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Introduction

The convergence of the solution of uν of the Navier
-Stokes equations, with no slip boundary condition, to the
solution of the Euler equations generates a boundary layer
because the tangential component of the velocity does not
remain equal to 0 .

In Ω× R+
t ∂tuν + uν · ∇uν +∇pν = ν∆unu ∂tu + u · ∇u +∇p = 0 ,

∇ · uν = ∇ · u = 0 .

On ∂Ω uν = 0 and u · ~n = 0 .
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Introduction

First observed by Prandlt who proposed in 1904 the
eponym equations, based on a parabolic scaling with a
boundary layer of the order of

√
ν. They became the

paradigm of boundary layers analysis in many even less
subtle situations (fully linear problems!!) . However the
non linearity may generate ”turbulence” propagating in
the bulk of the fluid such that the limit may seriously
differ from the solution of the Euler equation . Von
Karman and Prandlt suggested in 1920 that the origin of
such singular behavior is in the eponym turbulent boundary
layer of the order of ν much smaller than

√
ν.
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Introduction

A milestone in our community is the paper of Kato 1984.
Kato does not prove or disprove the convergence of the
solution of the Navier-Stokes equations to the solution of
the Euler equations, but he shows how this issue is related
to several ”physical ” issues like the absence of anomalous
energy dissipation or the generation of vorticity in a
boundary layer of order ν. In 213 E. Titi and C.B.
proposed an avatar of the theorem of Kato, based on
simple Gronwall estimate . ie Theorem 1
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Introduction

Theorem

( In dimension 2 and 3) Let u be weak solution to the Euler equations in
[0,T ]× Ω satisfying ‖∇u‖L∞([0,T ]×Ω) <∞. Consider (ν > 0 , uν) Leray
weak solutions to the Navier-Stokes :

1

2
‖uν(t)‖2

L2(Ω) + ν

∫ t

0
‖∇xuν(t)‖2

L2(Ω)dt ≤
1

2
‖uν(0)‖2

L2(Ω) (1)

uniformly in ν → 0. Assume that their vorticity ων = ∇⊥ · uν satisfies

lim sup
ν→0

(
−
∫ T

0

∫
∂Ω
νων(t, σ)u(t, σ) · τ(σ)dσdt

)
= 0, (2)

then any uν , which is a weak−∗ limit in L∞([0,T ]; L2(Ω)) of a
subsequence uνj as νj → 0, satisfies the stability estimate (and

convergence for uν(0)− u(0) = 0).

‖uν(t)− u(t)‖2
L2(Ω) ≤ e2t‖∇u‖L∞([0,T ]×Ω)‖uν(0)− u(0)‖2

L2(Ω). (3)
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Introduction

Hence our purpose is the most possibly direct proof of (2) for short time
assuming that boundary of the domain and initial value of the solution are
analytic. Object of the Theorem 2 (main):

Theorem

2 Main Theorem
Let u0(x) be an initial data that is analytic up to the boundary ∂Ω and
vanishes on the boundary. Then, there is a positive time T , independent
of ν, so that the unique solutions uν(t) to the Navier-Stokes problem
satisfies the estimate

lim
ν→0

√
ν‖ων‖L∞([0,T ]×∂Ω)) <∞. (4)
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Introduction

Observe that with (1) one has

ν

∫ T

0
‖ων(t)‖2

L2(Ω)dt ≤ C0 (5)

and the theorem 2 gives

ν

∫ T

0
‖ων(t)‖2

L2(∂Ω)dt ≤ C0 (6)

While with Kato-duality type argument (depending on the regularity of uτ )

‖ων(t)‖L2(∂Ω×(0,T )) = o(ν) (7)

would be enough to have (2) .
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Introduction

(2) a bit sharper than (5). But not so much!!! However
the difference plays a crucial role in wall turbulence.

Since analytic solutions of the Euler equations are considered the estimate
(6) is even an overkill for the proof of (4). Up to now we have not been
able to provide a proof of convergence with a weaker estimate than
O(
√
ν) which is reminiscent of the Prandlt scaling. And in fact Prandlt

expansion was used for a first result in the present direction by C. Wang
and Y. Wang J. Math. Fluid Mech. (2020).
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Introduction

The proof is build on the extension to any domain with analytic curved
boundary of the following recent tools concerning the half space.

