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Applied Partial Differential Equations

1. Consider solutions u(x, t) of the partial differential equation

ut − uxx = 0 on 0 < x < ∞, (1)

that satisfy the initial condition

u(x, 0) = 0 for x > 0, (2)

and the boundary conditions

u(0, t) = g(t) for t > 0, (3)

lim
x→∞

u(x, t) = 0 for t > 0, (4)

for some prescribed function g(t).

(a) [6 marks] For the case g(t) = 1, show that, for a suitable choice of a, b and c, the problem
(1)–(4) is invariant under the scalings

t = εat̄, x = εbx̄, u(x, t) = εcū(x̄, t̄), (5)

for all ε > 0.

(b) [6 marks] What is the most general form of g(t), bounded as t → 0, for which a suitable
choice of a, b and c with a ̸= 0 is possible, such that (1)–(4) are invariant under the
scalings (5)? Give reasons for your answer and determine a, b and c in this case.

(c) [13 marks] For the case g(t) = t, determine constants α and β such that

u(x, t) = tαf(ξ) with ξ = x/tβ,

is a self-similar solution of (1)–(4). State the resulting boundary value problem for a
second order ordinary differential equation for f . Determine the self-similar solution, u,
explicitly, using the function

H(ξ) =

∫ ∞

ξ

exp(−1
4s

2)

(s2 + 2)2
ds.

[To solve the ordinary differential equation for f , use the substitution f(ξ) = (ξ2 +2)p(ξ)
and solve the resulting differential equation for p(ξ). You may also use, without proof,
that H(0) =

√
π/8.]

A11473W1 Page 2 of 7



2. Consider the first order quasilinear partial differential equation

ut +
1

2
(u2)x = 0, −∞ < x < ∞, (1)

with initial data
u(x, 0) = g(x), −∞ < x < ∞, (2)

where

g(x) ≡

{
0, if |x| > 1/2,

x, if |x| ⩽ 1/2.
(3)

(a) [4 marks] Determine the speed for a shock with left and right states u = u− and u = u+,
respectively. Specify a condition on u− and u+ for which the shock is causal.

(b) [12 marks] Show that the shocks present in the initial data (2) are causal. Hence use the
method of characteristics to determine the solution of the initial value problem (1)–(3),
for all t ⩾ 0. You should also determine the trajectory of the shocks.

(c) [9 marks] Now consider the initial condition

u(x, 0) =

∞∑
k=−∞

g(x− 2k),

for (1), where g is as defined in (3).

(i) Sketch the initial condition.

(ii) Determine the solution for 0 ⩽ t < 3. Explain what happens at t = 3.

(iii) Continue the solution for t ⩾ 3. What is the limit of u(x, t) as t → ∞?
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3. Consider the partial differential equation

2(uy − ux)
3 + (x+ y)ux + (x+ y)uy + 2u = 0, (1)

for u(x, y).

(a) [10 marks] Formulate Charpit’s equations for (1) for x, y, u, p = ux and q = uy. Find
the parametric solutions for p, q, x, y for initial data given by the smooth functions p0(s),
q0(s), x0(s) and y0(s).

[You may find it helpful to add and subtract suitably chosen pairs of Charpit’s equations.
You are not required to find the parametric solution for u.]

(b) [8 marks] For the initial condition of (1) given by

u(s, s) = 2s3 for 0 ⩽ s ⩽ 1, (2)

determine the appropriate initial data for Charpit’s equations. Hence obtain the charac-
teristics in the (x, y) plane for the solution of (1) and (2) in parametric form.

(c) [7 marks] Indicate on a sketch, and describe carefully, where the solution of (1) is uniquely
determined in the half-plane y ⩾ x by the initial data specified in (2).

