
Quantum Theory Solutions

1. (a) [10 marks] [B]

(i) The stationary state Schrödinger equation (SSSE) for the wave-function ψ(x) of
the particle of mass m is

− ~2

2m

d2ψ

dx2
= Eψ

for 0 6 x 6 a and ψ = 0 elsewhere, where the latter is implied by ‘confined’, so
that the probability density and hence also the wave-function is zero outside the
interval. Continuity of ψ therefore gives the boundary conditions as

ψ(0) = 0 = ψ(a).

(ii) We have
d2ψ

dx2
= −2mE

~2
ψ,

and the boundary conditions force us to consider only circular functions, so that
k2 := 2mE

~2 > 0. The solution with ψ(0) = 0 is sin kx and the other boundary
condition forces k = nπ/a for positive integer n. The allowed energies are a discrete
series

En =
n2π2~2

2ma2
,

with corresponding wave-functions

ψn(x) = αn sin
(nπx

a

)
for 0 6 x 6 a, and zero elsewhere. For normalisation we want

1 =

∫ a

0
|ψ|2dx = |αn|2

a

2
,

and without loss of generality we may take αn =
√

(2/a). The general solution of
the time-dependent SE is a combination of stationary states, so

Ψ(x, t) =
∞∑
1

cnψn(x)e−iEnt/~,

where the coefficients cn can be fixed, if desired, by Ψ(x, 0).

(b) [15 marks] [B,S]

(i) When the interval has length 2a, just replace a by 2a above, so that, using tildes
for this case,

Ẽn =
n2π2~2

8ma2
, ψ̃n =

√
1

a
sin
(nπx

2a

)
.

(ii) As noted above, the general solution of SE in the longer interval is

Ψ(x, t) =
∞∑
1

cnψ̃n(x)e−iẼnt/~,

inside the interval and zero outside, and we have the initial condition

Ψ(x, 0) =

√
2

a
sin
(πx
a

)
for 0 6 x 6 a and zero elsewhere (in particular for a 6 x 6 2a). To find Ψ(x, t),
we first obtain the constants cn by Fourier series methods (explicit expressions not
required).
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(iii) Each |cn|2 is interpreted as the probability of obtaining Ẽn as the result of measuring
the energy. Thus we want c1. Calculate

c1 =

∫ 2a

0
Ψ(x, 0)

√
1

a
sin
(πx

2a

)
dx

=

∫ a

0

√
2

a
sin
(πx
a

)√1

a
sin
(πx

2a

)
dx

=

√
2

a

∫ a

0
2 sin2(πx/2a) cos(πx/2a)dx

=
4
√

2

3π
.

Now the required probability is |c1|2 = 32
9π2 .
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2. (a) [7 marks] [B][S][N]

(i)
[A,B] = AB −BA

so

[AB,C] = ABC − CAB = A(BC − CB) + (AC − CA)B = A[B,C] + [A,C]B,

qed

(ii) Induction: true for n = 1 and then

[Xn+1, P ] = X[Xn, P ] + [X,P ]Xn = (n+ 1)i~Xn,

qed.

(b) [18 marks] [B,N]

(i) Since ψ is normalised
Eψ(A) =< ψ,Aψ >,

so

Eψ([H,A]) =< ψ, (HA−AH)ψ >=< ψ,HAψ > − < ψ,AHψ >= E < ψ,Aψ > −E < ψ,Aψ >= 0,

using reality of E.

(ii) Calculate

[H,X] =
1

2m
[P 2, X] =

1

2m
(P [P,X] + [P,X]P ) = − i~

m
P,

so that Eψ(P ) = 0; then

[H,P ] =
1

2
k[Xn, P ] =

1

2
i~knXn−1,

so that Eψ(Xn−1) = 0; finally

[H,PX] =
1

2
k[Xn, P ]X +

1

2m
P [P 2, X] = i~(nV (X)− 2T ),

so that Eψ(2T − nV ) = 0.
Since Hψ = (T + V )ψ = Eψ, at once Eψ(T ) + Eψ(V ) = Eψ(T + V ) = E.
Now just solve for Eψ(T ) and Eψ(V ).

