
A2 Metric Spaces Model solutions and mark scheme

1. (a) (B) (3 marks) Let C ⊆ Rn. Then C is compact if and only if C is closed and bounded.

(b) (B)

(i) (1 mark) Let C denote the compact metric space. Pick a point p ∈ C. For i ∈ N,
let Ui be the open ball around p of radius i. Note that the collection {Ui}i∈N covers
C.

(ii) (2 marks) If C is not bounded, then for every r ∈ R+, there are points x, y ∈ C
such that d(x, y) > r. By the triangle inequality, d(x, p) + d(p, y) > d(x, y) > r, so
either d(x, p) or d(p, y) must be greater than r/2.

(iii) (1 mark) It follows that for every i ∈ N, there is a point of C not in Ui. Thus there
is no finite subcover of the given cover, and so C is not compact.

(c) (S)

(i) (1 mark) Not compact. The subspace is evidently not bounded.

(ii) (1 mark) Not compact. The subspace is not closed, as any irrational number
between 0 and 1 is a limit of points in the subspace but is not itself in the subspace.

(iii) (1 mark) Compact. The subspace is closed and evidently bounded.

(iv) (1 mark) Not compact. The subspace is not closed, as for instance the sequence
{(1− 1/n, 0)} converges in R2 but not in the subspace.

(v) (1 mark) Not compact. The subspace is not bounded, as the points {(n, 1/n) : n ∈
N} are contained in the subspace and have arbitrarily large norm.

(d) (N)

(i) (1 mark) By part (a), the subspace X must be either not bounded or not closed.

(ii) (4 marks) If X is not bounded, then the restriction to X of the continuous function
R→ R, x 7→ e(x

2) is continuous and not bounded.

(iii) (3 marks) If X is not closed, then there exists a point p ∈ R such that p /∈ X but
there exists a sequence of points xi ∈ X converging to p; the restriction to X of the
function R\p→ R, x 7→ 1/(x− p) is continuous and not bounded.

(e) (N)

(i) (3 marks) If X is not bounded, then the restriction to X of the bounded continuous
function R → R, x 7→ (arctanx)2 is continuous and bounded but does not obtain
its bounds.

(ii) (2 marks) If X is not closed, then there exists a point p ∈ R such that p /∈ X but
there exists a sequence of points xi ∈ X converging to p; the restriction to X of the
function R→ R, x 7→ e(−(x−p)

2) is continuous and bounded but does not obtain its
bounds.

2. (a) (B)

(i) (2 marks) A metric space X is disconnected if there exist disjoint, nonempty, open
subsets A and B of X such that X = A∪B; a metric space is connected if it is not
disconnected.

(ii) (2 marks) A metric space X is path-connected if for any two points a and b in X,
there exists a continuous map f : [0, 1]→ X such that f(0) = a and f(1) = b.

(b) (B)

(i) (2 marks) Suppose f : X → {a, b} is a continuous map to the discrete set with two
elements. By assumption, for any two points x, y ∈ X, there is a continuous map
γ : [0, 1]→ X such that γ(0) = x and γ(1) = y.
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(ii) (4 marks) The composite f ◦ γ : [0, 1] → {a, b} is continuous, therefore constant.
Thus f(x) = f(y), so f is the constant function and the inverse image of either {a}
or {b} is empty. Therefore X is connected.

(c) (S)

(i) (1 mark) Not connected, not path connected. The given union is a partition into
disjoint, nonempty, open subsets.

(ii) (1 mark) Connected, path connected. Given two points x, y, the straight line from
x to the origin followed by the straight line from the origin to y is a path.

(iii) (1 mark) Connected, path connected. As in the previous part.

(iv) (1 mark) Connected, path connected. Given two points (q, y), (q′, y′), the straight
line from (q, y) to (q, 1) followed by the straight line from (q, 1) to (q′, 1) followed
by the straight line from (q′, 1) to (q′, y′) is a path.

(v) (1 mark) Connected, path connected. Given two points (a, b), (c, d) of the space;
without loss of generality assume a is rational. If c is rational, then the concate-
nation of the straight lines (a, b) − (a, 0) − (c, 0) − (c, d) is a path; if d is rational,
then the concatenation of the straight lines (a, b)− (a, d)− (c, d) is a path.

(vi) (2 marks) Connected, not path connected.

(d) (N)

(i) (1 mark) Because S2 is compact, there is a point M ∈ S2 where the function f is
maximal, and a point m ∈ S2 where the function f is minimal.

(ii) (1 mark) Because S2 is path-connected, we may pick a path γ : [0, 1]→ S2 from m
to M .

(iii) (1 mark) Let α : S2 → S2 denote the antipodal function taking a point p to −p.
(iv) (1 mark) Consider the function F := f ◦ γ − f ◦ α ◦ γ : [0, 1]→ R.

(v) (1 mark) If f(M) = f(−M) or f(m) = f(−m), we are done.

