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1. (Solution) (a) [3 marks] f is @ homeomorphism if it is a bijection, continuous and its inverse is continuous.
[2 marks] The closure of A is A = ﬂ {BC M:ACB and B closed}.

(b) (i) [3 marks] Suppose for a contradiction that f : R — R? is a homeomorphism. Then the induced map

FR\{0} — R*\{£(0)}

is a homeomorphism. However the domain is disconnected and the codomain is connected. A contradiction and hence
R is not homeomorphic to R2,

(il) [2 marks] This is clearly false. We might take M = [0,1], N = R and take f to be the zero map.N is then not
compact as it is not bounded.

(ili) [5 marks] This is true. Let p,q € f(M) and say that f(a) = p, f(b) = q. By the path-connectedness of M there
is a continuous path v : [0,1] — M such that y(0) = a and y(1) = b. So foy:[0,1] — f(M) is a continuous path
from p to ¢.

(iv) [5 marks] As f is a homeomorphism (so f and f~! are continuous) then A is closed in M if and only if f(A) is
closed in N. Further, as f is a bijection, we have

fA) = f (ﬂ {B:AC B and B closed in M})
= [){f(B): A< B and B closed in M}
(V{f(B): f(4) C f(B) and f(B) closed in N}
(){C: f(A) € C and C closed in N}
= f(A).
(v) [5 marks] For any natural number N we have

N N 2
> (@a)? < (Z l$n|>

n=0 n=0

Il

ll

and so if (z,) € I! then (z,) € {2. Also we have shown that

IGzn)lly < ll(za)ll; -

Let € > 0 and set § = . For [|[(zn) — (yn)|l; < J we then have ||(z,) — (yn)|l, < € and hence f is continuous.
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2. (Solution) (a) (i) [6 marks]
e Note that § > 0 as dps > 0 and dy > 0. Further
(5((7’)’1,1,711), (?”I’Lz,ng)) =0 <= dM(ml,mg) =0 and dN(nl,ng) =0
< mi=my and n;=ns
= (ml,nl) = (mg,TLQ) .
e As dps and dy are symmetric then § is clearly symmetric.
o Finally for (m1,n1), (ma,n2), (ms,ng) in M x N we can check two easy cases with
((m1,n1), (M2, n2)) + 6((ma,n2), (M3, na)) 2 dm(mi, me) + du(mae, ms) 2 duyr(m, ma);
6((m1,n1), (M2, n2)) + 6((ma2,n2), (M3, n3)) = dn(na,m2) +dn(n2,n3) > dy(ni, na).
Hence §((m1,n1), (ma, n2)) + 6((ma,na), (ms, n3)) = 6((ma, n1), (ms, nz)).

(ii) [4 marks] Let ¢ > 0. If z, — 2 € M then there exists N; such that dp(z,,z) < € for n > N;. Likewise if
Yn — y € N then there exists Ny such that dy(yn,y) < e for n > N,. Hence

§({Zn, yn), (z,y)) <& forn = max {Ny, No}.

Conversely say that 6((n,yn), (2,9)) — 0 as n — co. By the sandwich rule dp(z,,z) — 0 and dpy(yn,y) — 0 as
n — 00.

(iii) [3 marks] Let (zn,yn) be a Cauchy sequence in M X N. Let € > 0. Then there exists K such that

5((Zny Yn)s @y Ym)) <& form,n 2 K.

Hence dpr{@n, Tm) < € for m,n 2 K and so (z,) is Cauchy. By completeness z, — =z € M and likewise y, — y € N,
By the previous part §((zn, yn), (z,¥)) — 0 and so M x N is complete.

(b) [6 marks] Consider the identity map ¢ : [0, 1]2 — ([0, 1]2 ,6) where the metric on the domain is the usual one,
denoted d. We will show that it is continuous and that its inverse is continuous. Note for any real x,y we have

] < V&? +y? < 2max{|z], [y}, |yl < Va? +y? <2max {|a], [y]}

and so
6((z1,91), (T2, 42)) < d((w1,91), (z2,92)) < 26((21, 1), (22, 12)).

This shows that both ¢ and ! are Lipschitz and so continuous.

(¢) [2 marks] Now let M =R and f : R — R be the zero map which is clearly a contraction. Note that
Fla,y) = (y,0)

is not a contraction. For example consider the distance between (0, 0) and (0,1) and their images.

