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Outline

(1) Angiogenesis — the formation of new blood vessels
(2) Cancer Cell Invasion



ANGIOGENESIS



Angiogenesis

* In wound healing/cancer growth, new blood vessels form by endothelial cells
escaping from existing blood vessels and moving towards the wound/tumour

— this is termed angiogenesis

* There are many very sophisticated models now for angiogenesis.



Our aim in this talk is to take inspiration from the
simplest model and ask the more general question:

If we propose rules of behaviour at the cell level — how
do we scale up to the tissue level?
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FIG. 1. A schematic of angiogenesis. Endothelial cells follow
the paths of tip cells, which move chemotactically in response
to a tumor angiogenic factor (TAF) source to form sprouts.
Sprouts may branch and fuse through anastomosis to form
loops. EC = endothelial cell, TC = tip cell.




Snail-trail model
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The snail-trail model

Let n(x,t) be tip cell density and e(x,t) be endothelial (sprout)
cell density

H. M. Byrne and M. A. J. Chaplain, Bull. Math. Biol. 57, 461
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Aside: Scaling Factor

Martinson, Byrne, Maini, Evaluating snail-trail frameworks for leader-follower behaviour with agent-based
modelling, Phys Rev. E. 102, 062417 (2020)
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What the above model does is take what is happening to a cell
and assume that the population behaves in the same way.

We follow an alternative procedure:

(i) We take a square lattice

(ii) Incorporate the rules on updating lattice occupancy at the
cell leve

(iii) Coarse-grain and arrive at a continuum model




The chemoattractant Vascular Endothelial Growth
Factor (VEGF)




Biased random walk for tip cells




Anastomosis (tip-to-tip or tip-sprout)
Before (time :K) — o  After (time : K + 1)

(a) Tip-to-tip anastomosis

Before (time : K) After (time : K 4 1)

b) Tip-to-sprout anastomosis
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Branching

Perpendicular to direction of motion




Comparison of agent-based model with Snail-Trail
Model

S. Pillay, H.M. Byrne, P.K. Maini, The impact of exclusion processes on angiogenesis models, J. Math. Biol., 77,
1721-1759 (2018)
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Ensemble Averages
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We mtroduce two binary variables, a, and a,, to act as
switches for tip-to-tip and tip-to-sprout anastomosis, respec-
tively. If these variables are set to 1, then the corresponding
anastomosis process 1s active.
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Discrete to continuum
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Boundary and initial conditions
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* As the initial conditions (IC) in the CA are discontinuous, we
use the averaged CA simulation results after a short time



One-Dimensional Model

1 1
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Comparison

aN 2N 9 dc
—dd1-a,N—-—a,E)|\D— — y— [ N—
t dx2 ox ox

—u(asN* + a,NE) + AcN,

3’N d dc

—a — S
dx?2 Xax dx

dc
—xN—=0, atx=0,1,

ON _ _93°N ) dc
ar  ax2 dx

Na—) +ANc — B.NE — B,N?,
X

(A1)

D— — yN—|, A2
dx X dx a2

aE_I‘ N dc

3  h




lgnored spatial correlations and made mean-field
approximations




To summarise

We now have 3 models:

(i) Cellular automaton (true solution) | ]

(ii) Snail-trail (Byrne-Chaplain) continuum model | |
(iii) The new continuum model [BLUE]



Comparison 1: no anastomosis ©
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Comparison 2: tip-to-tip and tip-to-sprout
anastomoses ®
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Summary

* Developed CA model for angiogenesis which has led to a new
PDE model for angiogenesis which highlights:

* (i) Surprisingly, very different looking PDEs give very similar
results for the cases studied

* (ii) Mean-field assumption is where things break down



* W.D. Martinson, H. Ninomiya, H.M. Byrne, P.K. Maini, Comparative
analysis of continuum angiogenesis models, J. Math. Biol. 82, 2021



Comparing the models

 We identify two parameter groupings:

DA _

o

(diffusion of tips) x (branching rate)/(chemotaxis coeff)A2

E =

A
anda = — =
U

(branching rate)/(tip to tip anastomosis)

If these parameter groupings are small, then a perturbation analysis shows
that both models agree to lowest order.



