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A2 Exam Paper 2019 - Model Solutions (Version: 1 Dec. 2018)

Q1. (a) [New, 8 marks=3+3+2]
Solution. (a,i) [3 marks] Since ¢ > 0, so p(x,y) = @ (d(x,y)) > 0. Since d(x,y) = d(y,x)

p(x,y) = 0(d(x,y)) = ¢(d (%)) = p(,%).

By assumption, @(r) = 0 only when ¢ = 0, hence p(x,y) = @(d(x,y)) = 0 implies that d(x,y) =0, so
that x = y as d is a distance. Finally verify that p also satisfies the triangle inequality. If x,y and z in
X, we have d(x,z) <d(x,y) +d(y,z), so that, by using the assumptions on ¢ we have

p(x,2) = @(d(x,2)) < @(d(x,y) +d(»2)) < @(d(x,)) + ¢(d(»,2))
=p(x,y) +p(»2).

Therefore p is a metric on X.

(a, ii) [3 marks] Suppose x, — x in (X,d), i.e. d(x,,x) — 0, since @ is (right) continuous at 0,
¢ (d(xy,x)) — 0, that is, p{x,,x) — 0.

The converse is also true, we may argue by contradiction. Suppose p(x;,x) — 0 but d(x,,x) does
not tend to zero, thus there is € > 0 and there is a sub-sequence {x,,k} such that d (xnk,x) > g, which
implies that p (x,,,x) > @(€) > 0 for all k, which is a contradiction.

(a,iii) [2 Mark] We may choose @(f) = 1% and p(x,y) = ¢ (d(x,y)). Then ¢ is increasing on
[0,00) and ¢(¢) = O only for 7 = 0. ¢ is continuous at 0, and

t+s t A t s
= + < -+
1+t+s 14+t+s 14s4+t " 14+t 1+

for all s,¢ > 0, that is, @(s+1) < @(s) + @(¢). Therefore, by a) and b) , &’ = p is a metric equivalent
to d. While d’(x,y) <1 for all x,y € X.

(b) [Similar, 5 marks =3+1+1] Solution. Since AC AUB so A C AUB and similarly B C AUB.
On the other hand AUB C AUB and AUB is closed, we therefore have AUB C AUB. Hence
AUB = AUB. [3 marks]

In general ANB = ANBis false, for example A= Q and B=R\Q. Then ANB=@ butA=B=R.
[1 mark]

Moreover ANB=Q,ANB=R\Q,ANB =@ and ANB = R are different. [1 mark]

(c) /[Book, 7 marks=3 +4]
Solution. (c, i) [3 marks] f: X — X is a contraction if there is a constant 0 < ¢ < 1 such that
d(f(x), f(y)) < cd(x,y) for every x,y € X. The Contraction Mapping Theorem says thatif f: X — X
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is a contraction on a complete metric space (X,d), then f has a unique point, i.e. there is a unique
x € X, such that f(x) = x.
(c, ii) [4 marks] Let us consider the function F(x) = d (g(x),x) for x € X. Then

|F(x) — F(y)| = |d(g(x),x) —d(8(y),¥)]
= |d(g(x),x) —d(x,g(y)) +d(x,8()) —d(g(),»)|
<d(g(x),8() +d(x,y)
<2d(x,y)

for all x,y, hence F is continuous on X. Since X is compact, F achieves its minimum on X, that is,
there is xg € X, such that

a’(g(xo),xo) = A@g}f{d(g(x),x).

If g(xo) # xo, then d(g%(x0),g(x0)) < F(x) by assumption, so that F(g(x)) < F(xo) which contra-
dicts to the claim xy is the inf of F'. Thus xp must be a fixed point of g.

(d) [New, 5 marks 4 +1] Solution. Suppose a € B, then F(a) = & = (§,) given in the question
possesses the following properties:

1
én:an_1<1—ﬁ>——>0 as n — oo

and

8ol = 5 (1+lafl) <1.