1 C. R. Anderson Vorticity boundary conditions and boundary vorticity
generation for two-dimensional viscous incompressible flows. J.
Comput. Phys. 1989 and Y. Maekawa, On the inviscid limit problem
of the vorticity equations for viscous incompressible flows in the
half-plane. Comm. Pure Appl. Math. (2014).

2 T.T. Nguyen and T.T. Nguyen. The inviscid limit of Navier-Stokes
equations for analytic data on the half-space. Arch. Ration.Mech.
Anal., 2018.

3 The release of the analyticity hypothesis away from the boundary I.
Kukavica, V Vicol and F. Wang, Arch. Ration. Mech. Anal. (2020),.
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The Anderson Maekawa boundary condition

On ∂Ω one has:

0 = τ · ∂tu = τ · ∇⊥∆−1∂tω = ∂n[∆−1(ν∆ω − u · ∇ω)] (8)

With Dirichlet Neumann operator and ~n interior normal

ω∗ = ω on ∂Ω ,−∆ω∗ = 0, in Ω DN(ω) = −∂nω∗, on ∂Ω,

∂n[∆−1∆ω] = ∂n[∆−1∆(ω − ω∗)] = (∂n + DN)ω .
(9)

(∂nων + DNων) =
1

ν
∂~n∆−1(u · ∇ων) ,

∂tων + uν · ∇ων − ν∆ων = 0 .
(10)
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The Anderson Maekawa boundary condition

Remark

With the standard energy estimates :

d

dt

1

2

∫
Ω
|ων(x , t)|2dx + ν

∫
Ω
|∇νων(x , t)|2dx

=

∫
∂Ω

DNωνωνdσ +
1

ν
∂~n∆−1(uν · ∇ων)dσ

(11)

indicating that the problem is ill posed even for ν > 0 in any Sobolev
space. However it is well posed in space of analytic functions. And ων is
analytic in (t > 0,X + iY ,X ∈ Ω× Y ∈ R2) while the solution of the
Euler equation with analytic initial data is also analytic for

t ≥ 0,X + iY ,X ∈ Ω× |Y | ≤ Ce−CeCt .
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Geodesic coordinates

∀x ∈ R2 , d(x , ∂Ω) = inf
y∈∂Ω

|x − y | ,Vδ = {x ∈ R2, d(x , ∂Ω) < δ}

Analytic curve : ∂Ω = {θ ∈ T = R/(ZL) 7→ x(θ) = (x1(θ), x2(θ))}

Tangent, interior normal curvature and distance:

~τ(θ) = ~τ(x(θ)) =(x ′1(θ), x ′2(θ)), ~n(θ) = ~n(x(θ)) = (−x ′2(θ), x ′1(θ))

with |x ′(θ)|2 = (x ′1(θ))2 + (x ′2(θ))2 = 1.

γ(θ) = x ′′1 (θ)x ′2(θ)− x ′1(θ)x ′′2 (θ),

d(x , ∂Ω) = inf
y∈∂Ω

|x − y | = |x − x(θ)| .

(12)
There exists a δ > 0 such that the mapping

(θ, z) ∈ {T = R/(ZL)× |z | < δ0} 7→ x(θ) + z~n(θ) (13)

is an analytic isomorphism on Vδ and one has d(x , ∂Ω) = |z | .
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Rescaled Geodesic coordinates

Under the scaling diffusion equation

(t̃, θ̃, z̃) = (λ2t, λθ, λz) (14)

with δ0 = λδ the above representation is changed into the isomorphism

(θ̃, z̃) ∈ {T = R/(ZL̃)× |z̃ | < δ0} 7→ x̃(θ̃) + z̃~n(θ̃) 7→ Vδ .