Comments

* Different models for the same phenomena — how do we
systematically compare them?

* How do we coarse-grain from microscale to macroscale?

* How do we relate macroscale parameters to microscale
properties?



Cancer Cell Invasion



Gatenby-Gawlinski Model (1996)

N, is normal cell density
N5 is tumour cell density
L is lactic acid concentration.
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Travelling waves of invasion




----------

Experimental results S|

(Gatenby et al, Cancer Research, 66, 5216-5223, 2006)
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M.R.A. Strobl, A.L. Krause, M.Damaghi, R. Gillies, A.R.A. Anderson, P.K.
Maini, Mix and Match: phenotypic coexistence as a key facilitator of
cancer invasion, B. Math. Biol., 82, 2020



Co-operation between different cell
phenotypes
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lised Variables

ting the four different scenarios that can occur depending on the inter-speci
competition bclw n T.\ and Typ. Panels Lurrcxpund to the locations in the competition parameter spac
marked in Fig. 4a (1:A, 2:B, S (CM_A- C, (0,0). At t = 0, the tumour begins as ¢
mixture of acid- producing (red) and matrix- de grading (yellow ) on the left-hand side of the dunmm
(appearing orange due to the mixture of the colours). It is constrained by a mixture of stroma (blue) and ECM
on the right-hand side (appearing as dark blue). Since inter-species competition is weak, the tumour
populations can coexist and combine their traits, allowing them to invade rapidl
b (c (I"-’ 0.7). In contrast, when Thq dominates over Ta. it drives T4 to extinction and no
i . Ty, dominates over Tyy. While invasion eventually stops
invades thanks to a small population of Ty persisti
at the tumour edge{appearing in orange at 1 = 25). d (eM.A. caM) = (1.7, 1.7). Mutual exclusion of T
d Thi. When seeded at equal densities, the two populations will invade as shown, but the invading front
not stable. If a small perturbation is introduced, the two populations will separate and invasion will halt
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Fig. 6 Summary of the key findings of this paper. If the two phenotypes can coexist, a highly invasive
community of cells emerges. Conversely. if Ty dominates, tumour invasion comes to a halt as the cells
are unable to overcome the stroma. If 75 dominates, then a temporarily invasive tumour mass forms in
which Ty cells find a temporary habitat in the matrix at the tumour edge. Finally, in the case where the two
cell types mutually exclude each other’s growth, the cells separate into spatially distinct regions and fail to
invade (Colour figure online)

Fig. 1 Areas of acid production and matrix remodelling in human breast cancer ducts. Acid production
was defined by expression of the acid adaptation marker LAMP2 (green). Matrix remodelling was defined
by expression of TGM2 (purple). For visualisation purposes, masks were extracted and overlaid on a
haematoxylin and eosin stain of the same tissue (see Section A1 for details). a Example of a ductal carcinoma
in situ that has not yet invaded the surrounding tissue. b Example of an invasive cancer that has breached the
duct. We observe that not all cells are expressing LAMP2 or TGM2. Could there be cooperation between
cells with different traits? (Color figure online)




Degenerate diffusion really complicates
the travelling wave analysis
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C. Colson, F. Sanchez-Garduino, H.M. Byrne, P. K. Maini, T. Lorenzi, Travelling-wave
analysis of a model of tumour invasion with degenerate, cross-dependent diffusion,
Proc. R. Soc. A477, 20210593 (2021)

allay T, Mascia C. 2022 Propagation fronts in a simplified model of tumor growth with

egenerate cross-dependent self-diffusivity. Nonlinear Anal. Real World Appl. 63, 103387.



Sketch of Study
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Introducing the travelling wave coordinate £ = x—ct, where ¢ > 0, and the ansatz N (z,t) = N(§)
and M (z,t) = M(E), the TWS we seek must satisfy the following ordinary differe ntial equation
(ODE) system:
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Results

» Existence of TWS from (1,0) to (0,1) unique for any
positive wavespeed (shooting argument).

« Foreach M € [0,1) there is a unique TWS from (1,0) to
(0, M) for any wavespeed greater than or equal to a
strictly positive minimum value.



Comment

* The inclusion of the simplest nonlinearity in the diffusion term
increases the complexity of the analysis of this problem enormously.
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