Morrey's problem in classes of homogeneous integrands

Jan Kristensen University of Oxford

International PDE Conference 2022 University of Oxford 20–23 July 2022

Talk based on joint work with

Kari Astala (Helsinki) Daniel Faraco (Madrid) André Guerra (IAS, Princeton) Aleksis Koski (Helsinki)

• Automatic quasiconvexity of homogeneous isotropic rank-one convex integrands, with André Guerra ARMA **245** (2022), no. 1, 479–500.

• *Restricted quasiconvexity of the Burkholder functional*, with Kari Astala, Daniel Faraco, André Guerra, Aleksis Koski In preparation 2022.

Morrey's problem (1952): Does rank-one convexity imply quasiconvexity?

Šverák (1992):

An example of a quartic polynomial on $\mathbb{R}^{N \times n}$ that is rank-one convex but not quasiconvex when the dimensions $N \ge 3$, $n \ge 2$.

Grabovsky (2016):

An example of a nonnegative 2-homogeneous integrand on $\mathbb{R}^{8\times 2}$ that is rank-one convex but not quasiconvex.

Morrey's problem remains open in dimensions N = 2, $n \ge 2$.

Outline

- The convexity notions and background
- Examples
- Results and some consequences
- Comments on proofs

The convexity notions and background

A motivation: Given an integrand $F : \mathbb{R}^{N \times n} \to \mathbb{R}$. Let $1 \le p < \infty$ and assume F is continuous and of natural *p*-growth

$$|F(z)| \leq L(|z|^p+1) \quad \forall z$$

Given a bounded open subset Ω of \mathbb{R}^n and $g \in W^{1,p}(\mathbb{R}^n, \mathbb{R}^N)$.

Minimize

$$\int_{\Omega} F(\nabla u(x)) \, \mathrm{d} x$$

over $u \in W^{1,p}_g \equiv W^{1,p}_g(\Omega, \mathbb{R}^N).$

Only systematic approach to existence is the direct method

Coercivity

Assume $F : \mathbb{R}^{N \times n} \to \mathbb{R}$ continuous and of natural *p*-growth.

TFAE: (Chen & JK 2017, Gmeineder & JK 2019)

- All minimizing sequences are bounded in W^{1,p}_g
- There exists $c_1 > 0$ such that

$$\int_{\Omega} F(\nabla u(x)) \, \mathrm{d}x \ge c_1 \int_{\Omega} |\nabla u(x)|^p \, \mathrm{d}x - \frac{1}{c_1} \quad \forall \, u \in \mathsf{W}_g^{1,p}$$

• There exist $c_2 > 0$ and $z_0 \in \mathbb{R}^{N \times n}$ such that

 $|F - c_2| \cdot |^p$ is quasiconvex at z_0 .

Sequential weak lower semicontinuity

Assume $F : \mathbb{R}^{N \times n} \to \mathbb{R}$ continuous and of natural *p*-growth. TFAE: (Morrey 1952, Meyers 1965, Fusco 1981, ...)

• If
$$u_j$$
, $u \in W^{1,p}_g(\Omega, \mathbb{R}^N)$ and $u_j \rightharpoonup u$ in $W^{1,p}$, then
$$\liminf_{j \to \infty} \int_{\Omega} F(\nabla u_j(x)) \, \mathrm{d}x \ge \int_{\Omega} F(\nabla u(x)) \, \mathrm{d}x$$

• F is quasiconvex

Quasiconvexity (Morrey 1952)

• An integrand $F : \mathbb{R}^{N \times n} \to \mathbb{R}$ is quasiconvex at $z \in \mathbb{R}^{N \times n}$ if

$$\int_{\mathbb{X}} F(z + \nabla \phi(x)) \, \mathrm{d}x \ge F(z) \quad \forall \phi \in \mathsf{W}^{1,\infty}_0(\mathbb{X}, \mathbb{R}^N) \tag{1}$$

where $\mathbb{X} \equiv \left(-\frac{1}{2}, \frac{1}{2}\right)^n$ is the open unit cube in \mathbb{R}^n .

