A2 Exam Paper 2019 - Model Solutions (Version: 1 Dec. 2018)

Q1. (a) [New, 8 marks=3+3+2]

Solution. (a,i) [3 marks] Since $\varphi \ge 0$, so $\rho(x,y) = \varphi(d(x,y)) \ge 0$. Since d(x,y) = d(y,x)

$$\rho(x,y) = \varphi(d(x,y)) = \varphi(d(y,x)) = \rho(y,x).$$

By assumption, $\varphi(t) = 0$ only when t = 0, hence $\rho(x, y) = \varphi(d(x, y)) = 0$ implies that d(x, y) = 0, so that x = y as d is a distance. Finally verify that ρ also satisfies the triangle inequality. If x, y and z in X, we have $d(x, z) \le d(x, y) + d(y, z)$, so that, by using the assumptions on φ we have

$$\rho(x,z) = \varphi(d(x,z)) \le \varphi(d(x,y) + d(y,z)) \le \varphi(d(x,y)) + \varphi(d(y,z))$$
$$= \rho(x,y) + \rho(y,z).$$

Therefore ρ is a metric on X.

(a, ii) [3 marks] Suppose $x_n \to x$ in (X,d), i.e. $d(x_n,x) \to 0$, since φ is (right) continuous at 0, $\varphi(d(x_n,x)) \to 0$, that is, $\rho(x_n,x) \to 0$.

The converse is also true, we may argue by contradiction. Suppose $\rho(x_n, x) \to 0$ but $d(x_n, x)$ does not tend to zero, thus there is $\varepsilon > 0$ and there is a sub-sequence $\{x_{n_k}\}$ such that $d(x_{n_k}, x) \ge \varepsilon$, which implies that $\rho(x_{n_k}, x) \ge \varphi(\varepsilon) > 0$ for all k, which is a contradiction.

(a,iii) [2 Mark] We may choose $\varphi(t) = \frac{t}{1+t}$ and $\rho(x,y) = \varphi(d(x,y))$. Then φ is increasing on $[0,\infty)$ and $\varphi(t) = 0$ only for t = 0. φ is continuous at 0, and

$$\frac{t+s}{1+t+s} = \frac{t}{1+t+s} + \frac{s}{1+s+t} \le \frac{t}{1+t} + \frac{s}{1+s}$$

for all $s,t \ge 0$, that is, $\varphi(s+t) \le \varphi(s) + \varphi(t)$. Therefore, by a) and b), $d' = \rho$ is a metric equivalent to d. While $d'(x,y) \le 1$ for all $x,y \in X$.

(b) [Similar, 5 marks =3+1+1] Solution. Since $A \subseteq \overline{A \cup B}$ so $\overline{A} \subseteq \overline{A \cup B}$ and similarly $\overline{B} \subseteq \overline{A \cup B}$. On the other hand $A \cup B \subseteq \overline{A} \cup \overline{B}$ and $\overline{A} \cup \overline{B}$ is closed, we therefore have $\overline{A \cup B} \subseteq \overline{A} \cup \overline{B}$. Hence $\overline{A} \cup \overline{B} = \overline{A \cup B}$. [3 marks]

In general $\overline{A \cap B} = \overline{A} \cap \overline{B}$ is false, for example $A = \mathbb{Q}$ and $B = \mathbb{R} \setminus \mathbb{Q}$. Then $A \cap B = \emptyset$ but $\overline{A} = \overline{B} = \mathbb{R}$. [1 mark]

Moreover $A \cap \overline{B} = \mathbb{Q}$, $\overline{A} \cap B = \mathbb{R} \setminus \mathbb{Q}$, $\overline{A \cap B} = \emptyset$ and $\overline{A} \cap \overline{B} = \mathbb{R}$ are different. [1 mark]

(c) /Book, 7 marks=3 +4]

Solution. (c, i) [3 marks] $f: X \to X$ is a contraction if there is a constant $0 \le c < 1$ such that $d(f(x), f(y)) \le cd(x, y)$ for every $x, y \in X$. The Contraction Mapping Theorem says that if $f: X \to X$

is a contraction on a complete metric space (X,d), then f has a unique point, i.e. there is a unique $x \in X$, such that f(x) = x.

(c, ii) [4 marks] Let us consider the function F(x) = d(g(x), x) for $x \in X$. Then

$$|F(x) - F(y)| = |d(g(x), x) - d(g(y), y)|$$

$$= |d(g(x), x) - d(x, g(y)) + d(x, g(y)) - d(g(y), y)|$$

$$\leq d(g(x), g(y)) + d(x, y)$$

$$\leq 2d(x, y)$$

for all x, y, hence F is continuous on X. Since X is compact, F achieves its minimum on X, that is, there is $x_0 \in X$, such that

$$d(g(x_0), x_0) = \inf_{x \in X} d(g(x), x).$$

If $g(x_0) \neq x_0$, then $d(g^2(x_0), g(x_0)) < F(x_0)$ by assumption, so that $F(g(x_0)) < F(x_0)$ which contradicts to the claim x_0 is the inf of F. Thus x_0 must be a fixed point of g.