Moreover with the above scaling one has

γ(θ̃) = λ3γ(θ) . (15)

Below, unless it is compulsory, and in the absence of risk of confusion, the
sign .̃ will be omitted for functions depending of (t̃, θ̃, z̃) = (λ2t, λθ, λz) .
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Interior and boundary decomposition

φb(x) =

{
1, if λd(x , ∂Ω) ≤ δ0 + ρ0

0, if λd(x , ∂Ω) ≥ δ0 + 2ρ0

φi (x) =

 0, if
δ0

2
< λd(x , ∂Ω)

1 if λd(x , ∂Ω) ≥ δ0

ων ' φbων + φiων = ωb
ν + ωi

ν

ub = ∇⊥∆−1ωb, ui = ∇⊥∆−1ωi .

(16)

ωi
ν is extended by 0 over R2 and will be estimated in term of the H3

Sobolev norm of ωb
ν restricted to the domain δ0

2 < λd(x , ∂Ω) < δ0.
Then the estimates of ωb

ν relies on analytic estimates and H3 Sobolev
norm of ωi

ν restricted to the domain δ0 + ρ0 < λd(x , ∂Ω) .
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Interior and boundary decomposition
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Equation for ωb in rescaled geodesic coordinates

From the Anderson-Mayekawa boundary condition

(∂nων + DNων) =
1

ν
∂~n∆−1(u · ∇ων)

∂tων + uν · ∇ων − ν∆ων = 0
(17)

one deduces for ωb
ν = φbωb

ν

∂tω
b
ν + ubν · ∇ωb

ν − ν∆ωb
ν = K1

with K1 = ν(2∇x(∇xφ
bων)−∆φbω)

+ (u · ∇xφ
b)ων) + ((1− φb)uν) · ∇ωb

ν

ν(∂nω
b
ν + DNωb

ν ) = ∂~n∆−1(ub · ∇ωb
ν ) + K2

with K2 = ∂~n∆−1∇ · (uνων − ubνω
b
ν )

(18)
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Equation for ωb in rescaled geodesic coordinates

Then rescaled geodesic coordinates are used for ωb
ν as a function defined in

{T = R/(ZL̃)× R+
z }

with support in 0 < z < δ0 + 2ρ0 In such representation :

∆ 7→ λ2(∂2
z + ∂2

θ + λ2m(z , θ)∂2
θ + R∆)

withR∆ =
γ

1 + zγ
∂z −

zγ′

(1 + zγ)3
∂θ m(z , θ) = −2zγ + (zγ)2

(1 + zγ)2)2

DN 7→ |∂θ|+ B with B ∈ L(L2(R/(ZL)) .

(19)
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Equation for ωb in rescaled geodesic coordinates

Eventually changing t into λ2t one has in the rescaled variables
(θ, z) ∈ R/(ZL̃)× R+

z :

∂tω
b
ν − ν∆ωb

ν = −νλ2(m(z , θ)∂2
θω

b)− λ−2ubν · ∇ωb
ν + K1(λ)

ν(∂nω
b
ν + |∂θ|ωb

ν ) = λ−1[∂z∆−1(ub · ∇ωb
ν )]− νB(ων) + K2(λ) .

(20)

The role of λ is to ”flatten ” the curvature near the boundary. In the
change of variables θ 7→ λθ the curvature is changed into λ3γ(λθ) this
makes appear the coefficient λ2 in front of λ2m(z , θ)∂2

θω
b which then can

be dominated by the laplacian. This goes very well with the observation of
vortices generated in the fluid by curved boundary ”Gortler Vortices”
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Complexification near the boundary

Introduce the complexification of Ω near the ∂Ω as

With 0 <
δ0

2
< δ0 < δ0 + ρ0 < δ0 + 2ρ0 < δ0 + 3ρ0 < δ Ωρ ⊂ Ωδ0

Ωρ = {z ∈ C : 0 ≤ <z ≤ δ0, |=z | ≤ ρ<z}
∪ {z ∈ C : δ0 ≤ <z ≤ δ0 + ρ, |=z | ≤ δ0 + ρ−<z}

With α ∈ Z Fourier modes for the decomposition in θ.