• F is quasiconvex if it is quasiconvex at all $z \in \mathbb{R}^{N \times n}$.

Note: When F has natural p-growth and is quasiconvex at z, then (1) holds for all $\phi \in W_0^{1,p}(\mathbb{X}, \mathbb{R}^N)$. In fact, it then holds for all homogeneous $W^{1,p}$ gradient Young measures (Acerbi & Fusco 1984, Ball & Zhang 1990)

Rank-one convexity

• An integrand $F : \mathbb{R}^{N \times n} \to \mathbb{R}$ is rank-one convex if it is convex in all rank-one directions:

$$\mathbb{R} \ni t \mapsto F(z + tw)$$
 is convex

for all z, $w \in \mathbb{R}^{N \times n}$ with rank(w) = 1.

Legendre-Hadamard condition: When F is C^2 , then F is rank-one convex iff

 $F''(z)[w,w] \ge 0$

holds for all z, $w \in \mathbb{R}^{N \times n}$ with rank(w) = 1.

$$QC \Rightarrow RC$$

Quasiaffine = rank-one affine & Definition of polyconvexity

• $F : \mathbb{R}^{N \times n} \to \mathbb{R}$ is quasiaffine (rank-one affine) if $\pm F$ are QC (RC).

TFAE:

- F is rank-one affine
- F is quasiaffine
- F(z) is an affine function of z and its minors
- F is a Null Lagrangian

Ball 1977: $F : \mathbb{R}^{N \times n} \to \mathbb{R}$ is polyconvex if F(z) is a convex function of z and its minors.

• F is polyconvex at z if there exists a Null Lagrangian A such that

$$F \ge A$$
 and equality holds at z

The Dacorogna–Marcellini integrand (1987)

$$\mathrm{DM}_{\gamma}(z) \equiv |z|^2 (|z|^2 + \gamma \mathrm{det}z)$$

where $z \in \mathbb{R}^{2 \times 2}$, $|z| \equiv \sqrt{\operatorname{trace}(z^T z)}$ and $\gamma \in \mathbb{R}$ is a parameter.

- DM_γ is a homogeneous polynomial of degree 4
- DM_{γ} is isotropic: $\mathrm{DM}_{\gamma}(QzR) = \mathrm{DM}_{\gamma}(z)$ for all $z \in \mathbb{R}^{2 \times 2}$ and $Q, R \in \mathrm{SO}(2)$.

Theorem: (Dacorogna & Marcellini '87, Alibert & Dacorogna '92)

- (i) DM_{γ} is convex iff $|\gamma| \leq \frac{4}{3}\sqrt{2}$
- (ii) DM_{γ} is polyconvex iff $|\gamma| \leq 2$.
- (iii) DM_{γ} is rank-one convex iff $|\gamma| \leq \frac{4}{\sqrt{3}}$
- (iv) DM_{γ} is quasiconvex iff $|\gamma| \leq 2 + \varepsilon$ for some $\varepsilon \in (0, \frac{4}{\sqrt{3}} 2]$

The Burkholder integrand (1984), Iwaniec (2002)

$$\mathbf{B}_p(z) \equiv \mathbf{B}_{p,n}(z) \equiv \|z\|^{p-n} \left(\left| 1 - \frac{n}{p} \right| \|z\|^n - \det z \right)$$

where $z \in \mathbb{R}^{n \times n}$ and $||z|| \equiv \max_{|x|=1} |zx|$.

- B_p is positively *p*-homogeneous: $B_p(tz) = t^p B_p(z)$ for all $z \in \mathbb{R}^{n \times n}$ and t > 0.
- \mathbf{B}_p is isotropic: $\mathbf{B}_p(QzR) = \mathbf{B}_p(z)$ for all $z \in \mathbb{R}^{n \times n}$, Q, $R \in SO(n)$.

•
$$B_n(z) = -\det z$$

Theorem: (Iwaniec 2002)

$$\mathbf{B}_p$$
 is rank-one convex iff $p \geq \frac{n}{2}$.