(d) [New, 5 marks 4 +1] Solution. Suppose $a \in B$, then $F(a) = \xi = (\xi_n)$ given in the question possesses the following properties:

$$\xi_n = a_{n-1} \left(1 - \frac{1}{2^n} \right) \to 0$$
 as $n \to \infty$

and

$$|\xi_0| = \frac{1}{2} (1 + ||a||) < 1.$$

While for $n \ge 1$ we have

$$|\xi_n| = |a_{n-1}| \left(1 - \frac{1}{2^n}\right) \le |a_{n-1}| \le ||a||$$

so by definition $\|\xi\| \le 1$, and therefore $F(a) \in B$ for every $a \in B$.

Suppose $a = (a_n), b = (b_n) \in B$, and let $\xi = F(a)$ and $F(b) = \eta$. Then $\xi_0 - \eta_0 = \frac{1}{2} (\|a\| - \|b\|)$ and for $n \ge 1$

$$\xi_n - \eta_n = (a_{n-1} - b_{n-1}) \left(1 - \frac{1}{2^n} \right)$$

so that

$$|\xi_0 - \eta_0| \le \frac{1}{2} \|a - b\|$$

and for $n \ge 1$

$$|\xi_n - \eta_n| \le \left(1 - \frac{1}{2^n}\right) |a_{n-1} - b_{n-1}|.$$

If $a \neq b$, then ||a-b|| > 0. Since $a_n - b_n \to 0$ so there is $N \in \mathbb{N}, |a_{n-1} - b_{n-1}| \leq \frac{1}{2} ||a-b||$ for $n \geq N$. Hence

$$|\xi_n - \eta_n| \le \left[\left(1 - \frac{1}{2^N} \right) \lor \frac{1}{2} \right] ||a - b||$$

for all n, it follows that

$$||F(a) - F(b)|| \le \left[\left(1 - \frac{1}{2^N}\right) \lor \frac{1}{2}\right] ||a - b|| < ||a - b||$$

as long as $a \neq b$.

We are going to show that F has no fixed point. Argue by contradiction. Suppose a = F(a) where $a = (a_n) \in B$. Then, by definition of F

$$a_0 = \frac{1}{2} (1 + ||a||)$$

and

$$a_n = a_{n-1} \left(1 - \frac{1}{2^n} \right)$$

for $n \ge 1$. It follows that

$$a_n = \prod_{k=1}^n \left(1 - \frac{1}{2^k}\right) a_0 = \frac{1}{2} \left(1 + ||a||\right) \prod_{k=1}^n \left(1 - \frac{1}{2^k}\right)$$

which does not converge to zero, a contradiction to the assumption that $a \in B$. [4 marks]

By part (c), one can conclude that B is not compact. [1 marks] [An argument by using unit vectors is also fine].

Q2. (a) [Book, 3 marks] Solution. X is connected if $X = U \cup V$ where U, V are open and disjoint, then U or V is empty.

X is path-connected, if for every $x, y \in X$ there is a continuous mapping γ from [0,1] to X such that $\gamma(0) = x$ and $\gamma(1) = y$.

(b) [Book+Similar, 10 marks=3+4+3] Solution.

(b, i) [3 marks] We begin with the proof of the first claim. Suppose $f: X \to \{0, 1\}$ is continuous. Let $U = f^{-1}(0)$ and $V = f^{-1}(1)$. Then U, V are open (also closed), disjoint and $X = U \cup V$. If X is connected, the U or V is empty, so f(x) = 0 for all x, or f(x) = 1 for all x, accordingly. Conversely, if X is disconnected, so that $X = U \cup V$ where U, V are open disjoint and both are nonempty. Define f(x) = 0 for $x \in U$, and f(x) = 1 for $x \in V$. Then $f^{-1}(A) = \emptyset, X, U$ or V, hence f is continuous, and f is not constant.

(b, ii) [4 marks] Let us prove that $X \subseteq \mathbb{R}$ is connected if and only if X = J is an interval. First prove any interval is connected. If X is an interval with end points $a \le b$. If a = b then $X = [a,a] = \{a\}$ which is connected. Otherwise we argue by contradiction. Suppose $f: X \to \{0,1\}$ is continuous, so f is also a continuous function from X to [0,1]. If f is not constant, then there are $x,y \in X$ such that f(x) = 0 and f(y) = 1. We may assume that x < y. Since X is an interval, so that $[x,y] \subseteq X$ and f is continuous on [x,y]. By IVT, there is $z \in [x,y]$ such that f(z) = 1/2, which is a contradiction.