‖f ‖L1
ρ

= sup
0≤η<ρ

‖f ‖L1(∂Ωη), ‖f ‖L∞ρ = sup
0≤η<ρ

‖f ‖L∞(∂Ωη)

‖f ‖L1
ρ

=
∑
α∈Z
‖eε0(δ0+ρ−<z)|α|fα‖L1

ρ
,

‖f ‖L∞ρ =
∑
α∈Z
‖eε0(δ0+ρ−<z)|α|fα‖L∞ρ ,

‖f ‖Wk,p
ρ

=
∑

i+j≤k
‖∂ iθ(z∂z)j f ‖Lpρ

(21)
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Complexification near the boundary
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Compound analytic Jauge

Introduce a compound norm made of the analytic norm of ωb
ν evaluated in

geodesic rescaled variable and of a Sobolev norm of ωi
ν extension to R2 of

the truncated solution and write with δ0, ρ0, λ small enough and ζ ∈ (0, 1)

A(β, λ, ω)(t) = sup
0<ρ<ρ0−βλ2t

{
‖ωb(t)‖W1,1

ρ
+‖ωb(t)‖W2,1

ρ
(ρ0−ρ−λ2βt)ζ

}]
(22)

Theorem For the compound norms

CA(ω) = sup
0<βt<λ2ρ0

[
A(β, λ, ω)(t) + ‖ω(t)‖H4({λd(x ,∂Ω)≥δ0/2})

]
(23)

one has the estimate:

CA(β, λ, ων , ) ≤ C [‖ω(0)‖W2,1
ρ

+ ‖ω(0)‖H4({λd(x ,∂Ω)≥δ0/2})]

+Dλ−2β−1(CA(βλ, ων , ))2 .
(24)
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Use of Duhamel Formula extended to complex solutions

In Fourier decomposition, for analytic variables according to Nguyen2. the
Duhamel formula becomes:

(eνtS f )α(z) =

∫ ∞
0

Gα(t, y ; z)fα(y) dy , (Γ(νt)g)α(z) = Gα(t, 0; z)gα,

(25)
with:

Gα(t, y ; z) = Hα(t, y ; z) + Rα(t, y ; z), (26)

where

Hα(t, y ; z) =
1√
νt

(
e−
|y−z|2

4νt + e−
|y+z|2

4νt

)
e−α

2νt ,

|∂kz Rα(t, y ; z)| . µk+1
f e−θ0µf |y+z| + (νt)−

k+1
2 e−θ0

|y+z|2
νt e−

1
8
α2νt ,
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Use of Duhamel Formula extended to complex solutions

Inserts for f and g the right hand side of

∂tω
b
ν − ν∆ωb

ν = −νλ2(m(z , θ)∂2
θω

b)− λ−2ubν · ∇ωb
ν + K1(λ)

ν(∂nω
b
ν + |∂θ|ωb

ν ) = λ−1[∂z∆−1(ub · ∇ωb
ν )]− νB(ων) + K2(λ) .

(27)

The proof is completed with the following observations:

• νλ2‖
∫ t

0
eν(t−t′)Sm(z , θ)∂2

θω
b dt ′‖Wk,1

ρ

. νλ2

∫ t

0
‖∂2

θω(t ′)‖Wk,1
ρ

dt ′ + ‖ω‖Hk+1(λd(x ,∂Ω)≥δ0+δ)

(28)

This term will be absorbed by the left hand side of the final estimate
provided λ which is now fixed is chosen small enough.
• The support of K1 and K2 are contained in the region
δ0 + 2ρ0 ≤ z ≤ δ0 + 3ρ0 hence the ”analytic norm ” of the solution of

∂t η̃ − ν∆η̃ = K1 (∂~nη̃ + |∂θ|η̃) = K2 (29)

involving the weight e−
|y−z|2

4νt with |y − z | > ρ0 is bounded by
C‖ω0‖H4({λd(x ,∂Ω)≥δ0/2}) .
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Use of Duhamel Formula extended to complex solutions

• Remains the non linear terms ie the solution of

∂t ω̃ − ν∆ω̃ = −λ−2(ubν · ∇ωb
ν )

(∂nω̃ + |∂θ|ω̃) = λ−1∂~n∆−1(ub · ∇ωb
ν )

(30)

ω̃ is defined for z ∈ R+ with support in 0 < z < δ0 + 3ρ0 and is analytic
norm for z < δ0 + 2ρ0 . Estimation of A(β, λ, ω)(t) follows using

‖fg‖L1
ρ
≤ ‖f ‖L∞ρ ‖g‖L1

ρ

‖∂θf ‖L1
ρ

+ ‖z∂z f ‖L1
ρ
.