[4 marks] On the other hand if f : M — M is a contraction with constant K < 1 then
F2<m1’m2) = (f(ml)a f(m2))

and we have

6(F2(m1)m2)7F2(#1a/"2)) = 5((f(m1)>f(m2))) (f(/j’l)a f(/"‘Q))

max {d(f(m1), f (1)), d(f (ma), f(12))}
K max {d(ml) :u’l)a d(m'?a MZ)}
K(s((m1>7n2)» (/1‘17/1‘2))

Il

A

and F? is a contraction as required.
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3. (Solution)
(a) The Cauchy-Riemann equations state that u, = v, and u, = —v,. [2 marks]

For z =z + iy € U, we have

w(z + h,y) +iv(e + hy) — u(z,y) —iv(z,y)

fe) = lim - = a3, ) + 0, );
heR
u(x,y + k) +iv(z,y + k) —u(z,y) — iv(z,y 1 , .
flo) = Jim MEEREROYED 2000 WD) _ 2 (o (n,9) + 0y (2, 1)) = vyle,0) — ity 0,0).
kcR

Comparing real an imaginary parts, the result follows. [4 marks]
(b) (i) Each z € C\(—o0,0] can be written uniquely as z = re* where r > 0 and —7 < 8 < .
We then define L(2) = logr + 6. [3 marks]

We have 1
u=logy/z?+y? = Elog(:zc2 +y?); v=tan"? (%) .
Hence
z 1/z z
Uy = —5—; vy = 7= 2 e
zé+y 14 (y/x) zé+y
_ 2 _
u = —Y y/z* -y

R B Y R R
So the CREqs are met. [4 marks]

[1 mark] Also note
, T —1y 1
L/(Z) = Uy +1’Uw = m _ .

x

(i) [3 marks] We can see in C\(-o0, 0] that

-dd—z(zL(z) S D) =L(2) 2% % _1=L(2).

Hence

/ L(z)dz = (4L(i) —¢) — (1L(1) — 1) =1 (ﬂ) —itl=1-2_;
[1,4] 2 2
(iii) [2 marks] By definition the image L(H) ={z € C: 0 <Imz < 7}.
{c) (i) [3 marks] A conformal bijection of H which sends ¢ to o € H is
fa(2) = (Ima)z + Rec.

(i) [3 marks] So a conformal bijection B — R which sends ¢ to 8 € R is

g8(2) = %(L o fo 0 exp)(m2/2) where o = e™#/2,
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4. (Solution) (a) (i) [3 marks| Morera’s Theorem: Let f : U — C be a continuous function on a domain such that

Lf(z) dz =0

for any closed path . Then f is holomorphic.

(ii) [5 marks] Note that f is continuous (and so integrable) as it is the uniform limit of continuous functions. Let & > 0
and let £(7) denote the length of v. By uniform convergence there exists NV such that

3
|fn(z)—f(z)|<—£(—7> for z€yand n > N.
So by the Estimation Theorem, for n > N we have
JRZCEES / f(x)de| = / () = F(2)) de| < £0) x sup|fu(#) = F()| < L) x 5 =

Hence [ fu(z)dz— [ f(2)dz asn — oo

(iti) [3 marks] Assume now that the above f, are holomorphic, so f is still continuous, and assume now that «y is
closed. By Cauchy’s Theorem

for each n and so by part (ii)

By Morera’s Theorem f is holomorphic.
(b) [6 marks] Let a € C\Z and r > 0 such that D(a,r) C C\Z. For z € D(a,r) and n € Z we have

[n? = 22| = n® — [2]* > n® — (|a| +7)°.

Hence

1 p—
o i +r)?
As Y M, converges then, by the Weierstrass M-Test, 3 ., ;1—2{—? converges uniformly on D(a,r) and so defines a
holomorphic function on D(a,r) and hence on C\Z.

1
n? — .2

n.

(c) Let '), be as given and
7

(w? — 22) tanww’

p(w) =

Then ¢ has simple poles at w € Z and w = +z. [2 marks] The residues at these poles are

T T
res(d; £2) = +2ztan(+mz)  2ztan(mz) [2 marks]
res(¢;n) = lim m(w—n) = L lim Ul = ! [2 marks]

won (w? — 22 tanmw  n2 - 22 wonwseciTw N2 — 22

Hence for N > |z| we have
N

1 1 ™
%/FN plw) dw = < Z n2—22> t ez

n=—N

However, by the Estimation Theorem,

¢ ==0(N"1) >0 asN — oo

$(w) dwl < L(Tn) x N of

Ly

Hence, letting N — oo, we have
oo

1 -7
Z n?—2z2  ztanmz' [3 marks|
n=—co
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5. (Solution) (a) [4 marks] By Laurent’s Theorem, there exist unique ¢, € C such that

x>

f(z)= Z en(z—a)*  O<|z—a|<r

n=—o0
We say that f has

e a removable singularity if ¢, = 0 for all n < 0.

e a pole of order N if c_y # 0 and ¢, = 0 for n < —N.

e an essential singularity if ¢, # 0 for infinitely many n < 0.
[1 mark] The residue of f at a is c_y.