Conversely, assume that X is connected, we show that X is an interval, that is, if x < y and $x, y \in X$, we need to show that $(x, y) \subseteq X$. Argue by contradiction. Suppose $c \in (x, y)$ but $c \notin X$. Let $U = X \cap (-\infty, c)$ and $V = X \cap (c, \infty)$. Then U, V are open and disjoint, $x \in U, y \in V$, and $X = U \cup V$ as $c \notin X$. Thus X is disconnected, a contradiction.

(b, iii) [3 marks] Let us now prove the last statement. Suppose X is path-connected, and we show that X is connected. Again argue by contradiction. Suppose X is disconnected, that is $X = U \cup V$ where U, V are open, disjoint and both non-empty. Let $x \in U$, and $y \in V$. Since X is path-connected, so there is a continuous map $p : [0,1] \to X$ such that p(0) = x and p(1) = y. Then

$$[0,1] = p^{-1}(U) \cup p^{-1}(V)$$

where $p^{-1}(U)$, $p^{-1}(V)$ are open, disjoint, and no one is empty, which would yield that the interval [0,1] is disconnected, a contradiction.

- (c) [Similar, 6 marks] *Solution*. Suppose $X \subseteq \mathbb{R}^n$ is open and connected. Let $a \in X$ be any but fixed point, and let $A = \{x \in X : x \text{ can be connected to } a\}$, i.e. A consists of all points $x \in X$, such that there is a continuous p from [0,1] to X such that p(0) = x and p(1) = a. We show that both A and A^c are both open. Suppose $x \in A$, then also $x \in X$. Since X is open in \mathbb{R}^n , so there is r > 0, the open ball (with center x and radius x) $B(x, r) \subseteq X$. Since any point $x \in X$ can be connected to the center x then to x, so that x is open too. Since x is connected, and x is non-empty, so that x is path-connected.
- (d) [New, 6 marks] *Solution*. Suppose there is 1-1 onto continuous $f:[0,1]\to S^1$, then f maps $[0,c)\cup(c,1]$ (which is disconnected by part 2)) one to one and onto $S^1\setminus\{a\}$ where a=f(c), and $c\in(0,1)$. Since f and f^{-1} are continuous, and f^{-1} maps a connected space $S^1\setminus\{a\}$ to a disconnected one, which produces a contradiction.

Choose $a_n = \frac{1}{n}$ $(n = 1, 2, \dots)$. Let $f(x) = e^{i2\pi x}$ for $x \in [0, 1)$ but $x \neq a_n$ for $n \geq 1$ and $f(a_n) = e^{i2\pi a_{n+1}}$ for $n \geq 1$.

Q3. (a) [Book, 6 marks=2+2+2] *Solution.* (a, i) [2 marks] f is holomorphic in an open subset $D \subseteq \mathbb{C}$, if for every $z \in D$, the complex derivative

$$f'(z) = \lim_{h \to 0} \frac{f(z+h) - f(z)}{h}$$

exists for every $z \in D$. [Equivalent definition is acceptable].

(a,ii) [2 marks] By letting h = real but go to zero, we obtain that, if f = u + vi is holomorphic,

$$f'(z) = u_x + v_x i$$

and by letting $h = i\delta$, where δ real and $\delta \to 0$, to obtain

$$f'(z) = \frac{1}{i} (u_y + v_y i)$$

and therefore

$$u_x + v_x i = \frac{1}{i} \left(u_y + v_y i \right)$$

which is equivalent to the Cauchy-Riemann equations:

$$u_x = v_y$$
 and $u_y = -v_x$.

(a, iii) [2 marks] If f = u + vi is real, so that v = 0, which implies $u_x = u_y = 0$ too by Cauchy-Riemann equations. Hence u is constant as D is connected and open. It follows that f is constant on D.

(b) [Book, 6 marks=3 +3] Solution. (b, i) [3 marks] Talyor's expansion: If f is holomrphic in D, and suppose r > 0 such that the disk $D(a, r) \subseteq D$, then

$$f(z) = \sum_{n=0}^{\infty} a_n (z-a)^n$$
 for any $z \in D(a,r)$

where

$$a_n = \frac{1}{n!} f^{(n)}(a) = \frac{1}{2\pi i} \int_{C(a,\rho)} \frac{f(w)}{(w-a)^{n+1}} dw$$

where $C(a, \rho)$ is the circle with center a and radius ρ , as long as $0 < \rho < r$.