1

ρ′ − ρ
‖f ‖L1

ρ′
.

(31)

For instance with ρ′ = 1
2 (ρ+ ρ0 − βt) and ζ ∈ (0, 1) one has

‖u · ∇ωb‖W1,1
ρ

. ‖ω‖W1,1
ρ
‖ω‖W1,2

ρ
+ ‖ω‖2

H2({λd(x ,∂Ω)≥δ0})

. A(β)2(ρ0 − ρ− βλ2t)−ζ̃ .
(32)
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Use of Duhamel Formula extended to complex solutions

Eventually ωi
ν = φi (x)ων is compactly supported in Ω and solution of the

equation
∂tω

i
ν + uiν · ∇ωi

ν − ν∆ωi
ν = J (33)

with support J ⊂ { δ0
2 < d(λx , ∂Ω) < δ0} where ωi

ν coincide with ωb

therefore by standard Sobolev estimates one has:

d

dt
‖ωi‖2

Hk . ‖ωi‖2
Hk (‖ωb‖Wk,1

ρ
+ ‖ωi‖Hk ) (34)

Hence providing the road map for the compound theorem.
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Completion of the proof for Theorem II

Start from the relation

‖ωb
ν‖L∞(∂Ω) . ‖∂z̃ωb

ν‖L1
ρ

+ ‖ων(t)‖H2({λd(x ,∂Ω)≥δ0/2}).

Differentiate with respect to z the Duhamel formula, with f replaced by

ωb
ν makes appears a term O(ν−

1
2 ) . Then insert the estimate (24) of the

compound theorem to conclude:

√
ν‖ων(t, x)‖

L∞(t∈(0,
λ2ρ0
β

))×∂Ω)
≤ Constante . (35)
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Final remarks and Conclusions

• The fact that the weak limit uν would not be a solution of the Euler
equation seems to in agreement with numerical and physical observations
concerning the boundary effect, with the anomalous energy dissipation and
with the force applied to these wall by the fluid (the d’Alembert paradox).
• Whenever the Prandlt equation have a solution which do describes the
behavior of uν near the wall then convergence holds.
• However it is known that even with analytic initial data these solution
may exhibit singularities after a finite time (W. E and B. Enquist CPAM
1997) .
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Final remarks and Conclusions

• Moreover without analyticity one can construct examples where the
Prandlt equations do have a solution which does not match (at least in
L∞) the behavior of uν for ν → 0 (E. Grenier and T. Nguyen, L∞

instability of Prandtl layers. Ann. PDE (2019)).
• With shear flow and rotating flows it is easy to construct solutions
that weakly converge to the solution of the Euler equation ( C.B. , E.S.
Titi and E. Wiedemann, C.R. Acad. Sci. Paris, 350 (2012)), underlying
the fact that the issue depends in sense more on the geometry than on the
regularity.
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Final remarks and Conclusions

• The present construction provides a result valid for any geometry, for
short time but based on the Prandlt scaling. In fact the time is very short.
First λ has to be chosen small enough to flatten then β has to be chosen
large enough to make the iteration work.
• Estimate of ναωνweakly→ 0 on ∂Ω with α < 1 would be enough. Up
to now we have not been able to produce such result. May be one would
try to match such point of view with results on the Gevrey stability of
Prandlt equations.(D. Gérard-Varet, Y. Maekawa, and N. Masmoudi,
Duke Math. J. 167 (2018) .
• Eventually in real experiment wall effect appear in stationary regime.
This seems much more difficult to approach than short time results related
to situation where both ν → 0 while t →∞ or genuine statistical theory
of turbulence.
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Final remarks and Conclusions

THANKS FOR INVITATION AND ATTENTION.
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