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A0 Linear Algebra Solutions

[B] Bookwork, [S] Seen similar, [N] New

Question 1 (a) (i) The minimal polynomial my(z) is defined to be the
monic polynomial f(z) of least degree such that f(7) = 0. It exists since the
Cayley-Hamilton theorem states that x(7') = 0 where x(x) = det(xI —T) is the
characteristic polynomial of T'. [1 mark B]

Now if X is an eigenvalue of T with eigenvector v, then 0 = myp(T)(v)
mr(A)v and hence mp(A) = 0. Conversely if X is a root of mp then mp =
(x — Ng(x) with degg(x) < degmy. Therefore g(T) # 0 and we can find a
nonzero vector v such that w := ¢g(T)v # 0. But then (T—XA)w = (T—\)g(T)v =
mr(T)v =0 and so A is an eigenvalue of T with eigenvector w. [3 marks, B|

(ii) If T is diagonalizable with respect to some basis B so that X = g[T|p
is a diagonal matrix, we consider a polynomial f(z) to be product of linear
factors (z — ) where p ranges over the distinct diagonal entries of X. We see
f(T) = 0 and together with (a)(i) we deduce that f = mr and has distinct
roots. Conversely suppose mp = Hle(x — ug) has distinct roots. We argue
by induction on k, the case k& = 1 being clear. Let mr(z) = (z — u1)g(x).
Then g(u1) # 0. Let Uy = ker(T — p1), Uz = kerg(z). If v € Uy N Us then
0= g(T)v = g(p1)v and so v = 0 since y; is not a root of g(x). We now show
V =U; +Usy. Let v € V and define v; = g(u1) tg(T)v,v2 = v — v;. Since
mr(v) =0 = (T — p1)g(T)v it follows that Tvy = v, ie. v € Uy. Also
g(T)vy = g(T)v — g(T)vy = g(T)v — g(p1)v1 = 0 by the definition of v1. So
vg € Uy. Therefore V.= U; @ Uy. Now T acts as the scalar p; on U and
9(T) = 0 on Us hence the minimal polynomial of T' on Us has degree less than
k. By induction we can choose a basis diagonalizing T" on Us and adding any
basis of U; we are finished. [8 marks, B]

(iii) Let v be an eigenvector of T', and note that v is still an eigenvector for
any p(T). We can extend v to a basis v,wy,ws ... of V and define B(v) = wy
and B(w;) = 0. Then v is not an eigenvector of B and so B # p(T) for any
polynomial p(z). The students can also argue using that the dimension of the
space spanned by {1,7,72,...,} in End(V) is exactly degms < n. [3 marks,
N

(b)(i) If A is diagonalizable, then for some change of basis matrix P the
matrix P1AP is a diagonal matrix with eigenvalues A\, \~! for some nonzero
A € C. Take i € C such that 4?2 = X and let X be the diagonal matrix with
entries y, u~!. Take B = P7'XP. [3 marks, S]

.. -1 1
(ii) Take A = ( 0 —1
be +i and since det(B) = 1 they must be distinct: ¢ and —i. By part (a) B is
similar to a diagonal matrix with diagonal entries {i, —i} and so B? = —Id # A.
Contradiction. [3 marks, N]

>. Suppose A = B2. The eigenvalues of B must

(iii) SL(2,F) is a finite set so if the map A ~ A? is surjective it must be
injective. But this is not true, as for odd p we have Id?> = (—1d)? while if p = 2
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[4 marks, N]
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Question 2

(a) (i) Suppose B = {b1,...,b,} is a basis of V and C' = {c1,...,cn} is a
basis of W. We define B’ = {¥],...,b,} where b, € V' is such that b;(b;) = d;;.
[1 mark, B]

Similarly we take C" = {¢/,...,c},}. Suppose ¢[T]p = (ai;) so that T'(b;) =
>oimy aijci. We compute T7(c)(bs) = ¢j(T(bs)) = ¢j(30i1% aisci) = ajs This
gi]ves T'(¢j) = 31—y ajib; and so p/[T"]cr is the transpose of ¢[T]p. [4 marks,
B

(ii) For a polynomial f(z) and a square matrix X we have f(X*) = (f(X))*
and so f(T) = 0 if and only if f(X?*) = 0. It follows that mr = mgs. Let
A =g [T]g. Then xr(z) = det(zld — A) = det(xld — A)t = det(zld — A?) =
x1(x). [2 marks, S]

(iii)We define U° := {f € V' | f(u) = 0,Vu € U}.