(b, ii) [3 marks] Suppose f is bounded and holomorphic in \mathbb{C} , then

$$f(z) = \sum_{n=0}^{\infty} a_n z^n \text{ for any } z$$

where

$$a_n = \frac{1}{2\pi i} \int_{C(0,R)} \frac{f(w)}{w^{n+1}} dw.$$

Suppose $|f(z)| \leq M$ for any $z \in \mathbb{C}$, where M is a bound of f in \mathbb{C} . Then, by the Estimation Lemma,

$$|a_n| \le \frac{1}{2\pi} 2\pi R \max_{|w|=R} \left| \frac{f(w)}{w^{n+1}} \right| = R \frac{1}{R^{n+1}} \max_{|w|=R} |f(w)|$$

 $\le R \frac{1}{R^{n+1}} M$

for any R > 0. Therefore, for $n \ge 1$, by letting $R \to \infty$ we conclude that $|a_n| \le 0$, so $a_n = 0$ for all $n \ge 1$, hence $f(z) = a_0$ is constant.

- (c) [Book-Similar-New, 13 marks = 2+2+4+5] Solution. (c, i) [Book work, 2 marks] It is said that a is an isolated singularity of f, if there is r > 0, f is holomorphic on $D(a,r) \setminus \{a\}$, where $D(a,r) \setminus \{a\} = \{z : 0 < |z-a| < r\}$. An isolated singularity is removable if there is a holomorphic function g in D(a,r) (for some r > 0) such that f = g on $D(a,r) \setminus \{a\}$, that is, f can be extended (uniquely) to a holomorphic function in D(a,r).
- (c, ii) [Book, 2 marks] Laurent's expansion. If b is an isolated singularity, so that there is r > 0 such that f is holomorphic in $D(b,r) \setminus \{b\}$, and

$$f(z) = \sum_{n=1}^{\infty} c_{-n} (z-b)^{-n} + \sum_{n=0}^{\infty} c_n (z-b)^n = \sum_{n=-\infty}^{\infty} c_n (z-b)^n \text{ for any } 0 < |z-b| < r$$

where

$$c_n = \frac{1}{2\pi i} \int_{C(b,\rho)} \frac{f(w)}{(w-b)^{n+1}} dw$$

for all $n \in \mathbb{Z}$, where $0 < \rho < r$.

(c, iii) [Similar, 4 marks] Suppose f is bounded on $D(b,r)\setminus\{b\}$, say $|f(z)|\leq M$ for any 0<|z-a|< r. Then, by Estimation Lemma,

$$|c_n| \le \frac{1}{2\pi} 2\pi \rho \max_{|w-b|=\rho} \left| \frac{f(w)}{(w-b)^{n+1}} \right| = \frac{1}{2\pi} 2\pi \rho \frac{1}{\rho^{n+1}} \max_{|w-b|=\rho} |f(w)|$$

$$\le \rho^{-n} M$$

for any $n \in \mathbb{Z}$ and $0 < \rho < r$. Letting $\rho \downarrow 0$, then $\rho^{-n} \to 0$ if -n > 0, so that $c_{-n} = 0$ for $n = 1, 2, \cdots$. Therefore

$$f(z) = \sum_{n=0}^{\infty} c_n (z-b)^n \text{ for } 0 < |z-b| < r.$$

The right-hand side defines a holomorphic function on D(b, r), including b too, so b is removable.

(c, iv) [New, 5 marks] For the last part, we introduce $h(z) = \sin z + \cos z$ whose zeros are isolated. In fact

$$h(z) = \sqrt{2}\sin\left(z + \frac{\pi}{4}\right)$$

so its zeros are $a_n = n\pi - \frac{\pi}{4}$ where $n \in \mathbb{Z}$. Now consider g(z) = f(z)/h(z) for $z \neq a_n$, so that a_n are isolated singularity of g. Now $|g(z)| \leq 1$ for all $z \neq a_n$, thus a_n are all removable, and therefore g is (extended to be) holomorphic in \mathbb{C} , and still we have $|g(z)| \leq 1$, thus g is bounded and holomorphic in \mathbb{C} , so that g must be constant. It follows that

$$f(z) = Ah(z) = A(\sin z + \cos z)$$

for a constant A, with $|A| \leq 1$.

Q4. (a) [Similar + Book, 10 marks=5+5]

Solution. (a, i) [5 marks] We show that A is open. Suppose $a \in R$, then there is r > 0 such that $D(a,r) \subseteq R$, and according to Taylor's expansion

$$f(z) = \sum_{n=0}^{\infty} a_n (z-a)^n \text{ for } |z-a| < r$$

where $a_n = f^{(n)}(a)$. If $a \in A$, then all $a_n = 0$ so that f(z) = 0 for $z \in D(a, r)$, and therefore $f^{(n)}(z) = 0$ too for all $n \ge 0$ and $z \in D(a, r)$. Therefore A is open. On the other hand for each n, $\{z \in R : f^{(n)}(z) = 0\}$ is the pre-image of $\{0\}$ under $f^{(n)}$ which is continuous, and therefore is closed. It follows that

$$A = \bigcap_{n=0}^{\infty} \left\{ z \in R : f^{(n)}(z) = 0 \right\}$$

is closed in R. Therefore A is a closed and open subset of R. Since R is connected, so that A must be empty or A = R.