We have that sinz = z + O(2®) and so by the Binomial Theorem
1 1 1 1

L 2
sinfz (z+0(23))2 =32 —(T‘T‘—O—W =z (1+0(Z) )

is a pole of order 2. [2 marks] Again by the Binomial Theorem
l—cosz 1-(1-2%/24+0(2%) _2*/240(z")  —2/2+0(:%)
1—exps 1-(1+240(z2) —z+ 0(z?) 14+ 0(z)
showing the second singularity is removable. [3 marks]

(b) h is said to have a simple zero at a if h(a) = 0 # h’(a). [1 mark] So we have by Taylor’s Theorem
9(2) = g(a) +O(z—a),  h(z) =h'(a)(z—a) + O((z — a)?)

+ 0(2?)

N ™

giving
9(z) _ g9(a) + O0(z —a)
h(z) W(a)(z —a) + O(z — a)?
_ 1 1 g(a) + O(z - a)
T e W@ T 110G—a)

1 1 L ‘
= W(a) x (g(a) + O(z — a)) [by Binomial Theorem)]

= %@. + O(1). [4 marks]

(c) If we use the contour (0, 1), [1 mark] with the standard parametrisation z = ¢'?, then we have

- —1
/ r1emw2/2,8/(29) g, — / L exp (m('~ +z )) 4z
7(0,1) ¥(0,1) 2

2w il ‘
= / (P D% exp <_—2*z__x§§m_9) iet? df
0

2
= 1 / exp (inf — iz sinf) dé. [3 marks]
0

On the other hand, by Cauchy’s Residue’s Theorem [1 mark], noting the integrand has a singularity only at 0 [1 mark],
we have

n—1_—zz/2 ac/(Qz)d = Omir (—x)k at n—-l+k—l.o
o) z € € z = wires Z WWZ )

k,120

_ ) (__x)/c xk+n
- ?‘m,;) K12k (k+ n)lgk+n

_(DF z
27”}; Kl + k)] (5

[3 marks]

fl

) 2n+-k

Taking imaginary parts [1 mark] we have

27 o0 k
) (1) N 2ntk
cos(nf —zsind) df =271 Y =t [ =
/0 ( ) kz::ok!(n—!-k)! (2)

and the result follows.
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6. (Solution) (a) Let S = {(a, be)ia?+b?+c? = 1} and N = (0,0,1). Let 7w denote stereographic projection of
S? from N to the extended complex plane C.
(i) [5 marks] The line connecting N to the point P = (a,b,c) € S is given parametrically as

r(A) = (0,0,1) + AMa,b,c = 1) = (Aa, Ab, 1 + A(c — 1)).

This meats the plane ¢ =0 when A = 1/(1 — ¢). We see that

. 1 a b 0 a-+1b

pmad S—— | o——— > .
1-¢ 1-¢c'1-¢’ 1—c¢
[When ¢ =1, so that P = N, this is understood to be co as intended.]

(ii) [> marks] Let f(2) =1/z and g = 71 o f o 7. Note that

_1l-c_(1-ola—i) (-ca—ib) a—ib
f(ﬂ-(a’b’c))—a—kib— a2 + b2 - 1 —¢2 _1+C.

It follows that 7(g(a, b, c)) = (a, —b, —c) (noting that (a, —b, —c) is indeed on §).
(b) (i) [5 marks] The transformation
(Z) — (z2 :'il’:) (Z : fl)
(2 — 21) (2 — 23)

clearly maps 21, 23, 23 to 0,1, co respectively and is a Moébius transformation as

(72 — 23) (21 — 23)
?ad — be” = .
a c 2= 2) #0

Further if 4 is a second such map then h™! o g is a Mobius transformation which fixes 0, 1, co. If

_ az+b

Rt =—
9z ==
these respectively mean that b =0, ¢ = 0,a = d so that A~'g = id and hence g = .

(ii) [5 marks] Say for now that z; = 1, 22 = 2, 23 = 3. Let G denote the subgroup of Mébius transformations which
fix the set {1,2,3}. If ¢ € S3 then there is a unique Mébius transformation f, such that

fo(i) =0(3) fori=1,2,3.
The map S3 — G given by ¢ — f, is a bijection (by part (i)} and is an isomorphism as both operations are composition.

If ¢ is the Mébius transformation which maps 21, 2o, z3 to 1,2,3 then the desired subgroup is ¢ G¢ = G = S;.

(iii) [5 marks|] Arguing as in (il) we may assume without any loss of generality that z; = 0 and 2z = co. Let H denote
the subgroup of Mobius transformations such that 0 ~ 0 and oo+ oco. If f € H and

az+b

then we need b =0 to fix 0 and ¢ = 0 to fix co. Hence

H:{zr—»%z—:ad#O}:{zr—n\z:)\yéO}%(C*.