Let by,...,b; be a basis of U and extend this to a basis B = {by,...,b,}
of V. We claim that U has basis bjy1s- >0y Indeed these functionals are
linearly independent (since they are a subset of B’), and for f = """ | a;b} the
condition f € U° is equivalent to f(b;) = 0 for i = 1,..., k, which is equivalent
to a; = --- = ai = 0. This proves the claim. Hence dimU°® = n — k =
dimV — dimU and we are done. [4 marks, B]

(b) (i) There are many ways to argue this, here is an argument which also
applies to (ii).

We note that (Im(T))° = ker T”. Indeed f € (Im(T))? iff f(Tv) =0 for all
veViff foT =0iff f € kerT’. Now by part (a) (iii) and the Rank-Nullity
theorem applied to T” we have

dim Im(T) = dim W — dim(Im(T))° = dim W’ — dim ker T’ = dim Im(T").

[4 marks, S]

(ii) The above argument only uses that dim W is finite, so the result remains
true even if dim V' is infinite. [3 marks, N]

(c) Let U = Nk_, ker f; and let L be the subspace of V' spanned by all f;.
Observe that U = Nper ker h. Now if L = V'’ then choosing a basis B of V we
consider the dual basis B’ and then U = Npepr kerb = {0}. [2 marks, S]

For the converse the students may argue using the natural isomorphism
between V and V”. Here is an alternative short argument: Suppose dimV =n
and L # V'. Choose a basis ¢g1,...,gr of L and note k < n. Thus

U =¥ kerg; = ker ¢,
where ¢ : V — F* is the linear map ¢(v) = (g1(v), 92(v),...,gx(v)). Since

k < dimV the Rank-Nullity Theorem applied to ¢ gives that U = ker ¢ # {0}.
Contradiction, therefore L = V’. [5 marks, N]
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Question 3

(a) If v € UNU then (v,v) = 0 and hence v = 0 since the inner product is
positive definite. Hence UNU* = {0}. We now show that V = U+ U Let v €
V. Let eq,..., e, be an orthonormal basis of U and define v; = Zfd(v, €:)e;.
Then vy € U and (v, e;) = (v1, e;) for all ¢ which implies that v —wv; is orthogonal
to each e;, i.e. v —v; € UL, Hence V = U + U+ and therefore V=U @ U>. [5
marks, B]

(b) (i) The adjoint N* is the unique linear transformation N* : V' — V such
that (N*(v),w) = (v, N(w)) for all v,w € V. [1 Mark, B|

(ii) Fix w € UL and let v € U. We have (N*(w),v) = (w, N(v)) = 0 since
N(v) € U. This holds for all v € U and hence N*(w) € U*. The vector w € U+
was arbitrary and so N*(U+) C Ut. [4 marks, S]

(iii) If N = S + A as required then N* = § — A and so we can solve
S=(N+N*)/2,A= (N — N*)/2. This A and S are uniquely determined by
N. Conversely we check (8EN=)* = NN apd (M) = NN 50 4 and
S exist for any N.

Now if NN* = N*N then we check

N+ N*N-N* N?—(N*)? N-—N*N4N*
2 2 2 2 2
Conversely if A and S commute than NN* = (A + S)(S — A) = 5% — A% =
(S—A)(A+ S) = N*N [5 marks, S]

(c) (i) Suppose v € ker N. Then ||[N*(v)||?> = (N*v, N*v) = (v, NN*v) =
(v, N*Nv) = 0 and so N*(v) = 0 giving that v € ker N*. Hence ker N C
ker N* The same argument applied with N* instead of N gives the opposite
containment and hence ker N* = ker N. [3 marks, N]

Let U = ker N = ker N*. Since both N and N* send U into U, from
part (b)(ii) we have N(U+) C U+ and N*(U+t) C U+t. Also both N and N*
are injective when restricted to U+ and hence both maps are bijections when
restricted to UL. Finally N(V) = N(U +Ut) = N(U+) = Ut and arguing
with N* in place of N we get Im(N) = Im(N*) = UL. [ 3 marks, N]

(ii) We have ||[N*(v)|| = (v, NN*(v)) and ||N(v)|| = (v, N*N(v)). Therefore
if we set A = NN* — N*N we get (v, Av) = 0 for all v € V From this point
the students can argue with the spectral theorem to deduce A = 0 but there
is a direct way: Let u,v € V and apply the above equality to v + v. So
0= (u+v,A(u+v)). Using (v, Av) = (u, A(u)) = 0 we obtain

(u, A(v)) + (v, A(u)) =0
Now replace v with v to obtain
{u, A(v)) — i{v, A(u)) =0

Solving the two equations we get {u, A(v)) = 0 for all u,v € V and so A =0
and NN* = N*N. [4 marks, N]





