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The Problem

At present, no rigorous derivation of the Vlasov-Poisson system in
space dimension three from Newton's motion equations for a gas of
charged particles with (repulsive) Coulomb interaction.

Recent progress by S. Serfaty and M. Duerinckx (DMJ2020) in the
special case of monokinetic distribution functions

In the quantum setting, the Hartree equation with Coulomb inter-
action has been derived from the N-body Schrédinger equation by
a mean-field limit (L. Erdés-H.T. Yau 2003, subsequent contribu-
tions by Rodnianski-Schlein CMP2009, Pickl LMP2009, Knowles-
Pickl, Benedikter, Porta, Schlein, Saffirio....)

Problem what about the joint mean-field (particle number N > 1)
and classical (7 < 1) limits?
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The Quantum Coulomb Gas

Consider the N-body Schrédinger equation
inde Vs n(t, Xn) = Hanun(t, Xn) . Win|,_o = (i)=Y

with the notation

Xy = (x1,...,xn) € (RAV

By Kato's Thm (TAMS1951) quantum Hamiltonian on L2(R3V)

N
HN — Z _%thXk + % Z m H*

k=1 1<k<I<N

By Stone’s theorem, the N-body wave function is
Uy n(t, ) = ef"tH"’/h(lb,%")@N with (NN (Xy) = H Yin(
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The Pressureless Euler-Poisson System

Unknown p(t, x) > 0 (density) and u(t, x) € R3 (velocity field)

Oep + divx(pu) =0, Pl =0"
atu—i—u-vxu:—vxﬁ*xp, in

“{t:o

If (p,u) is a classical solution of the pressureless Euler-Poisson
system, the monokinetic distribution function

F(t,x,€) := p(t, x)0( — u(t, x))

is a solution of the Vlasov-Poisson system
Oef +&-Vif =V, Vi(t,x) - Vef =0
- B Vilex) =an [ (ex,de

R3
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Local Existence/Uniqueness Theorem for Euler-Poisson

Let ume€ L®°(R3) be s.t. V,ue H?™(R3), and p'" € H>™(R3) s.t.

p"(x) >0forae x€R®  and / p(y)dy =1
R3
(1) There exists T = T[HpinHH2m(R3) + HVXUinHH2m(R3)] >0, and a
unique solution (p, u) of the Euler-Poisson system s.t.

ue ([0, T] x R®)  while p and V,u € C([0, T], H*™(R3))

(2) Besides, for all t € [0, T], one has

p(t,x)>0forae xecR®  and /R3p(t,y)dy:1
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From N-Body Schrédinger to Pressureless Euler-Poisson

Thm [F.G.-T. Paul CPAM2022]

Let o € H*(R3)NP(R3) and u™ € L*(R3)3 s.t. Vu'" € HY(R3)®.
Let (p, u) be the (classical) solution on [0, T] x R for some T > 0
of the pressureless Euler-Poisson system initial data (p™, u').

Let Wiry = ()N, with [|¢p|,2 = 1 satisfying

sup ||h2A i 12(r3) < 0, I|m iRV + u™ it 2R3y =0
0<h<1

-~ (0F P = NP = 00D,
LY Xyl Py =0

h—0

Remark test these assumptions on WKB initial states of the form

¢in(X) _ ain(X) exp (%) ’ ’ain|2 _ pin7 uin = sin
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Let Hpy := N-body Hamiltonian with Coulomb potential and set

Ly
\Uh’/\[(t)::e h \Vﬁ/’N

Then, in the limit as h + % — 0, one has

/R3(N—1) ‘\U}L,,’N(t, '7X27N)|2dX27N — p(t7 )

h/3(N ) Im (wh,vi1wh,N) (t, -,X27N)dX27N — pu(t, )
R3(N—

for the narrow topology of Radon measures on R3, with the notation

Xon = (x2,...,xNn)
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Serfaty's Inequality (DMJ2020)

Forall p € L®(R3), all u € W1’°°(R3)3 and all Xy € R3V, set

FXe. ] = //7& (11— P)() (1 — p)(d)

\X—y!
GlXn. p ] / LD 1x, —p)(e5) 3y~ ()

There exists C > 2 such that, forall p € L°(R3), all u € W1>°(R3)3
and a.e. Xy € R3V

C
|G X, p, ull < ClIVulli FnlXn, o1+ 575 (1l pll ) (1t luffwaec )

Besides, there exists C’ > 0 such that

!

C
F[Xn, p] > _W(l + [ ol Lo (r3))

F. Golse From Schrédinger to Euler-Poisson 8/12



Quantum Modulated Energy

N—1 terms

——
With the notation JA=A® [ ®...® I, we consider the quantity
EMVnN, p, u](t) == (Wpn( t)’J1| — ihVy — u(t,)? [V n(t))

+ (Wan ()] F[Xn, (8, )] [Wan(2))

Denoting ¥ := 3(V.u + (Vyu)") the deformation tensor, one has

I5[\1:,1,\,,,;, () + 2 (Wp | J (A + ) TE(RV -+ 1)) [V )

= I0* (W n| A(Axdive u(t, ) [Van) + (Vin| GXn, p, u] [Win)
Notation if 1) € L2(R?) and A is an operator on L?(R), we denote
WA = [ TEIAD) ()
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By Gronwall’s and Serfaty’s inequalities, one arrives at the bound
C/
0 < EWpn,p, ul(t) + W(l + [ pll Lo (r3))
cT c
< eCTIVullee | [y, v, p, u](0) +W(1 + [l Lo (r3))

—0

uj| oo C
+TeCTIVHle (1t =) (2 + i)

+ TeCTIVUle 132 | A divy | oo

By the lower bound in Serfaty’s inequality and the Cauchy-Schwarz
inequality

!/

C
EVnn, p, u(t) + W(l + [|pll Lo (r3))
> |<\U;@/V ‘.Jl —ihVyx — u( ‘ulf n( >}2
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Starting from the decomposition (good exercise...)

1 /°° —lw
——= [ dr| G, (x—2)G,(y—2)dz, G, (w):=°Z
o= o [ GGy -2z, G

one can prove that

/ e pn:a(t,-) = p(t, ) |2 dr

< (Wi ()] F[Xn, p(t, )] (Wi n(t)) +O(N~2/3)

—0

where

prn:(t, ) = / Wi n(t, - Xon)PdXon
R3(N-1)
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Conclusions/Perspectives

(1) Using the quantum analogue of phase-space empirical measures
in [F.G. - T. Paul: Commun. Math. Phys. 369 (2019), 1021-1053]
leads to a proof which parallels the Serfaty-Duericnkx derivation of
the Euler-Poisson system [Duke Math. J. 169 (2020), 2887-2935]
for a classical Coulomb gas. The proof above avoids this technical
machinery by a duality approach.

(2) The classical limit of the Schrédinger-Poisson to the Vlasov-
Poisson system can be proved by the same method. This extends
Thm IV.5 in [Lions-Paul, Rev. Mat. Iberoam. 1993] to the case of
pure states (with singular — Dirac type — Wigner measure).

(3) Extensions to non monokinetic situations (in the regime where
both i and 1/N are small independently) remain a challenging open
problem
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