(a, ii) [5 marks] *Identity Theorem*. Suppose f is holomorphic on a connected open set $R \subseteq \mathbb{C}$. Suppose there is a sequence of $z_n \in R$, $z_n \to a$, where $z_n \neq a$, $a \in R$ and $f(z_n) = 0$ for $n = 1, 2, \dots$, then f(z) = 0 for all $z \in R$. [Or other equivalent formulation].

Proof. Let A as defined above. We show that $a \in R$. By Taylor's expansion

$$f(z) = \sum_{n=0}^{\infty} a_n (z-a)^n \text{ for } |z-a| < r$$

for some r > 0. We claim that all $a_n = 0$. Since $f(a) = \lim_{n \to \infty} f(z_n) = 0$, so $a_0 = 0$. Suppose there is $k \in \mathbb{N}$, such that $a_k \neq 0$, and $a_n = 0$ for n < k, then

$$\frac{f(z)}{(z-a)^k} = a_k + a_{k+1}(z-a)^{k+1} + \cdots$$

for any 0 < |z - a| < r. In particular

$$0 = \frac{f(z_n)}{(z_n - a)^k} = a_k + a_{k+1}(z_n - a)^{k+1} + \cdots$$

so by letting $n \to \infty$ we obtain that $a_k = 0$ which contradicts to the assumption. Therefore $f^{(k)}(a) =$ $a_k = 0$ for all k. Hence $a \in A$, thus A is non-empty, so that A = R, which means that f(z) = 0 for every $z \in R$.

(b) [Similar, 5 marks = 2+1+2]

Solution. (b, i) [2 marks] Since $\frac{1}{n} \to 0 \in D$, by Constancy Theorem, f(z) = 2 as $f(\frac{1}{2n}) = 2$, and also f(z) = 0 as $f(\frac{1}{2n+1}) = 0$, for every $z \in D$. Therefore there is no such holomorphic function.

(b, ii) [1 mark] $f(z) = \frac{1}{1+z}$ will do, which is unique. (b, iii) [2 marks] $f(z) = z^2$ will do, also

$$f(z) = z^2 + \sin\frac{\pi}{1 - z}$$

works as well. Constancy Theorem does not apply in this case as $\frac{n-1}{n} \to 1$, but 1 does not belong to the open unit disk D(0,1).

(c) [New, 10 marks = 4+3+3]

Solution. (c, i) [4 marks] If a is an isolated singularity for f, then there is r > 0, we have Laurent's expansion about a in the following form

$$f(z) = \sum_{n=1}^{\infty} c_{-n} (z-a)^{-n} + \sum_{n=1}^{\infty} c_n (z-a)^n \text{ for } 0 < |z-a| < r$$

here the coefficient

$$c_n = \frac{1}{2\pi i} \int_{C(a,\rho)} \frac{f(w)}{(w-a)^{n+1}} dw$$

where $0 < \rho < r$. The coefficient of $(z - a)^{-1}$, that is

$$c_{-1} = \frac{1}{2\pi i} \int_{C(a,\rho)} f(z) dz$$
 (1)

is called the residue of f at a. [It is an acceptable answer that the residue of f at a is given by (1).] a is essential if there are infinite many c_{-n} (where $n \in \mathbb{N}$) do not vanish.

(c, ii) [3 marks] By contradiction, if f is bounded, then a is removable and thus not essential. In fact, suppose f is bounded near a, so that there is $0 < \delta_0 < \delta$ and M > 0 such that $|f(z)| \leq M$ for 0 < |z-a| < r. Then, by part a), for $n \ge 1$, $0 < \rho < r$, we have by Estimation Lemma

$$|c_{-n}| \le \frac{1}{2\pi} 2\pi \rho \max_{|w-a|=\rho} \left| \frac{f(w)}{(w-a)^{-n+1}} \right| \le \rho^n M$$

by letting $\rho \downarrow 0$ we may conclude that all c_{-n} vanish for $n = 1, 2, \dots$, so a is not essential by definition.

