
A10 Fluids and Waves solutions – version 5 of 28/04/16

Question 1: Part (a) is Bookwork. The calculation of u from the flow map in (b) is New. Parts
(b), (c), (d) are otherwise standard vector calculus exercises that are Similar to seen results for
purely 2D flows in the xy plane.

1. (a) [5 marks]

∂u

∂t
+ u · ∇u = −1

ρ
∇p, and ∇ · u = 0,

where the density ρ is constant. Use a vector identity to rewrite as

∂u

∂t
+ ω×u+∇

(
1

2
|u|2

)
= −∇

(
p

ρ

)
and take the curl to eliminate the two gradient terms, leaving

∂ω

∂t
+∇× (ω × u) = 0.

(b) [8 marks] The Eulerian velocity field is u =
Dx

Dt

∣∣∣∣
X

, with components

u =
Dx

Dt

∣∣∣∣
X

= −αx+ e−αt

[
−2XΩe2αt sin

(
Ω

α
(e2αt − 1)

)
− 2Y Ωe2αt cos

(
Ω

α
(e2αt − 1)

)]
,

= −αx− 2Ωye2αt,

v =
Dy

Dt

∣∣∣∣
X

= −αy + e−αt

[
−2Y Ωe2αt sin

(
Ω

α
(e2αt − 1)

)
+ 2XΩe2αt cos

(
Ω

α
(e2αt − 1)

)]
,

= −αx+ 2Ωxe2αt,

w =
Dz

Dt

∣∣∣∣
X

= Ze2αt = 2αz.

This gives u = (−αx− 2Ωye2αt,−αy + 2Ωxe2αt, 2αz) as required. Now we can calculate

∇·u = −α− α+ 2α = 0.

Similarly, the vorticity is

ω = ∇× u =

∣∣∣∣∣∣
i j k
∂x ∂y ∂z

−αx− 2Ωye2αt −αy + 2Ωxe2αt 2αz

∣∣∣∣∣∣ = (0, 0, 4Ωe2αt).

(c) [8 marks]

ω×u =

∣∣∣∣∣∣
i j k
0 0 4Ωe2αt

u v w

∣∣∣∣∣∣ = 4Ωe2αt (−v, u, 0),

and

∇×(ω×u) = 4Ωe2αt

∣∣∣∣∣∣
i j k
∂x ∂y ∂z
−v u 0

∣∣∣∣∣∣ = 4Ωe2αt(0, 0, ∂xu+ ∂yv) = 4Ωe2αt(0, 0,−2α).

Hence

∇×(ω×u) = −8Ωαe2αtk = −∂ω
∂t
.

(d) [4 marks] A radial inflow (−αx,−αy, 0) and compensating outflow parallel to the z axis is
superimposed upon a rigid rotation. The vorticity 4Ωe2αt increases over time to conserve
the angular momentum of fluid particles as they move towards the z axis. This is an
example of vortex stretching.
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Question 2 - part (a) has appeared twice in previous exams (including last year) and on this
year’s problem sheets. Part (b) is bookwork - the canonical application of the Milne-Thomson
circle theorem. Part (c) is seen in lectures. Part (d) is Similar to lectures. They have seen
that it is easier to transform to an integral in z over |z| = a, as suggested by the hint, rather
than an integral round the ellipse in ζ, but not this particular calculation. The small piece of
interpretation at the end is New.

2. (a) [5 marks] The moment of the inward pressure force is

M = ez ·
∫

x×(−pn)ds =
∫
p (xdx+ ydy).

By Bernoulli’s theorem for steady irrotational flow,

p = p0 −
1

2
ρ|u|2 = p0 −

1

2
ρ

∣∣∣∣dwdz
∣∣∣∣2 .

The contributions to the integrals below from the constant background pressure p0 vanish.

Using zdz = (x+ iy)(dx− idy) = xdx+ ydy + i(ydx− xdy),

M = −1

2
ρ

∫
c

∣∣∣∣dwdz
∣∣∣∣2Re (zdz) = −1

2
ρRe

∫
c

∣∣∣∣dwdz
∣∣∣∣2 zdz = −1

2
ρRe

∫
c
z
dw

dz

dw

dz
dz,

= −1

2
ρRe

∫
c
z
dw

dz
dw = −1

2
ρRe

∫
c
z
dw

dz
dw = −1

2
ρRe

∫
c
z

(
dw

dz

)2

dz.

(b) [4 marks] Putting z = aeiθ to parametrise the circle, the complex potential becomes

w = U
(
aeiθe−iα + ae−iθeiα

)
= Uaei(θ−α) + complex conjugate

so the streamfunction ψ = Imw is constant on |z| = a. Far from the cylinder, the flow
approaches the uniform flow w ∼ Uze−iα inclined at angle α to the positive real axis.

(c) [5 marks] Putting z = aeiθ again gives

ζ = z + c2/z = aeiθ +
c2

a
e−iθ =

(
a+

c2

a

)
cos θ + i

(
a− c2

a

)
sin θ,

which is the parametric form of the ellipse(
Re ζ

a+ c2/a

)2

+

(
Im ζ

a− c2/a

)2

= 1.

