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This exam paper contains three sections. You may attempt as many questions as
you like but you must answer at least one question in each section. Your best

answer in each section will count, along with your next best answer, making a total
of four answers.

Candidates may bring a summary sheet into this exam consisting of (both sides of)
one sheet of A4 paper containing material prepared in advance in accordance with

the guidance given by the Mathematical Institute.

Please start the answer to each question in a new booklet.

Do not turn this page until you are told that you may do so
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Nonlinear Systems

1. (a) [4 marks] Let x ∈ Rn and f ∈ C1(Rn). Consider the system

ẋ = f(x), (†)

with associated flow φt. What does it mean to say that A is an attracting set of (†)?
What does it mean to say that x0 is a hyperbolic fixed point of saddle type? Suppose A
is an attracting set, that x0 ∈ A is a hyperbolic fixed point of saddle type, and W s(x0)
and W u(x0) are the stable and unstable manifolds of x0 respectively. Must the following
be true:

(1) W s(x0) ⊆ A; (2) W u(x0) ⊆ A?

(b) Consider the system

ẋ = −2xy − 2x(x2 + y2 − 1),

ẏ = 3x2 + y2 − 1.

(i) [11 marks] Find the fixed points and determine their stable, unstable and centre
linear subspaces.

(ii) [3 marks] Show that the line L = {(x, y) : x = 0}, the circle C = {(x, y) : x2+y2 = 1},
and the disk D = {(x, y) : x2 + y2 ⩽ 1} are invariant sets.

(iii) [3 marks] Show that if S = x(x2 + y2 − 1) then

Ṡ = −2Sg(x, y),

where g(x, y) > 0 when x2 + y2 > 1.

(iv) [4 marks] Determine whether each of the following sets is an attracting set:

(1) L; (2) C; (3) D; (4) L ∪D.

2. Consider the system

ẋ = µx+ xz,

ẏ = −y − z,

ż = −2z − y2 + x2,

where µ ∈ R is a parameter.

(a) [4 marks] Find the fixed points, being careful to state for which values of µ each fixed
point exists.

(b) [6 marks] Determine the stable, unstable and/or centre linear subspaces for the fixed
point at the origin, being careful to consider all values of µ. For what value of µ is there
a bifurcation of this fixed point?

(c) [8 marks] Find a quadratic approximation to the extended centre manifold in the vicinity
of the origin.

(d) [2 marks] Determine the local dynamics on the extended centre manifold in the vicinity
of the origin. Describe the type of bifurcation.

(e) [5 marks] For what other value of µ is there a bifurcation of some fixed point? Sketch
the bifurcation diagram, plotting x + y as a function of µ, including the stability of the
branches near the origin. Explain why neither x, y or z individually are good variables
to use when plotting the bifurcation diagram.
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Further Mathematical Methods

3. (a) [6 marks] Consider the following linear equation for u(x):

u′′ + λu = b(x), 0 < x < π, u(0) = u(π) = 0.

Here λ is a positive real parameter and b(x) is given and square integrable on [0, π]. Use
the Fredholm alternative to state the conditions under which this equation has either
a unique solution or else has multiple linear solutions. In particular identify all of the
critical values, λ = λ∗, at which there may be multiple solutions.

(b) [7 marks] Now consider the following nonlinear equation for u(x):

u′′ + λu− u3 = 0, 0 < x < π, u(0) = u(π) = 0.

Introduce a small parameter ϵ so that λ = λ∗ + ϵ2, and consider small solutions as an
asymptotic expansion

u = ϵϕ1(x) + ϵ2ϕ2(x) + ϵ3ϕ3(x) + . . .

Using part (a), show that, for any choice of λ∗, we have ϕ1(x) = ± 2√
3
sin

√
λ∗x.

(c) [6 marks] Now for an odd integer p ⩾ 3 consider the following nonlinear equation for
u(x):

u′′ + λu− up+1 = 0, 0 < x < π, u(0) = u(π) = 0.

Introduce a small parameter ϵ, and identify any small solutions, u, for λ close to λ∗.

(d) [6 marks] Let Ω be a bounded convex domain in Rm (where m = 2, 3), with a piecewise
smooth boundary ∂Ω.

Consider the operator L defined by the negative Laplacian on Ω together with homoge-
neous Dirichlet boundary conditions:

Lu = −∆u, x ∈ Ω, u(x) = 0 for x ∈ ∂Ω.

Show that L is self adjoint.

Assume that this problem has simple (real) eigenvalues 0 < λ1 < λ2 < . . ., where each λk
has a corresponding eigenfunction, denoted by ψk(x).

Now consider
∆u+ λu = b(x), x ∈ Ω, u(x) = 0 for x ∈ ∂Ω,

where b(x) is assumed to be given and square integrable over Ω.

Use the Fredholm alternative to state the conditions under which this elliptic partial
differential equation has either a unique solution or else has multiple linear solutions.
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4. (a) [2 marks] State the Fundamental Lemma of the Calculus of Variations.

(b) [5 marks] Consider the functional

J [u] =

∫ b

a
F (x, u(x), u′(x)) dx,

where F is given and smooth, and u is in C2[a, b] such that u(a) = c and u(b) = d.

Show that at an extremal of J we must have

d

dx

(
∂F

∂u′

)
− ∂F

∂u
= 0.

(c) [3 marks] Suppose that we relax the boundary condition imposed on u at x = b, and leave
it unspecified. What is the natural boundary condition to be imposed when determining
an extremal?