(c, iii) [3 marks] For every complex number C, a is an essential singularity of f(z)-C too. If there is a sequence $z_n \to a$ such that $f(z_n)-C=0$, then we are done. Otherwise, there is r>0 such that $f(z)-C\neq 0$ has on $D(a,r)\setminus\{a\}$ for some r>0. Now consider the function $h(z)=\frac{1}{f(z)-C}$ for 0<|z-a|< r, so that a is an isolated singularity. We show that h is unbounded. Suppose h is bounded, then a is a removable singularity of h so that and $\lim_{z\to a}h(z)$ exists. If $h(z)\to 0$, then a is a zero of h. Since h is not identically equal to zero, so that a is an isolated zero. Hence $h(z)=(z-a)^kg(z)$ where g(z) is homolorphic, and has no zero in |z-a|< r for some r>0. Hence

$$f(z) = C + \frac{1}{h(z)} = C + \frac{1}{(z-a)^k} \frac{1}{g(z)}$$

and therefore a is a pole of order k, not an essential one, which is a contradiction. Hence $h(a) \neq 0$. In this case $h \neq 0$ is holomorphic in D(a,r) for some r > 0, hence $f(z) = C + \frac{1}{h(z)}$ is holomorphic up to a too, thus a is removable, a contradiction too.

We therefore can conclude that a is an essential singularity of h too. In particular h is unbounded, hence there is z such that $0 < |z-a| < \delta$ but $|h(z)| > \frac{1}{\varepsilon}$, that is $|f(z)-C| < \varepsilon$.

It follows that $\lim_{z\to a} f(z)$ can not exist or equal to ∞ .

Q5. (a) [Book+Similar, 9 marks = 3+6]

Solution. The Residue Theorem: Let D be an open subset enclosed by a piece-wise smooth curve C, so $\overline{D} = D \cup C$. Suppose f is holomorphic in D except for finite many isolated singularities $a_1, \dots, a_m \in D$ and f is at any $z \in C$. Suppose C is orientated positively with respect to D. Then

$$\int_C f(z)dz = 2\pi i \sum_{i=1}^m \operatorname{Res}(f, a_i).$$

[3 marks]

Let us do the substitution $z = e^{i\theta}$ with $\theta: 0 \to 2\pi$ in the integral on the left-hand side, which is denoted by I for simplicity. Then $d\theta = dz/(iz)$, $\cos\theta = \frac{1}{2}\left(z + \frac{1}{z}\right)$ so that I can be turned into the following contour integral

$$I = \int_{C(0,1)} \frac{1}{1 - p\left(z + \frac{1}{z}\right) + p^2} \frac{dz}{iz}$$

$$= \frac{1}{i} \int_{C(0,1)} \frac{1}{z - p\left(z^2 + 1\right) + p^2 z} dz$$

$$= \frac{1}{i} \int_{C(0,1)} \frac{1}{(z - p)(1 - pz)} dz$$

$$= 2\pi \frac{1}{1 - pp} = \frac{2\pi}{1 - p^2}$$

where the last equality follows from the Cauchy formula applying to function $\frac{1}{1-pz}$ at point p, which is holomorphic in $D(0,\frac{1}{|p|})$. [6 marks]

(b) [Similar+New, 8 marks=4+4]

Solution. Let $f(z) = \frac{\ln^2 z}{1+z^2}$ where $\ln z$ is a holomorphic branch to be chosen later. Set up contour as the following. Let $0 < \varepsilon < R$ where $\varepsilon < 1$ and R > 1. The contour Γ consists of the upper semi-circle C_R with center zero and radius R, starting at R to -R, which has a parameterization $z = Re^{i\theta}$, $\theta: 0 \to \pi$ and $dz = iRe^{i\theta}d\theta$. The second part Γ_2 is the section along the real line $[-R, -\varepsilon]$, and the 3rd part Γ_3 is $[\varepsilon, R]$, both has parameterization z = x and dz = dx. The last part is the small semi-circle C_ε center at 0 with radius ε , with clock-wise orientation, so that it has parameterization $z = \varepsilon e^{it}$ where $t: \pi \to 0$, and $dz = i\varepsilon e^{it}dt$.

Choose a holomorphic branch $\ln z$ so that it is holomorphic inside the contour, so we may choose

$$\ln z = \ln |z| + i \arg z, \text{ with } -\frac{\pi}{2} < \arg z < \frac{3\pi}{2}.$$

Then f has one simple pole i inside the contour Γ , whose residue

$$\operatorname{Res}(f,i) = \frac{\ln^2 z}{(1+z^2)'} \bigg|_{z=i} = \frac{\ln^2 i}{2i} = \frac{1}{2i} \left(\frac{\pi}{2}i\right)^2 = -\frac{1}{2\pi i} \frac{\pi^3}{4}$$