(vi) (1 mark) Otherwise f(−m) > f(m) so F (0) < 0, and f(−M) < f(M) so F (1) > 0.

(vii) (1 mark) By the Intermediate Value Theorem, there exists a point a ∈ [0, 1] where
F (a) = 0,

(viii) (1 mark) and so f(γ(a)) = f(−γ(a)) as required.
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3. Solution: (a) [B] [4 marks] Let γ be a simple closed positively-oriented curve with a in its interior. Let f be
holomorphic in and on γ. Then

f(a) =
1

2πi

∫

γ

f(z)

z − a
dz.

(b) [B] [10 marks] Let P (z) = anzn + an−1zn + · · ·+ a0 with n � 1 and an �= 0. Then

P (z)

zn
→ an as z →∞.

So, taking ε = |an| /2 there exists R > 0 such that

∣∣∣∣
P (z)

zn
− an

∣∣∣∣ <
|an|
2

for |z| > R,

=⇒ |P (z)| > 1

2
|an| |z|n for |z| > R.

Suppose for a contradiction that P has no roots in C so that 1/P (z) is holomorphic. Then

2πi

P (0)
=

∫

γ(0,r)

1

zP (z)
dz,

yet for any r > R we have by the estimation theorem that

∣∣∣∣∣

∫

γ(0,r)

1

zP (z)
dz

∣∣∣∣∣
� 2πr

(
2

|an| rn+1
)
=
4π

rn
→ 0 as r→∞,

a contradiction.

(c) [S/N] [3 marks] We have Q(z) = A(z − α1) · · · (z − αn) for some A. By the product rule

Q(z) = A
n∑

i=1

n∏

j=1,j �=i

(z − αj)

so that
Q′(z)

Q(z)
=

1

z − α1
+ · · ·+ 1

z − αn
.

[N] [4 marks] If Imαi > 0 and Imβ � 0 then

Im

(
1

β − αi

)
> 0 for each i

and hence Q′(β)/Q(β) �= 0. In particular β is not a root.

[4 marks] By making an appropriate choice of coordinates (or performing a translation), we can now say that if a
polynomial’s roots are in a half-plane, then so are all its dertivative’s roots. If each of the αi lie in the disc D(0, 1)
and β lies outside the disc there is a half-plane that contains the αi and not β, a contradiction.
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4. Solution: (a) (i) [B] [2 marks]

cn =
1

2πi

∫

γ(0,r)

f(z)

zn+1
dz.

(ii) [S] [5 marks] The zn-term in (1− z)−1/2 equals

−1
2 × −3

2 × · · · × 1−2n
2 (−z)n

n!
=

1× 3× · · · × (2n− 1)
n!2n

zn

=
(2n)!

(2× 4× · · · × 2n)n!2n z
n

=
(2n)!

(2nn!)n!2n
zn =

(
2n

n

)(z
4

)n
.

[S] [2 marks] Hence ∫

γ(0,r)

dz

zn+1
√
1− z

=
2πi

4n

(
2n

n

)
.

(b) [B] [3 marks] Let z be in the cut plane C\[1,∞) such that 1− z = reiα where −π < α < π. Then

L(1− z) = log r + iα,

so that L(1) = L(1ei0) = log 1 = 0.

[S] [4 marks] If 0 < θ < 2π then

1− eiθ = 1− cos θ− i sin θ

= 2sin2
θ

2
− 2i sin θ

2
cos

θ

2

= 2 sin
θ

2
(−i)

(
cos

θ

2
+ i sin

θ

2

)

= 2sin
θ

2
ei(θ/2−π/2).

[S] [2 marks] Hence, by definition,

√
1− eiθ =

√
2 sin(θ/2)eiθ/4e−iπ/4

=
√
2 sin(θ/2)eiθ/4

(
1− i√
2

)

= (1− i)
√
sin(θ/2)eiθ/4

[S/N] (c) [7 marks] Parametrising the γ(0, 1) integral with z = eiθ we obtain

∫

γ(0,1)

dz

zn+1
√
1− z

=

∫ 2π

0

ieiθdθ

e(n+1)iθ
√
1− eiθ

=

∫ 2π

0

ie−inθdθ

(1− i)
√
sin(θ/2)eiθ/4

=

∫ 2π

0

ie−i(n+1/4)θdθ

(1− i)
√
sin(θ/2)

.

Using the given equality, we know that

∫ 2π

0

e−i(n+1/4)θdθ
√
sin(θ/2)

=
2π (1− i)

4n

(
2n

n

)
.

Taking real parts we have ∫ 2π

0

cos(n+ 1/4)θ
√
sin(θ/2)

dθ =
2π

4n

(
2n

n

)
.