The inverse Joukowski transformation is

z = ζ/2 +
(
ζ2/4− c2

)1/2
,

with the branch of (ζ2/4− c2)1/2 chosen so that z ∼ ζ as |ζ| → ∞. The flow far from the
ellipse thus approaches the same uniform stream as in part (b). Its complex potential is

W (ζ) = U

[(
ζ/2 +

(
ζ2/4− c2

)1/2)
e−iα + a2eiα

(
ζ/2 +

(
ζ2/4− c2

)1/2)−1
]
.
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(d) [11 marks] The moment is

M = −1

2
ρRe

∫
ellipse

ζ

(
dW

dζ

)2

dζ,

= −1

2
ρRe

∫
|z|=a|

ζ

(
dw

dz

dz

dζ

)2 dζ

dz
dz,

= −1

2
ρRe

∫
|z|=a|

ζ

(
dw

dz

)2(dζ

dz

)−1

dz,

= −1

2
ρU2Re

∫
|z|=a|

z
z2 + c2

z2 − c2

(
e−iα − a2

z2
eiα

)2

dz.

The quicker way to evaluate this integral finds the coefficient of 1/z in the Laurent ex-
pansion about z = 0 of the integrand that holds in an annulus containing |z| = a > c.
This is given by writing the integrand as

z
z2 + c2

z2(1− c2/z2)

(
e−iα − a2

z2
eiα

)2

=

(
z +

c2

z

)(
1 +

c2

z2
− c4

z4
+ · · ·

)(
e−2iα − 2

a2

z2
+
a4

z4
e2iα

)
.

The coefficient of 1/z is

c2e−2iα − 2a2 + c2e−2iα = 2c2e−2iα − 2a2, (†)

so the moment integral is

M = −1

2
ρU2Re

(
2πi (2c2e−2iα − 2a2)

)
= −2πρU2c2 sin 2α.

Alternatively: The integrand has poles at z = 0 and z = ±c. The residues at z = ±c
are both equal to

c
2c2

2c

(
e−iα − a2

c2
eiα

)2

.

The residue at z = 0 comes from writing the integrand as

−z
(
1 +

z2

c2

)(
1− z2

c2

)−1(
eiα − a2

z2
eiα

)2

= −z
(
1 + 2

z2

c2
+ · · ·

)(
e−2iα − 2

a2

z2
+
a4

z4
e2iα

)
.

The coefficient of 1/z in this expansion (valid for |z| < c) is

2a2 − 2
a4

c2
e2iα,

so the sum of the three residues is

2a2 − 2
a4

c2
e2iα + 2c2

(
e−2iα − 2

a2

c2
+
a4

c4
eiα

)
= 2c2e−2iα − 2a2.

This is the same as the coefficient of 1/z in the earlier Laurent expansion valid in an
annulus containing |z| = a > c, the expression (†) above.
Due to the − sin 2α dependence, the moment tends to align the ellipse broad side on to
the oncoming stream.
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3. Question 3: All Similar to a problem sheet question.

(a) [6 marks] Looking for a solution with uθ just a function of r, the given curl formula
becomes

∇×u =
1

r

∂(ruθ)

∂r
ez,

so the irrotational flow in r ⩾ a must have uθ = C/r for some constant C. Rigid rotation
with angular velocity Ω implies uθ = Ωr for 0 ⩽ r < a. Making the velocity continuous
at r = a determines C = Ωa2, and uθ = Ωa2/r as required.

(b) [6 marks] Bernoulli’s theorem for steady irrotational flow (valid in r ⩾ a) gives

p

ρ
+

1

2
|u|2 + χ = constant,

where χ = gz is the potential for g = −∇χ = −g ez.
Using p = patm is constant on the free surface, and η → 0 as r → ∞, gives

1

2
|u|2 + gη = 0, =⇒ η = −|u|2

2g
= −Ω2a4

2gr2
.

(c) [9 marks] The relevant forms of the components of the Euler equations are

−
u2θ
r

+
1

ρ

∂p

∂r
= 0, and

1

ρ

∂p

∂z
= −g.

Putting uθ = Ωr, these integrate to give

p

ρ
=

1

2
Ω2r2 + f(z), and

p

ρ
= −gz + h(r),

where f(z) and h(r) are two functions of integration. Making the two expressions consis-
tent determines

p

ρ
=

1

2
Ω2r2 − gz + C,

where C is a constant. Making the pressure on the free surface continuous at r = a gives

patm
ρ

=
1

2
Ω2a2 − g

(
−Ω2a2

2g

)
+ C, =⇒ C =

patm
ρ

− Ω2a2,

so

p

ρ
=
patm
ρ

+
1

2
Ω2r2 − gz − Ω2a2.

Putting p = patm on z = η determines the free suface location in r < a:

η =
Ω2a2

g

(
r2

2a2
− 1

)
.
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(d) [4 marks] Putting the calculated free surface positions in r < a and r ⩾ a together gives:

−4 −3 −2 −1 0 1 2 3 4
−1

−0.8

−0.6

−0.4

−0.2

0

r/a

g η / (Ω a)2

The free surface position and its derivative are both continuous at r = a.
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