so that by Residue Theorem

$$\int_{\Gamma} f(z)dz = 2\pi i \operatorname{Res}(f,i) = -\frac{\pi^3}{4}.$$

On the other hand,

$$\int_{\Gamma} f(z)dz = \int_{\Gamma_{2}} f(z)dz + \int_{\Gamma_{3}} f(z)dz + \int_{C_{R}} f(z)dz + \int_{C_{\varepsilon}} f(z)dz
= \int_{-R}^{-\varepsilon} \frac{\ln^{2} x}{1+x^{2}} dx + \int_{\varepsilon}^{R} \frac{\ln^{2} x}{1+x^{2}} dx + \int_{C_{R}} f(z)dz + \int_{C_{\varepsilon}} f(z)dz
= \int_{-R}^{-\varepsilon} \frac{(\ln|x|+i\pi)^{2}}{1+x^{2}} dx + \int_{\varepsilon}^{R} \frac{\ln^{2} x}{1+x^{2}} dx + \int_{C_{R}} f(z)dz + \int_{C_{\varepsilon}} f(z)dz
= 2\pi i \int_{\varepsilon}^{R} \frac{\ln x}{1+x^{2}} dx - \pi^{2} \int_{\varepsilon}^{R} \frac{1}{1+x^{2}} dx + 2 \int_{\varepsilon}^{R} \frac{\ln^{2} x}{1+x^{2}} dx + \int_{C_{R}} f(z)dz + \int_{C_{\varepsilon}} f(z)dz. \tag{2}$$

[4 marks]

While the path integral

$$\int_{C_R} f(z)dz = \int_0^{\pi} \frac{(\ln R + i\theta)^2}{1 + R^2 e^{2\theta i}} iRe^{i\theta} d\theta$$

so that

$$\left| \int_{C_R} f(z) dz \right| \le \pi \frac{(\ln R + \pi)^2}{R^2 - 1} R \to 0 \text{ as } R \uparrow \infty.$$

Similarly

$$\int_{C_c^-} f(z)dz = -\int_0^{\pi} \frac{(\ln \varepsilon + it)^2}{1 + \varepsilon^2 e^{2ti}} i\varepsilon e^{it} dt$$

so that

$$\left| \int_{C_{\varepsilon}^{-}} f(z) dz \right| \leq \pi \frac{(\ln \varepsilon + \pi)^{2}}{1 - \varepsilon^{2}} \varepsilon = \pi \frac{\left(\sqrt{\varepsilon \ln \varepsilon + \pi \sqrt{\varepsilon}}\right)^{2}}{1 - \varepsilon^{2}} \to 0$$

as $\varepsilon \downarrow 0$.

Therefore by letting $\varepsilon \downarrow 0$ then by letting $R \uparrow \infty$ in (2) to obtain

$$2\pi i \int_0^\infty \frac{\ln x}{1+x^2} dx - \pi^2 \int_0^\infty \frac{1}{1+x^2} dx + 2 \int_0^\infty \frac{\ln^2 x}{1+x^2} dx = \lim_{R \uparrow \infty} \lim_{\epsilon \downarrow 0} \int_{\Gamma} f(z) dz = -\frac{\pi^3}{4}.$$

Therefore we must have, by comparing the real parts of two sides in the above equation,

$$-\pi^2 \int_0^\infty \frac{1}{1+x^2} dx + 2 \int_0^\infty \frac{\ln^2 x}{1+x^2} dx = -\frac{\pi^3}{4}$$

so that

$$2\int_0^\infty \frac{\ln^2 x}{1+x^2} dx = \pi^2 \int_0^\infty \frac{1}{1+x^2} dx - \frac{\pi^3}{4} = \pi^2 \frac{\pi}{2} - \frac{\pi^3}{4} = \frac{\pi^3}{4}$$

and therefore

$$\int_0^\infty \frac{\ln^2 x}{1 + x^2} dx = \frac{\pi^3}{8}.$$

[4 marks]

(c) [Book-New, 8 marks=5+3] Solution. (c,i) [5 marks] By Taylor's expansion

$$f(z) = \sum_{n=0}^{\infty} a_n (z - a)^n$$

for all z such that |z-a| < r, where r > 0 is any such that $D(a,r) \subseteq D(0,1)$. If f is not identically equal to zero, then not all $a_n = 0$, thus, there is m such that $a_m \neq 0$ but $a_l = 0$ for any l < m. Hence

$$f(z) = (z-a)^m \sum_{n=k}^{\infty} a_k (z-a)^{n-m} = (z-a)^m g(z)$$

where $g(z) = \sum_{n=k}^{\infty} a_n (z-a)^{n-m}$ which is holomorphic and $g(a) \neq 0$. If f is not identically equal to zero, then a is an isolated zero, so that a is an isolated singularity of f'/f. In fact, since $f'(z) = m(z-a)^{m-1}g(z) + (z-a)^mg'(z)$, so that

$$\frac{f'(z)}{f(z)} = \frac{m(z-a)^{m-1}g(z) + (z-a)^m g'(z)}{(z-a)^m g(z)}$$
$$= \frac{m}{z-a} + \frac{g'(z)}{g(z)}.$$