D] —

‘While for n > 1 we have
1
Ién' = |an—l| <1 - 5,;) < |an—l| < ”a”

so by definition ||£|| < 1, and therefore F(a) € B for every a € B.
Suppose a = (a,), b = (b,) € B, and let & = F(a) and F(b) = 1. Then & — 19 = 1 (||a]| - |15]))
and forn > 1

En— M = (an—1 — by-1) (1 - 2%,)
so that
60110 < 5 lla— bl
andforn>1

1
|€n“nn| < (1 - E) Ian—l "bn—ll-

If a # b, then ||a— b|| > 0. Since a, — b, — 0 so there is N € N,|ay_1 —b,—1| <  |la—b]| forn > N.

Hence : .
-l (1-57) V3]l

for all n, it follows that

17 = FO) < | (1= 5¢) v3] a1 <o
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as long as a # b.
We are going to show that F has no fixed point. Argue by contradiction. Suppose a = F (a) where
a = (a,) € B. Then, by definition of F

1
0= (1+al)

and

for n > 1. It follows that

n 1 1 n 1
w=T1(1-5) =30 +1a [T (1-5)
1

k=1

which does not converge to zero, a contradiction to the assumption that a € B. [4 marks]
By part (c), one can conclude that B is not compact. [1 marks] [An argument by using unit vectors
is also fine].

Q2. (a) [Book, 3 marks] Solution. X is connected if X = U UV where U,V are open and disjoint,
then U or V is empty.

X is path-connected, if for every x,y € X there is a continuous mapping ¥ from [0,1] to X such
that y(0) = x and (1) = y.

(b) [Book+Similar, 10 marks=3+4+3] Solution.

(b, i) [3 marks] We begin with the proof of the first claim. Suppose f : X — {0,1} is continuous.
LetU = f~1(0) and V = f~!(1). Then U, V are open (also closed), disjoint and X =UUV. If X is
connected, the U or V is empty, so f(x) = 0 for all x, or f(x) = 1 for all x, accordingly. Conversely,
if X is disconnected, so that X = U UV where U, V are open disjoint and both are nonempty. Define
f(x)=0forx e U,and f(x) =1 forx€ V. Then f”l(A) =@, X, U orV, hence f is continuous, and
f is not constant.

(b, ii) [4 marks] Let us prove that X C R is connected if and only if X = Jis an interval. First prove
any interval is connected. If X is an interval with end points a < b. Hu—"b-thenX=1a;al-=-{a}
-which-is-conneeted—Otherwise-we argue by contradiction. Suppose f : X — {0,1} is continuous, so
f is also a continuous function from X to [0,1]. If f is not constant, then there are x,y € X such that

f(x) =0and f(y) = 1. We may assume that x < y. Since X is an interval, so that [x,y] € X and f is
continuous on [x,y]. By IVT, there is z € [x,y] such that f(z) = 1/2, which is a contradiction.

Conversely, assume that X is connected, we show that X is an interval, that is, if x <y and
x,y € X, we need to show that (x,y) C X. Argue by contradiction. Suppose ¢ € (x,y) but ¢ ¢ X. Let
U =XnN(—o0,c)and V = XN(c,o0). Then U, V are open and disjoint, x e U,y €V, and X =U UV
as ¢ ¢ X. Thus X is disconnected, a contradiction.

(b, iii) [3 marks] Let us now prove the last statement. Suppose X is path-connected, and we show
that X is connected. Again argue by contradiction. Suppose X is disconnected, that is X =U UV
where U, V are open, disjoint and both non-empty. Let x € U, and y € V. Since X is path-connected,
so there is a continuous map p : [0,1] — X such that p(0) = x and p(1) = y. Then

0,1]=p~ ' @)up™ (V)
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where p~1(U), p~ (V) are open, disjoint, and no one is empty, which would yield that the interval
[0,1] is disconnected, a contradiction.

(¢) [Similar, 6 marks] Solution. Suppose X C R" is open and connected. Let a € X be any but
fixed point, and let A = {x € X : x can be connected to a}, i.e. A consists of all points x € X, such that
there is a continuous p from [0, 1] to X such that p(0) = x and p(1) = a. We show that both A and A°
are both open. Suppose x € A, then also x € X. Since X is open in R”, so there is 7 > 0, the open ball
(with center x and radius r) B(x,r) C X. Since any point y € B(x,7) can be connected to the center x
then to a, so that B(x, ) C A. Therefore A is open. Similar argument shows that if A° were non-empty,
then A is open too. Since X is connected, and A is non-empty, so that A = X which implies that X is
path-connected.