[You are not required to determine u(x, y).]
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4. (a) [15 marks] Consider Laplace’s equation on the domain D = {(x, y, z) : x > 0, y > 0, z >
0} in R3, with boundary conditions u = g1(y, z) on x = 0, uy = g2(x, z) on y = 0 and
uz = g3(x, y) on z = 0, where g1, g2 and g3 are prescribed functions. State the boundary-
value problem satisfied by the corresponding Green’s function G(x, y, z; ξ, η, ζ) on D, and
hence obtain G explicitly.

[You may assume without proof that

G(x, y, z; ξ, η, ζ) =
1

4π
√
(x− ξ)2 + (y − η)2 + (z − ζ)2

,

is the Green’s function for the Laplace operator in R3.]

(b) [10 marks] Consider the diffusion equation

ut − uxx − uyy = f(x, y, t) in R2, (1)

with initial condition
u(x, y, 0) = 0 in R2, (2)

and boundary condition

u(x, y, t) → 0 as x2 + y2 → ∞. (3)

The Green’s function G(x, y, t; ξ, η, τ) for this problem is defined by

Gt +Gxx +Gyy = 0, t < τ, (x, y) ∈ R2,

G = δ(x− ξ)δ(y − η), t = τ, (x, y) ∈ R2,

G → 0, t < τ, x2 + y2 → ∞,

where δ is the Dirac delta function.

By integrating G(ut −∇2u) − u(−Gt −∇2G) over 0 < t < τ and the disc x2 + y2 < R2

of radius R, show that in the limit R → ∞, you obtain the formula

u(ξ, η, τ) =

∫ τ

0

∫ ∞

−∞

∫ ∞

−∞
G(x, y, t; ξ, η, τ)f(x, y, t) dx dy dt,

for the solution of (1)–(3). Here, ∇2 = (∂2/∂x2 + ∂2/∂y2) denotes the two-dimensional
Laplace operator with respect to x and y.
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Supplementary Applied Mathematics

5. (a) [6 marks] Determine the general solution of the differential equation given by

x2
d2y

dx2
− x

dy

dx
+ (1 + θ)y = 0, (1)

where θ is a positive constant.

(b) [9 marks] Using the results from part (a) or otherwise, determine the eigenvalues λk and
eigenfunctions yk(x) of the following boundary-value problem:

d

dx

(
1

x

dy

dx

)
+

λ

x3
y = 0, on 1 < x < e, (2)

y(1) = 0, y(e) = 0. (3)

(c) [10 marks] Suppose now that y(x) satisfies:

d

dx

(
1

x

dy

dx

)
= 1, on 1 < x < e, (4)

y(1) = 0, y(e) = 0. (5)

Obtain a solution to (4)–(5) of the form

y(x) =
∞∑
k=1

ckyk(x), (6)

where yk(x) is an eigenfunction of (2)–(3). Determine analytic expressions for the coeffi-
cients ck.
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6. You are given that y(x) solves the following boundary-value problem:

L[y] ≡ d

dx

(
p(x)

dy

dx

)
+ q(x)y = f(x), on a < x < b, (1)

dy

dx
(a) = α and y(b) = β. (2)

In (1)–(2), p(x), q(x) and f(x) are real functions, with p(x) ⩾ 0 for a ⩽ x ⩽ b, and α and β
are constant parameters.

(a) [10 marks] The Green’s function G(x, ξ) satisfies

L[G] = δ(x− ξ). (3)

where L[y] is defined in (1) and δ(x) is the Dirac delta function.

By considering GL[y]− yL[G], derive an expression for y(ξ) in terms of the Green’s func-
tion and the functions p(x) and f(x). Explain carefully what boundary and continuity
conditions G(x, ξ) should satisfy.

(b) [15 marks] Consider now the following boundary value problem for y(x):

L[y] ≡ d2y

dx2
+ y = 1, on 0 < x < 1, (4)

dy

dx
(0) = 0 and y(1) = β. (5)

(i) Determine the Green’s function G(x, ξ) associated with (4)–(5).

(ii) Using the results from part (a), construct an explicit analytical solution for y(ξ).
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