(d) [4 marks] Generalise part (b) to the case

J [u] =

∫ b

a
F (x, u(x), u′(x), u′′(x), u′′′(x)) dx,

where F is given and smooth, and y is in C4[a, b] and (u, u′, u′′) are all given at both
x = a, b.

(e) [8 marks] Let Ω be a bounded convex domain in R2, with a piecewise smooth boundary
denoted by ∂Ω. Consider the functional, E:

E[(u, v)] =

∫
Ω
F (x, y, u(x, y), ux(x, y), uy(x, y), v(x, y), vx(x, y), vy(x, y)) dxdy,

defined for the C2 vector field (u(x, y), v(x, y)) : Ω → R2, satisfying boundary conditions
where (u, v) is given on ∂Ω .
Deduce a pair of partial differential equations that the extremal (u, v) must satisfy.

Give the resulting partial differential equations when F ≡ ||∇u||2 + ||∇v||2.
(f) [3 marks] For a general F , suppose, in addition, that the vector field must also be diver-

gence free on Ω (for example, if (u, v)T denotes an incompressible fluid flow in Ω): that
is,

0 ≡ ux(x, y) + vy(x, y), (x, y) ∈ Ω.

Deduce a pair of partial differential equations that the extremal (u, v) must satisfy.

Again, give the resulting partial differential equations when F ≡ ||∇u||2 + ||∇v||2.
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Further Partial Differential Equations

5. Consider a material that lies in 0 ⩽ x ⩽ 1, which is liquid for x < s(t) and solid for x ⩾ s(t),
where t denotes time. The dimensionless temperature is denoted by Tℓ in the liquid and Ts in
the solid and is governed by

St
∂Tℓ
∂t

=
∂2Tℓ
∂x2

+ q, for x < s(t), St
∂Ts
∂t

=
∂2Ts
∂x2

+ q, for x ⩾ s(t), (1a,b)

where St ≪ 1 denotes the Stefan number and q > 2 is a global heat source. These equations
are accompanied by the following boundary conditions:

∂Tℓ
∂x

(0, t) = 0, Tℓ(s(t), t) = 0, Ts(s(t), t) = 0, Ts(1, t) = −1, (2a–d)

∂Ts(s(t), t)

∂x
− ∂Tℓ(s(t), t)

∂x
=

ds

dt
. (2e)

(a) [4 marks] Explain the physical significance of the five boundary conditions (2a–e).

(b) [5 marks] By considering the system in the limit St = 0, find expressions for Tℓ(x, t),
Ts(x, t) and an ordinary differential equation for s(t).

(c) [3 marks] By considering ∂Ts(s(t), t)/∂x, show that the solid will be superheated if s <
1−

√
2/q, and hence explain why the model breaks down if s < 1−

√
2/q.

(d) [3 marks] Now suppose the liquid region is replaced by a mushy region, with temperature
Tm = 0 and liquid fraction θ ∈ [0, 1], which is governed by

∂θ

∂t
= q. (3)

The solid region x ⩾ s(t) is still governed by (1b) subject to the boundary conditions
(2c,d) but (2e) is replaced by

∂Ts(s(t), t)

∂x
= 0. (4)

Solve (1b) with St = 0 subject to (2c,d) and (4) to find an expression for Ts and s and
use this result to show that the solid is no longer superheated.

(e) [3 marks] Suppose initially the material is completely solid, so s(0) = 0 and
Ts(x, 0) = −1 for 0 ⩽ x ⩽ 1. Explain why (3) indicates that pure liquid will first
start to appear a time 1/q after the mushy layer first forms.

(f) [7 marks] Use the results of parts (a)–(e) and the fact that St ≪ 1 to explain how the
initially entirely solid domain Ts(x, 0) = −1 melts due to the global heat source, by (i)
describing how the interface s(t) moves, (ii) explaining which two phases the interface
divides at each stage (i.e., solid, liquid or mush), and (iii) stating the final configuration
reached. (It is sufficient to write the interface motion in terms of differential equations
and you do not need to solve these explicitly.)
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6. Consider the following partial differential equation for the function h(x, z, t):

∂h

∂t
+ h

∂h

∂x
+ γh2

∂h

∂z
= 0, (1)

where γ > 0 is a constant.

(a) [5 marks] Suppose first that h = h(x, t). Show that a similarity solution exists of the form
h = f(η) where η = x/tα for some α that you should find. Find the ordinary differential
equation satisfied by f and solve this to determine f .

(b) [5 marks] Now suppose that h = h(x, z, t). By considering a scaling argument in which you
balance terms in (1), or otherwise, show that a similarity variable of the form ν = zxβtδ

exists, for some β and δ that you should state.

(c) [5 marks] By seeking a solution of the form h(x, z, t) = f(η)g(ν), where f and η are the
solution found in part (a) and ν is the similarity variable found in part (b), show that g
satisfies the following ordinary differential equation:

g(g − 1) + ν(1− 2g)g′ + γg2g′ = 0. (2)

(d) [5 marks] Suppose that γ = 0. Find the solution to (2) in this case. Show that, for a
particular choice in the integration constant, the solution is consistent with the result
found in part (a).

(e) [5 marks] Now suppose that γ ≪ 1. Find a solution to (2) of the form g(ν) = 1 + γg1(ν)
for some function g1(η). Write down the solution for h(x, z, t) in this case.
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