A connection to quasiregular maps

Let Ω be an open subset of \mathbb{R}^n and $K \ge 1$. Then $u \in W^{1,1}_{loc}(\Omega, \mathbb{R}^n)$ is weakly *K*-quasiregular if

$$\|\nabla u\|^n \leq K \det \nabla u$$

holds almost everywhere in Ω .

Theorem (Iwaniec 2002): If B_p is quasiconvex at 0 for all $p > \frac{n}{2}$, then for K > 1 and $s > \frac{nK}{K+1}$ any weakly K-quasiregular maps in $W^{1,s}_{loc}(\Omega, \mathbb{R}^n)$ belongs to $W^{1,t}_{loc}(\Omega, \mathbb{R}^n)$ for each $t < \frac{nK}{K-1}$.

Theorem (Astala 1994): The Sobolev range for weakly *K*-quasiregular maps in dimension n = 2 is $\left(\frac{2K}{K+1}, \frac{2K}{K-1}\right)$.

The Iwaniec conjecture

The Burkholder integrand in dimension n = 2

$$\mathsf{B}_p(z) \equiv \|z\|^{p-2} \bigg(\big|1 - rac{2}{p}\big| \|z\|^2 - \det z \bigg), \quad z \in \mathbb{R}^{2 \times 2}$$

is quasiconvex for all $p \ge 1$.

Guerra (2018): B_p is quasiconvex iff it is quasiconvex at 0.

Dacorogna (1994): B₁ is convex.

More integrands from Iwaniec (2002)

$$\mathbb{B}_{\rho,\gamma}(z) \equiv (\gamma |z^{-}| - |z^{+}|) (|z^{+}| + |z^{-}|)^{\rho-1}, \quad z \in \mathbb{R}^{2 \times 2},$$
(2)

where $z^{\pm} \equiv \frac{1}{2} (z \pm \text{cof} z)$ and $p \ge 1$, $\gamma > 0$ are parameters.

• $\mathbb{B}_{p,\gamma}$ is rank-one convex iff p > 1 and $\gamma \ge \max\{p, \frac{p}{p-1}\} - 1$. In particular

$$\mathbb{B}_{p,\infty}(z)\equiv |z^-|ig(|z^+|+|z^-|ig)^{p-1},\quad z\in\mathbb{R}^{2 imes 2},$$

is rank-one convex.

The integrands

$$\mathsf{L}_{\pm}(z) \equiv rac{1}{n} \|z\|^n \pm \log \|z\| \det z, \quad z \in \mathbb{R}^{n imes n}$$

are rank-one convex.

Jan Kristensen

(3)

Theorem: (Guerra & JK 2021)

Let $F : \mathbb{R}^{n \times n} \to \mathbb{R}$ be rank-one convex. Assume

- (i) F is isotropic: F(QzR) = F(z) for $z \in \mathbb{R}^{n \times n}$, $Q, R \in SO(n)$.
- (ii) F is positively p-homogeneous and $p \ge n$: $F(tz) = t^p F(z)$ for $z \in \mathbb{R}^{n \times n}$, t > 0.
- (iii) F is nonnegative: $F(z) \ge 0$ for $z \in \mathbb{R}^{n \times n}$.

Then F is polyconvex at each $z \in CO(n)$, where

$$\operatorname{CO}(n) \equiv \big\{ tQ : Q \in \operatorname{O}(n), t \in \mathbb{R} \big\}.$$

Proposition: (Guerra & JK 2021)

- For each $p \ge 2$, the integrand $\mathbf{B}_p^+ \colon \mathbb{R}^{2 \times 2} \to \mathbb{R}$ is polyconvex.
- For each p > 3, the integrand $\mathbf{B}_p^+ \colon \mathbb{R}^{3 \times 3} \to \mathbb{R}$ is not polyconvex.

