
Question 1: Part (a) is Bookwork. Parts (b), (c), (d) are Similar to seen results for plane polars.

Question 2: Parts (a) and (b) are Bookwork for F, and Similar for M. Part (c) is Bookwork (but
logically belongs here). Part (d) is New.

Question 3: Part (a) is Bookwork, part (b) is New, but straightforward. Part (c) is (very) Similar
to seen results for water waves. Part (d) is New, but partly Similar to seen separable solutions.

1. (a) [5 marks] The components of u = ∇× (ψk) give u = ∂yψ and v = −ψx, so ψ is given by

ψ(x) = ψ0 +

∫ x

0
(udy − v dx),

with ψ0 an arbitrary constant. The difference between the integrals along two different
curves is∫

C1
(udy − v dx)−

∫
C2

(udy − v dx) =

∫
C1−C2

u · nds =

∫∫
S
∇ · udx dy = 0,

by the 2D divergence (or Green’s) theorem, where S is the surface bounded by the closed
curve C1 − C2, and ∇·u = ∇·(∇× (ψk)) ≡ 0.

(b) [3 marks] Using the given formulae,

∇·u =
1

r2
∂

∂r

(
1

sin θ

∂Ψ

∂θ

)
+

1

r sin θ

∂

∂θ

(
−1

r

∂Ψ

∂r

)
= 0,

and ∇×u = 0 is equivalent to

0 =
∂

∂r
(ruθ)−

∂

∂θ
(ur) =

∂

∂r

(
− 1

sin θ
Ψr

)
− ∂

∂θ

(
1

r2 sin θ
Ψθ

)
,

= − 1

r2 sin θ

(
r2Ψrr + sin θ

∂

∂θ

(
1

sin θ
Ψθ

))
.

(c) [11 marks] The given expression for Ψ̃(r, θ) vanishes on r = a, which is a streamline. We
need to check the flow is still a potential flow.

Consider Ψ̂ = (r/a)Ψ(a2/r, θ), with derivatives

∂rΨ̂ = (1/a)Ψ(a2/r, θ)− (a/r)Ψ̂′(a2/r, θ), ∂rrΨ̂ = (a3/r2)Ψ′′(a2/r, θ),

where ′ denotes derivative with respect to the first argument.

Substituting into part (b),

r2Ψ̂rr + sin θ
∂

∂θ

(
1

sin θ
Ψ̂θ

)
=
a3

r
Ψ′′(a2/r, θ) +

r

a
sin θ

∂

∂θ

(
1

sin θ
Ψθ

)
,

=
r

a

[
(a2/r)2Ψ′′(a2/r, θ) + sin θ

∂

∂θ

(
1

sin θ
Ψθ

)]
,

=
r

a

[
R2Ψ′′(R, θ) + sin θ

∂

∂θ

(
1

sin θ
Ψθ

)]
,

with R = a2/r. Hence Ψ̂ gives a potential flow if Ψ does. No new singularities appear in
r > a because a2/r < a, and Ψ has no singularities when its first argument is less than a.

Given |Ψ(r, θ)| 6 c r for r sufficiently small, (r/a)|Ψ(a2/r, θ)| 6 c(r/a)(a2/r) = ac for r
sufficiently large, so Ψ̂ is bounded at large r, and its gradient goes to zero.
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(d) [6 marks] The uniform flow u = Uez = urer + uθeθ has components ur = U cos θ and
uθ = −U sin θ in the given spherical coordinates.

uθ = −U sin θ = − 1

r sin θ
Ψr integrates to Ψ =

1

2
Ur2 sin2 θ.

Using part (c), the Stokes streamfunction is

Ψ̃ =
1

2
U sin2 θ

(
r2 − (r/a)(a2/r)2

)
=

1

2
Ur2 sin2 θ

(
1− (a/r)3

)
.

The velocity components are

ur = U cos θ
(
1− (a/r)3

)
, uθ = −U sin θ

(
1 + (1/2)(a/r)3

)
.

The ur component integrates to give

φ = Ur cos θ
(
1 + (1/2)(a/r)3

)
+ f(θ),

and imposing (1/r)∂φ/∂θ = uθ establishes that f(θ) = 0.

2. (a) [5 marks] The force F = −
∫
C pn ds = −

∫
C p (dy,−dx).

The moment of the inward pressure force is

M = ez ·
∫

x×(−pn)ds = ez ·
∫
px×(−dy, dx, 0) = ez ·

∫
p

∣∣∣∣∣∣
ex ey ez
x y 0
−dy dx 0

∣∣∣∣∣∣ =

∫
p (xdx+ ydy).

(b) [7 marks] By Bernoulli’s theorem for steady irrotational flow,

p = p0 − (1/2)ρ|u|2 = p0 − (1/2)ρ |dw/dz|2.

The contributions to the integrals below from the constant background pressure p0 all
vanish.

Since dx− idy = dz, so dy + idx = idz,

Fx − iFy =
1

2
iρ

∫
c

∣∣∣∣dwdz
∣∣∣∣2 dz =

1

2
iρ

∫
c

dw

dz

dw

dz
dz =

1

2
iρ

∫
c

dw

dz
dw,

=
1

2
iρ

∫
c

dw

dz
dw, since dw = dw on C as ψ = Imw = constant,

=
1

2
iρ

∫
c

(
dw

dz

)2

dz.