(iii)

∆ψ(A) =
√

Eψ((A− Eψ(A))2),

so

∆ψ(P ) =
√

Eψ(P 2) =
√

2mEψ(T ) =

√
2mnE

n+ 2
.

HUP says

∆ψ(P )∆ψ(X) >
~
2
,

and we know ∆ψ(P ) so we deduce

∆ψ(X) >
~
2

√
n+ 2

2mnE
.
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3. (a) [4 marks] [B]

Either
[L1, L2] = i~L3 = −[L2, L1] and cyclic permutations,

or
[Li, Lj ] = i~εijkLk,

with an explanation of εijk.

Next
(L2)∗ = (L2

1 + L2
2 + L2

3)
∗ = (L∗1)

2 + (L∗2)
2 + (L∗3)

2 = L2,

and
[L2, L3] = [L2

1 + L2
2 + L2

3, L3] = [L2
1, L3] + [L2

2, L3] + [L2
3, L3].

Last term vanishes; expand other two:

= L1[L1, L3] + [L1, L3]L1 + L2[L2, L3] + [L2, L3]L2,

use CRs for Li:
= i~(−L1L2 − L2L1 + L2L1 + L1L2) = 0.

Appeal to symmetry for the other cases – qed.

(b) [6 marks] [B]

Calculate
L− = (L+)∗ = (L1 + iL2)

∗ = L1 − iL2,

then
[L2, L±] = [L2, L1 ± iL2] = 0 by previous part.

[L3, L1 + iL2] = [L3, L1] + i[L3, L2] = i~(L2 − iL1) = ~L+

and similarly
[L3, L−] = −~L−.

Keep on:
L+L− = (L1 + iL2)(L1 − iL2) = (L1)

2 + (L2)
2 − i[L1, L2]

= L2 − (L3)
2 + ~L3,

while
L−L+ = L2 − (L3)

2 − ~L3.

(c) [6 marks] [B]

Calculate

L2ψ±1 = L2L±ψ0 = ([L2, L±] + L±L
2)ψ0 = L±(2~2ψ0) = 2~2ψ±1,

so these are eigenvectors of L2 with the same eigenvalue. The same argument proves
the same fact for ψ±2.

Then
L3ψ±1 = L3L±ψ0 = ([L3, L±] + L±L3)ψ0 = ±~L±ψ0 = ±~ψ±1,

so these are eigenvectors with eigenvalues respectively ±~. Repeat for ψ±2:

L3ψ±2 = ([L3, L±] + L±L3)ψ±1 = (±~L± + L±(±~))ψ±1 = ±2~ψ±2,

and these are eigenvectors with eigenvalues respectively ±2~.

Since ψ0 and ψ±1 are eigenvectors of L3 with different eigenvalues they are necessarily
orthogonal: 〈ψ±1, ψ0〉 = 0.
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(d) [9 marks] [B,S,N]

(i)

〈ψ+1, ψ+1〉 =< L+ψ0, L+ψ0 >=< ψ0, L−L+ψ0 >=< ψ0, (L
2 − (L3)

2 − ~L3)ψ0 >

= 2~2||ψ0||2,

and similar for ψ−1, but

< ψ+2, ψ+2 >=< ψ+1, L−L+ψ+1 >=< ψ+1, (L
2 − (L3)

2 − ~L3)ψ+1 >= 0,

and similar for ψ−2. Since the norm is zero, the vector is zero: ψ±2 = 0.

(ii) Calculate:
L+ψ−1 = L+L−ψ0 = (L2 − (L3)

2 + ~L3)ψ0 = 2~2ψ0,

and the same for L−ψ+1.
L3 is self-adjoint on V and so can be diagonalised. The norm argument shows
the allowed eigenvalues are 0,±1; anything with +1 lowers to one with zero and
anything with −1 raises to one with zero; but there is only one dimension of zero-
eigenvectors so only 3 dimensions overall.
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