Since $g(a) \neq 0$, so g'/g is holomorphic near a, thus a is a simple pole of f'/f. (c,ii) [3 marks] Similar to (i), if a is a zero of f, then

$$\phi(z)\frac{f'(z)}{f(z)} = \phi(z)\frac{m(z-a)^{m-1}g(z) + (z-a)^{m}g'(z)}{(z-a)^{m}g(z)}$$
$$= \frac{m}{z-a}\phi(z) + \phi(z)\frac{g'(z)}{g(z)}.$$

Since $g(a) \neq 0$ and g and ϕ are holomorphic, so that a is a simple pole of $\phi(z) \frac{f'(z)}{f(z)}$, whose residue equals

$$\lim_{z \to a} (z - a)\phi(z) \frac{f'(z)}{f(z)} = \lim_{z \to a} m\phi(z) + \lim_{z \to a} (z - a)\phi(z) \frac{g'(z)}{g(z)}$$
$$= m\phi(a).$$

Therefore, according to the Residue Theorem

$$\frac{1}{2\pi i} \int_{C(0,1)} \phi(z) \frac{f'(z)}{f(z)} dz = \sum_{i=1}^k \text{Res}(\phi(z) \frac{f'(z)}{f(z)}, a_i) = \sum_{i=1}^k m_i \phi(a_i)$$

which completes the proof.

Q6. (a) [Similar, 7 marks=4+3]

Solution. By the basic properties of Möbius transformations, if h maps H onto D, and sends a to 0, then h sends \bar{a} to ∞ , so that

$$h(z) = e^{i\theta} \frac{z - a}{z - \bar{a}}$$

where θ is real. The inverse of h maps D onto H. To work out the inverse of h explicitly. [4 marks] Let w = h(z). Then

$$e^{-i\theta}w = \frac{z-a}{z-\bar{a}}$$

solves z to obtain

$$z = \frac{\bar{a}w - ae^{i\theta}}{w - e^{i\theta}}.$$

[3 marks]

(b) [New, 6 marks] Let $w = \varphi(z)$, where $|\alpha| \neq 1$. Then

$$|w|^{2} - 1 = \frac{z - \alpha}{1 - \overline{\alpha}z} \frac{\overline{z} - \overline{\alpha}}{1 - \alpha \overline{z}} - 1$$

$$= \frac{(1 - |\alpha|^{2})(|z|^{2} - 1)}{1 - \overline{\alpha}z - \alpha \overline{z} + |\alpha|^{2}|z|^{2}}$$

$$= \frac{1 - |\alpha|^{2}}{|1 - \overline{\alpha}z|^{2}} (|z|^{2} - 1)$$

so that, if $|\alpha| < 1$, then |w| < 1 if and only if |z| < 1. [3 marks]

If $|\alpha| > 1$, then |w| > 1 if and only if |z| < 1. That is, if $|\alpha| < 1$, then $\varphi(D) = D$, and if $|\alpha| > 1$ then $\varphi(D) = D^c$. [3 marks]

(CID)

(c) [Similar, 12 marks]

Solution. The circle |z| = 1 and the real line Im z = 0 intersect at -1 and 1, thus we first apply the Möbius transformation f_1 which sends 1 to 0, -1 to ∞ , that is

$$f_1(z) = \frac{z-1}{z+1}.$$

Now $i \in \text{upper semi-circle } |z| = 1 \text{ with } \text{Im} z > 0, \text{ and }$

$$f_1(i) = \frac{i-1}{i+1} = \frac{(i-1)(-i+1)}{2} = i$$

so the unit circle is mapped to the line Rez = 0, i.e. the y-axis.

 $0 \in \text{Im} z = 0$, and f(0) = -1, so f_1 maps the real line to real line.

Choose a point say i/2 inside the domain R. Since

$$f(\frac{i}{2}) = \frac{i-2}{i+2} = \frac{(i-2)(-i+2)}{5} = \frac{-3+4i}{5}$$

we thus may conclude that

$$f_1(R) = \{z = x + iy : y > 0, x < 0\}.$$

[6 marks]

Let $f_2(z) = e^{-\frac{\pi}{2}i}z = -iz$, so that

$$f_2 \circ f_1(R) = \{z = x + iy : y > 0, x > 0\}$$

and then apply $f_3(z) = z^2$, so that

$$f_3 \circ f_2 \circ f_1(z) = \left(-i\frac{z-1}{z+1}\right)^2 = -\left(\frac{z-1}{z+1}\right)^2$$

maps R to H. Therefore, by part 1)

$$f(z) = e^{i\theta} \frac{-\left(\frac{z-1}{z+1}\right)^2 - a}{-\left(\frac{z-1}{z+1}\right)^2 - \bar{a}}$$

maps R one to one onto the unit disk D, where θ is any real, $a \in H$ can be any. [6 marks]