Note: $\mathbf{B}_{p}^{+}(z) \equiv \max\{\mathbf{B}_{p}(z), 0\}$

Theorem: (Guerra & JK 2021)

Let $F \colon \mathbb{R}^{2 \times 2} \to \mathbb{R}$ be rank-one convex and satisfy

- (i) F is isotropic: F(QzR) = F(z) for $z \in \mathbb{R}^{2 \times 2}$, Q, $R \in SO(2)$.
- (ii) F is positively p-homogeneous and 1 : $<math>F(tz) = t^p F(z)$ for $z \in \mathbb{R}^{2 \times 2}$, t > 0.
- (iii) F is nonnegative: $F(z) \ge 0$ for $z \in \mathbb{R}^{2 \times 2}$.

If B_p is quasiconvex in dimension n = 2, then F is quasiconvex at each $z \in CO(2)$, where

$$\operatorname{CO}(2) \equiv \{ tQ : Q \in \operatorname{O}(2), t \in \mathbb{R} \}.$$

Burkholder and weakly quasiregular maps in the plane

Recall

•
$$u: \Omega \subset \mathbb{R}^2 \to \mathbb{R}^2$$
 is weakly *K*-quasiregular if

$$u \in \mathsf{W}^{1,1}_{\mathrm{loc}}(\Omega,\mathbb{R}^2)$$
 and $\|
abla u\|^2 \leq K \mathrm{det}
abla u$

• The Burkholder integrand in dimension n = 2 is

$$\mathsf{B}_p(z) \equiv \|z\|^{p-2} \bigg(\big|1 - \tfrac{2}{p}\big| \|z\|^2 - \det z \bigg), \quad z \in \mathbb{R}^{2 \times 2}$$

Observation: If $v \in W^{1,1}_{loc}(\Omega, \mathbb{R}^2)$, then for p > 2:

$$\mathsf{B}_p(\nabla v) \leq 0 \quad \Leftrightarrow \quad \|\nabla v\|^2 \leq \frac{p}{p-2} \mathrm{det} \nabla v$$

Note $K = \frac{p}{p-2}$ means $p = \frac{2K}{K-1}$.

Theorem: (Astala, Faraco, Guerra, Koski & JK 2022)

Let p > 2. Then the integrand

$${f F}(z)\equiv \left\{egin{array}{cc} {f B}_p(z) & ext{if } {f B}_p(z)\leq 0\ +\infty & ext{otherwise,} \end{array}
ight.$$

is closed $W^{1,p}$ quasiconvex.

Consequently, B_p is in particular quasiconvex in the following restricted sense:

If $z \in \mathbb{R}^{2 \times 2}$, $\phi \in W_0^{1,\rho}(\mathbb{X}, \mathbb{R}^2)$, then $\mathbf{B}_{\rho}(z + \nabla \phi) \leq 0 \quad \Rightarrow \quad \mathbf{B}_{\rho}(z) \leq \int_{\mathbb{X}} \mathbf{B}_{\rho}(z + \nabla \phi(x)) \, \mathrm{d}x.$

Notation: $\mathbb{X} \equiv \left(-\frac{1}{2}, \frac{1}{2}\right)^2$.

Consequence

Assume $u: B_1(0) \to \mathbb{R}^2$ is weakly *K*-quasiregular and u(x) = zx for $x \in \partial B_1(0)$.

Then $u \in \mathsf{W}^{1,p}(B_1(0),\mathbb{R}^2)$ for each $p < \frac{2K}{K-1}$ and

$$\frac{1}{\pi}\int_{B_1(0)} \|\nabla u(x)\|^p \,\mathrm{d} x \leq \frac{2K}{2K - p(K-1)} \left(-\mathsf{B}_p(z)\right).$$

The bound is sharp: equality holds for a class of radial K-quasiregular maps.

Note: The result is due to Astala, Iwaniec, Prause & Saksman (2012) when z = Id.

Proposition: (Guerra & JK 2021)

Let p > 2. Then \mathbf{B}_p is quasiconvex in the following restricted sense: If $z \in \mathbb{R}^{2 \times 2}$, $\phi \in W_0^{1,p}(\mathbb{X}, \mathbb{R}^2)$, then $\mathbf{B}_p(z + \nabla \phi) \ge 0 \quad \Rightarrow \quad \mathbf{B}_p(z) \le \int_{\mathbb{X}} \mathbf{B}_p(z + \nabla \phi(x)) \, \mathrm{d}x.$

Notation: $\mathbb{X} \equiv \left(-\frac{1}{2}, \frac{1}{2}\right)^2$.

