform in time gives (û(x , ω)→ 0 as |x | → ∞):

[(−∆)1/2 +H− ω2]û(x , ω) =
√
π(1− x2)

1/2
+ U4(x)e−ω

2/4.
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Conclusions

A sparse spectral method for solving the identity +
half-Laplacian;

Based on a carefully chosen sum space.

Still to come

An efficient implementation written in Julia see https:

//github.com/ioannisPApapadopoulos/SumSpaces.jl;

Generalization to (−∆)s with s ∈ (0, 1);

Generalization to higher dimensions.
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Thank you for listening!

ioannis.papadopoulos13@imperial.ac.uk
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