
A0 Linear Algebra Solutions

[B] Bookwork, [S] Seen similar, [N] New

Question 1 (a) (i) The minimal polynomial mT (x) is defined to be the
monic polynomial f(x) of least degree such that f(T ) = 0. It exists since the
Cayley-Hamilton theorem states that χ(T ) = 0 where χ(x) = det(xI−T ) is the
characteristic polynomial of T . [1 mark B]

Now if λ is an eigenvalue of T with eigenvector v, then 0 = mT (T )(v) =
mT (λ)v and hence mT (λ) = 0. Conversely if λ is a root of mT then mT =
(x − λ)g(x) with deg g(x) < degmT . Therefore g(T ) 6= 0 and we can find a
nonzero vector v such that w := g(T )v 6= 0. But then (T−λ)w = (T−λ)g(T )v =
mT (T )v = 0 and so λ is an eigenvalue of T with eigenvector w. [3 marks, B]

(ii) If T is diagonalizable with respect to some basis B so that X = B [T ]B
is a diagonal matrix, we consider a polynomial f(x) to be product of linear
factors (x − µ) where µ ranges over the distinct diagonal entries of X. We see
f(T ) = 0 and together with (a)(i) we deduce that f = mT and has distinct

roots. Conversely suppose mT =
∏k

i=1(x − µk) has distinct roots. We argue
by induction on k, the case k = 1 being clear. Let mT (x) = (x − µ1)g(x).
Then g(µ1) 6= 0. Let U1 = ker(T − µ1), U2 = ker g(x). If v ∈ U1 ∩ U2 then
0 = g(T )v = g(µ1)v and so v = 0 since µ1 is not a root of g(x). We now show
V = U1 + U2. Let v ∈ V and define v1 = g(µ1)−1g(T )v, v2 = v − v1. Since
mT (v) = 0 = (T − µ1)g(T )v it follows that Tv1 = µ1v, i.e. v1 ∈ U1. Also
g(T )v2 = g(T )v − g(T )v1 = g(T )v − g(µ1)v1 = 0 by the definition of v1. So
v2 ∈ U2. Therefore V = U1 ⊕ U2. Now T acts as the scalar µ1 on U1 and
g(T ) = 0 on U2 hence the minimal polynomial of T on U2 has degree less than
k. By induction we can choose a basis diagonalizing T on U2 and adding any
basis of U1 we are finished. [8 marks, B]

(iii) Let v be an eigenvector of T , and note that v is still an eigenvector for
any p(T ). We can extend v to a basis v, w1, w2 . . . of V and define B(v) = w1

and B(wi) = 0. Then v is not an eigenvector of B and so B 6= p(T ) for any
polynomial p(x). The students can also argue using that the dimension of the
space spanned by {1, T, T 2, . . . , } in End(V ) is exactly degmT ≤ n. [3 marks,
N]

(b)(i) If A is diagonalizable, then for some change of basis matrix P the
matrix P−1AP is a diagonal matrix with eigenvalues λ, λ−1 for some nonzero
λ ∈ C. Take µ ∈ C such that µ2 = λ and let X be the diagonal matrix with
entries µ, µ−1. Take B = P−1XP . [3 marks, S]

(ii) Take A =

(
−1 1
0 −1

)
. Suppose A = B2. The eigenvalues of B must

be ±i and since det(B) = 1 they must be distinct: i and −i. By part (a) B is
similar to a diagonal matrix with diagonal entries {i,−i} and so B2 = −Id 6= A.
Contradiction. [3 marks, N]

(iii) SL(2,F) is a finite set so if the map A 7→ A2 is surjective it must be
injective. But this is not true, as for odd p we have Id2 = (−Id)2 while if p = 2
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then

Id2 =

(
1 1
0 1

)2

.

[4 marks, N]
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Question 2
(a) (i) Suppose B = {b1, . . . , bn} is a basis of V and C = {c1, . . . , cm} is a

basis of W . We define B′ = {b′1, . . . , b′n} where b′i ∈ V ′ is such that b′i(bj) = δij .
[1 mark, B]

Similarly we take C ′ = {c′1, . . . , c′m}. Suppose C [T ]B = (aij) so that T (bj) =∑m
i=1 aijci. We compute T ′(c′j)(bs) = c′j(T (bs)) = c′j(

∑m
i=1 aisci) = ajs This

gives T ′(c′j) =
∑n

i=1 ajib
′
i and so B′ [T

′]C′ is the transpose of C [T ]B . [4 marks,
B]

(ii) For a polynomial f(x) and a square matrix X we have f(Xt) = (f(X))t

and so f(T ) = 0 if and only if f(Xt) = 0. It follows that mT = mT ′ . Let
A =B [T ]B . Then χT (x) = det(xId − A) = det(xId − A)t = det(xId − At) =
χT ′(x). [2 marks, S]

(iii)We define U0 := {f ∈ V ′ | f(u) = 0,∀u ∈ U}.
Let b1, . . . , bk be a basis of U and extend this to a basis B = {b1, . . . , bn}

of V . We claim that U0 has basis b′k+1, . . . , b
′
n. Indeed these functionals are

linearly independent (since they are a subset of B′), and for f =
∑n

i=1 αib
′
i the

condition f ∈ U0 is equivalent to f(bi) = 0 for i = 1, . . . , k, which is equivalent
to α1 = · · · = αk = 0. This proves the claim. Hence dimU0 = n − k =
dimV − dimU and we are done. [4 marks, B]

(b) (i) There are many ways to argue this, here is an argument which also
applies to (ii).