The limit as $p \rightarrow 2^+$: Sharp L log L integrability

Note: when $u \in W^{1,n}_{loc}(\Omega, \mathbb{R}^n)$, then $\det \nabla u \in L^1_{loc}(\Omega)$. Müller 1990: If $u \in W^{1,n}_{loc}(\Omega, \mathbb{R}^n)$, then $\det \nabla u \ge 0 \quad \Rightarrow \quad \det \nabla u \in L \log L_{loc}(\Omega)$.

Generalized by Coifman, Lions, Meyer & Semmes (1992)

Corollary: (Astala, Faraco, Guerra, Koski & JK 2022)

Put

$$L(z) \equiv \|z\|^2 - \log \|z\|^2 \det z, \quad z \in \mathbb{R}^{2 \times 2}.$$

L is quasiconvex in the following restricted sense:

If $z \in \mathbb{R}^{2 \times 2}$ is symmetric and positive semidefinite, $\psi \in W_0^{2,2}(\Omega)$, then $\det(z + \nabla^2 \psi) \ge 0 \quad \Rightarrow \quad L(z) \le \frac{1}{\mathscr{L}^2(\Omega)} \int_{\Omega} L(z + \nabla^2 \psi(x)) \, \mathrm{d}x$

Consequently, if $f \in W_q^{2,2}(B_1(0))$, $q(x) = \frac{1}{2}x^T z x$ for $z \in \mathbb{R}^{2 \times 2}$ symmetric and positive semidefinite and $\det \nabla^2 f \ge 0$ a.e. on $B_1(0)$, then

$$\frac{1}{\pi}\int_{B_1(0)}\log\|\nabla^2 f\|^2\det\nabla^2 f\,\mathrm{d} x\leq -L(z)+\frac{1}{\pi}\int_{B_1(0)}\|\nabla^2 f\|^2\,\mathrm{d} x.$$

The result is sharp: Equality holds for a class of radial functions.

Jan Kristensen

Comments on proofs

Restricted quasiconvexity of \mathbf{B}_p for p > 2 relies on

Extendity property: Assume $F : \mathbb{R}^{2 \times 2} \to \mathbb{R} \cup \{+\infty\}$ satisfies (i) $\exists K > 1$ such that

$$\left\{z: \, \|z\|^2 \leq K \mathrm{det}z\right\} \subset \mathrm{int}\big(\mathrm{dom}(F)\big)$$

(ii) *F* is rank-one convex and $F(Id) = B_p(Id) (= -1)$ (iii) *F* is positively *p*-homogeneous ($p \ge 2$) (iv) *F* is isotropic. Then $F \ge B_p$ on $\{z : ||z||^2 \le K \det z\}$.

Extension of results by

- Astala, Iwaniec, Prause & Saksman (2015)
- Guerra (2018)

Comments on proofs

Restricted quasiconvexity of

$$L(z) \equiv \|z\|^2 - \log \|z\|^2 \det z, \quad z \in \mathbb{R}^{2 \times 2}.$$

Locally uniformly in $z \in \mathbb{R}^{2 \times 2}$:

$$rac{p}{p-2}ig({f B}_p(z)-{f B}_2(z)ig) o L(z) \quad {
m as} \quad p\searrow 2.$$

Since $\textbf{B}_2 = -{\rm det}$ the left-hand side is restricted quasiconvex on

$$\bigg\{z: \, \|z\|^2 \leq \frac{p}{p-2} \mathrm{det} z\bigg\}.$$

Consequently, for each $\varepsilon > 0$ restricted quasiconvexity holds for the left-hand side when tested with $\phi(x) = \nabla \psi(x) + \varepsilon x^{\perp}$ and 2 .

Thanks for the attention