Similarly, zdz = (x+ iy)(dx− idy) = xdx+ ydy + i(ydx− xdy) so

M = −1

2
ρ

∫
c

∣∣∣∣dwdz
∣∣∣∣2 Re (zdz) = −1

2
ρRe

∫
c

∣∣∣∣dwdz
∣∣∣∣2 zdz = −1

2
ρRe

∫
c
z

dw

dz

dw

dz
dz,

= −1

2
ρRe

∫
c
z

dw

dz
dw = −1

2
ρRe

∫
c
z

dw

dz
dw = −1

2
ρRe

∫
c
z

(
dw

dz

)2

dz.

(c) [4 marks] Using the method of images with an image source Q at −ia,

w =
Q

2π
log(z − ia) +

Q

2π
log(z + ia),

and

u− iv =
dw

dz
=

Q

2π

(
1

z − ia
+

1

z + ia

)
=
Q

π

z

z2 + a2
.

The RHS is purely real (so v = 0) on the boundary z = x is real. This is the no-flux
boundary condition on the wall.
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(d) [9 marks] Taking the integral along a large part of the boundary wall, z ∈ [−R,R], and
closing with a large semicircle in the upper half-plane,

Fx − iFy =
1

2
iρ

∫
c′

Q2

4π2

(
1

z − ia
+

1

z + ia

)2

dz,

=
1

2
iρ
Q2

4π2

∫
c′

2
1

z − ia

1

z + ia
+ · · · dz,

=
1

2
iρ
Q2

4π2
2πi

2

2ia
= i

ρQ2

4πa
.

The integrand is O(1/R2) on the large semicircle, so its contribution vanishes. Hence
Fx = 0, and Fy = −ρQ2/(4πa) is directed downwards,

The corresponding moment integral is

M = −1

2
ρRe

∫
C

Q2

π2
z

(
z

z2 + a2

)2

dz.

Now the contribution from a large semicircle is finite, as the integrand is O(1/R). It is
easier to use the oddness of the integrand for z = x on the real axis to argue that M = 0
(as expected from symmetry). Restricting the integration to the symmetric intervals
[−R,R] gives the principal part of the otherwise divergent integral. (Nothing on this last
point is expected.)

3. (a) [6 marks] Reynolds’ transport theorem says, for any material volume V (t) and (continu-
ously differentiable) function f(x, t),

d

dt

∫∫∫
V (t)

f dV =

∫∫∫
V (t)

∂f

∂t
+∇·(fu) dV.

The mass inside a material volume is constant, so

0 =
d

dt

∫∫∫
V (t)

ρdV =

∫∫∫
V (t)

∂ρ

∂t
+∇·(ρu) dV.

This holds for all material volumes, so ∂tρ+∇·(ρu) = 0.

Writing f = ρh for any h(x, t) establishes the corollary of Reynolds’ transport theorem:

d

dt

∫∫∫
V (t)

ρhdV =

∫∫∫
V (t)

∂(ρh)

∂t
+∇·(ρhu) dV =

∫∫∫
V (t)

ρ
Dh

Dt
+ h (∂tρ+∇·(ρu))︸ ︷︷ ︸

=0

dV.

In an inviscid fluid with no body force, the only force exerted on the material volume
V (t) is an inward pressure at the boundary. Newton’s second law is thus

d

dt

∫∫∫
V (t)

ρudV =

∫∫
∂V (t)

−pndS = −
∫∫∫

V (t)
∇pdV,

by a corollary of the divergence theorem. Applying the corollary of Reynolds’ transport
theorem component-by-component gives∫∫∫

V (t)

(
ρ

Du

Dt
+∇p

)
dV = 0.

This holds for all material volumes, so again the integrand vanishes pointwise.
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(b) [5 marks] Writing ρ = ρ0 + ρ′, p = p0 + c2ρ′,u = ∇φ (already small) and linearising:

∂tρ
′ + ρ0∇2φ = 0, ρ0∂t∇φ = −c2∇ρ′.

The second of these gives φt = −(c2/ρ0)ρ
′. Substituting this expression into ∂t of the first

equation gives
∂ttρ

′ = −ρ0∇2φt = c2∇2ρ′.

The wave equation for φ follows from putting ρ′ = −(ρ0/c
2)φt into the line above and

cancelling a ∂t. Alternatively, make the same substitution to eliminate ρ′ between the
two first order equations at the top of the page. In both cases one may add an arbitrary
function of t alone to φ, but nothing about this is expected.

(c) [4 marks] The boundary conditions are u · n = ∂yφ = 0 on y = 0 and y = H,
and u · x̂ = ∂xφ = Ẋ = εω cos(ωt) cos(πy/H) on x = 0 (by linearisation).
We want φ bounded as x→ +∞.

(d) [10 marks] Seeking a separable solution φ = εF (x) cos(ωt) cos(πy/H) gives

−ω2 − c2
(
F ′′/F − π2/H2

)
= 0,

which rearranges into
F ′′/F = π2/H2 − ω2/c2.

We need φ to be bounded as x→ +∞, so we can take the exponentially decaying solution

F (x) = A exp(−κx) with κ =
(
π2/H2 − ω2/c2

)1/2
,

when 0 < ω < ωc = πc/H. The boundary condition at x = 0 determines A = −ω/κ, so

φ = −εω
κ

exp(−κx) cos(ωt) cos(πy/H).

When ω > ωc we get oscillatory solutions. The general solution of the one-dimensional
wave equation suggests seeking a right-going wave (i.e. a radiation condition) solution as
a function of kx− ωt so we try

φ = εB sin(kx− ωt) cos(πy/H) with k =
(
ω2/c2 − π2/H2

)1/2
.

Substituting into the boundary condition at x = 0 determines B = ω/k.
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