Substituting θ = 2t we get ∫ π

0

cos(2n+ 1/2)t√
sin t

dt =
π

4n

(
2n

n

)
,

as required.
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5. Solution: (a) [B] [4 marks] Let γ be a simple, closed positively-oriented curve. Let f be a function which is
holomorphic in and on γ except for finitely many singularlities a1, a2, . . . , an inside γ. Then

∫

γ

f(z) dz = 2πi
n∑

k=1

res(f ; ak).

(b) [S] (i) [4 marks] Let x, y ∈ R. Then

sinhx cos y + i coshx sin y =

(
ex − e−x

2

)(
eiy + e−iy

2

)
+ i

(
ex + e−x

2

)(
eiy − e−iy

2i

)

=
1

4

{(
ex+iy + ex−iy − e−x+iy − e−x−iy

)
+
(
ex+iy − ex−iy + e−x+iy − e−x−iy

)}

=
1

4

{
2ex+iy − 2e−x−iy

}
= sinh(x+ iy).

(ii) [3 marks] By the triangle inequality

|sinh(x+ iy)| = 1

2

∣∣ex+iy − e−x−iy
∣∣ �

1

2

∣∣∣∣ex+iy
∣∣−

∣∣e−x−iy
∣∣∣∣ =

1

2

∣∣ex − e−x
∣∣ = |sinhx| .

(iii) [5 marks] Note

sinh2(x+ iy) = − cosh2 a =⇒ sinh(x+ iy) = ± (cosha) i
=⇒ sinhx cos y = 0 and coshx sin y = ± (cosha) .

If sinhx = 0 then coshx = 1 and |sin y| = cosha > 1, a contradiction. So cos y = 0 and sin y = ±1. Also note
coshx = − cosha is impossible. Hence one of the following holds:

cos y = 0, sin y = 1, coshx = cosha;

cos y = 0, sin y = −1, coshx = cosha;

so that the solutions are
z±n = ±a+ (2n+ 1)πi/2.

(c) [S/N] [1 mark] The only singularities in the suggested contour are

α = a+ πi/2 and β = −a+ πi/2.

We have (from the given hint)

sinhα = (cosha)i, sinhβ = (cosha)i, coshα = (sinha)i coshβ = −(sinha)i.

Let g(z) = sinh2 z + cosh2 a. As

g′(α) = 2 sinhα coshα = −2 sinha cosha = − sinh 2a, g′(β) = sinh 2a

are both non-zero then α and β are simple poles [2 marks] with residues [2 marks]

res(f, α) =
−α

sinh 2a
, res(f, β) =

β

sinh 2a
.

By Cauchy’s Residue Theorem
∫

ΓR

f(z) dz =
2πi

sinh 2a
{β − α} = −4πia

sinh 2a
. [1 mark]

Also by (b)(i) the contributions from the left and right edges satisfy
∣∣∣∣

∫

edge

f(z) dz

∣∣∣∣ � π
(R+ π)

sinhR
→ 0 as R→∞. [2 marks]

Letting R→∞ we have
∫ ∞

−∞

xdx

sinh2 x+ cosh2 a
−
∫ ∞

−∞

(x+ πi) dx

sinh2(x+ πi) + cosh2 a
=
−4πia
sinh 2a

.

As sinh(x+ πi) = − sinhx [1 mark] the result follows.
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6. Solution: (a) [B] [8 Marks] If A �= 0 then we can rewrite the given equation as

zz̄ +
B

A
z +

B

A
z̄ +

C

A
= 0,

and completing the square, rewrite it further as

∣∣∣∣z +
B

A

∣∣∣∣
2

=
|B|2 −AC

A2
,

This represents a circle if |B|2 � AC and is empty otherwise. If A = 0 then the equation is

Re(Bz) = −2C

which represents a line, as a dilation enlarges and rotates the plane.

(b) [B/S] [9 marks] The circline
Azz̄ +Bz +Bz̄ +C = 0,

maps to

A

(
1

z

)(
1

z̄

)
+B

1

z
+B

1

z̄
+C = 0 =⇒ Czz̄ +Bz̄ +Bz +A = 0.

• For a circle through the origin, A �= 0 = C and so the image is a line not through the origin.

• For a circle not through the origin A �= 0 �= C and so the image is a to a circle not through the origin.

• For a line through the origin A = 0 = C and so the image is a line through the origin.

(c) [N] [8 marks] If we draw in the horizontals through the circles centres (A and B), and the line segment between
those centres, we have the following diagram.

P

X

YA

B

Q

R

C1

C2

L1

L2

[4 marks] AQB is a line as C1 and C2 are tangential. So ∠QAY = ∠QBX. But ∠QBX = 2∠QRB and ∠QAY =
2∠QPA by a circle theorem. So ∠QPA = ∠QRB which shows that PQR is a line.

[4 marks] If we take the tangency of C3 as C4 as the origin and perform the map 1/z then C3 and C4 transform to
two parallel lines L1 and L2 (as their tangency is now at ∞). The three remaining tangencies map to P,Q,R which
are collinear with ∞. By part (b) their preimages are concyclic.
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