We note that (Im(T ))0 = kerT ′. Indeed f ∈ (Im(T ))0 iff f(Tv) = 0 for all
v ∈ V iff f ◦ T = 0 iff f ∈ kerT ′. Now by part (a) (iii) and the Rank-Nullity
theorem applied to T ′ we have

dim Im(T ) = dimW − dim(Im(T ))0 = dimW ′ − dim kerT ′ = dim Im(T ′).

[4 marks, S]

(ii) The above argument only uses that dimW is finite, so the result remains
true even if dimV is infinite. [3 marks, N]

(c) Let U = ∩ki=1 ker fi and let L be the subspace of V ′ spanned by all fi.
Observe that U = ∩h∈L kerh. Now if L = V ′ then choosing a basis B of V we
consider the dual basis B′ and then U = ∩b∈B′ ker b = {0}. [2 marks, S]

For the converse the students may argue using the natural isomorphism
between V and V ′′. Here is an alternative short argument: Suppose dimV = n
and L 6= V ′. Choose a basis g1, . . . , gk of L and note k < n. Thus

U = ∩ki=1 ker gi = kerφ,

where φ : V → Fk is the linear map φ(v) = (g1(v), g2(v), . . . , gk(v)). Since
k < dimV the Rank-Nullity Theorem applied to φ gives that U = kerφ 6= {0}.
Contradiction, therefore L = V ′. [5 marks, N]
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Question 3

(a) If v ∈ U ∩U⊥ then 〈v, v〉 = 0 and hence v = 0 since the inner product is
positive definite. Hence U ∩U⊥ = {0}. We now show that V = U +U⊥ Let v ∈
V . Let e1, . . . , ek be an orthonormal basis of U and define v1 =

∑k
i=1〈v, ei〉ei.

Then v1 ∈ U and 〈v, ei〉 = 〈v1, ei〉 for all i which implies that v−v1 is orthogonal
to each ei, i.e. v− v1 ∈ U⊥. Hence V = U +U⊥ and therefore V = U ⊕U⊥. [5
marks, B]

(b) (i) The adjoint N∗ is the unique linear transformation N∗ : V → V such
that 〈N∗(v), w〉 = 〈v,N(w)〉 for all v, w ∈ V . [1 Mark, B]

(ii) Fix w ∈ U⊥ and let v ∈ U . We have 〈N∗(w), v〉 = 〈w,N(v)〉 = 0 since
N(v) ∈ U . This holds for all v ∈ U and hence N∗(w) ∈ U⊥. The vector w ∈ U⊥
was arbitrary and so N∗(U⊥) ⊆ U⊥. [4 marks, S]

(iii) If N = S + A as required then N∗ = S − A and so we can solve
S = (N + N∗)/2, A = (N −N∗)/2. This A and S are uniquely determined by
N . Conversely we check (N+N∗

2 )∗ = N+N∗

2 and (N−N∗
2 )∗ = −N−N∗

2 so A and
S exist for any N .

Now if NN∗ = N∗N then we check

N +N∗

2

N −N∗

2
=
N2 − (N∗)2

2
=
N −N∗

2

N +N∗

2

Conversely if A and S commute than NN∗ = (A + S)(S − A) = S2 − A2 =
(S −A)(A+ S) = N∗N [5 marks, S]

(c) (i) Suppose v ∈ kerN . Then ||N∗(v)||2 = 〈N∗v,N∗v〉 = 〈v,NN∗v〉 =
〈v,N∗Nv〉 = 0 and so N∗(v) = 0 giving that v ∈ kerN∗. Hence kerN ⊆
kerN∗ The same argument applied with N∗ instead of N gives the opposite
containment and hence kerN∗ = kerN . [3 marks, N]

Let U = kerN = kerN∗. Since both N and N∗ send U into U , from
part (b)(ii) we have N(U⊥) ⊆ U⊥ and N∗(U⊥) ⊆ U⊥. Also both N and N∗

are injective when restricted to U⊥ and hence both maps are bijections when
restricted to U⊥. Finally N(V ) = N(U + U⊥) = N(U⊥) = U⊥ and arguing
with N∗ in place of N we get Im(N) = Im(N∗) = U⊥. [ 3 marks, N]

(ii) We have ||N∗(v)|| = 〈v,NN∗(v)〉 and ||N(v)|| = 〈v,N∗N(v)〉. Therefore
if we set A = NN∗ − N∗N we get 〈v,Av〉 = 0 for all v ∈ V From this point
the students can argue with the spectral theorem to deduce A = 0 but there
is a direct way: Let u, v ∈ V and apply the above equality to u + v. So
0 = 〈u+ v,A(u+ v)〉. Using 〈v,Av〉 = 〈u,A(u)〉 = 0 we obtain

〈u,A(v)〉+ 〈v,A(u)〉 = 0

Now replace v with iv to obtain

i〈u,A(v)〉 − i〈v,A(u)〉 = 0

Solving the two equations we get 〈u,A(v)〉 = 0 for all u, v ∈ V and so A = 0
and NN∗ = N∗N . [4 marks, N]
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