(d) [New, 6 marks] Solution. Suppose there is 1-1 onto continuous f : [0,1] — S, then f maps
[0,¢) U (e, 1] (which is disconnected by part 2)) one to one and onto S'\ {a} where a = f(c), and
¢ €(0,1). Since f and f~! are continuous, and f~! maps a connected space S' \ {a} to a disconnected
one, which produces a contradiction.

Choose a, =1 (n=1,2,--). Let f(x) = €™ for x € |0, 1) but x # a, for n > 1 and f(a,) =
e2Tan+1 forn > 1.

Q3. (2) [Book, 6 marks=242+2] Solution. (a, i) [2 marks] f is holomorphic in an open subset D C C,
if for every z € D, the complex derivative

: +h) - f(z)
f (Z) 111—r>1(1) h
exists for every z € D. [Equivalent definition is acceptable].
(a,ii) [2 marks] By letting /1 = real but go to zero, we obtain that, if f = u 4 vi is holomorphic,
F(2) = ux+vyi

and by letting & = i§, where 0 real and § — 0, to obtain
/ 1 .
£/(2) = 5 Gy +vy)
and therefore )
U+ Vil = H (uy +vyi)
which is equivalent to the Cauchy-Riemann equations:

uy = vy and uy = —vy.

(a, i) [2 marks] If f = u+vi is real, so that v = 0, which implies u, = uy = 0 too by Cauchy-
Riemann equations. Hence u is constant as D is connected and open. It follows that f is constant on
D.
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(b) [Book, 6 marks=3 +3 ] Solution. (b, i) [3 marks] Talyor’s expansion: If f is holomrphic in D,
and suppose » > 0 such that the disk D(a,r) C D, then

flz)= Z an(z—a)" for any z € D(a,r)
n=0
where 1
),

27 Clap) (Ww—a)"!

ap = —f(”)( )=

where C(a,p) is the circle with center a and radius p, as longas 0 <p <r.
(b, ii) [3 marks] Suppose f is bounded and holomorphic in C, then

7)) = Z a,z" for any z
n=0

where

1 fw) .

an =

Suppose |f(z)| < M for any z € C, where M is a bound of fin C. Then, by the Estimation Lemma,
fw)

wn—H

1
a,] < —2xRma
o] < 2w TR

1
= RRn—H |max ‘f(w)l

1

< RRn+1M

for any R > 0. Therefore, for n > 1, by letting R — oo we conclude that |a,| <0, so a, = 0 for all
n> 1, hence f(z) = ag is constant.

(¢) [Book-Similar-New, 13 marks = 2+2+4+5] Solution. (c, i) [Book work, 2 marks] It is said
that @ is an isolated singularity of f, if there is » > 0, f is holomorphic on D(a,r) \ {a}, where
D(a,r)\ {a} = {z:0 < |z—a| < r}. An isolated singularity is removable if there is a holomorphic
function g in D(a,r) (for some r > 0) such that f = g on D(a,r)\ {a}, that is, f can be extended
(uniquely) to a holomorphic function in D(a, ).

(c, ii) [Book, 2 marks] Laurent’s expansion. If b is an isolated singularity, so that there is r > 0
such that f is holomorphic in D(b,r) \ {b}, and

n=—oo

F@) = Y eale=b)"+ L anle—bf' = ¥ arle—) forany0 < fe—b <1

where
1 f(w)

— — 2 —d
27 Je,p) (w—b)”“ e

Cn =
foralln € Z, where 0 < p <r.
(c, iii) [Similar, 4 marks] Suppose f is bounded on D(b,r)\ {b}, say |f(z)] < M for any 0 <
|z—a| < r. Then, by Estimation Lemma,

(—w—]:%v%q L, P—— max _|f(w)|

1
lclli S _znp max p11+1 l bl =p

2 [w—bl=p
S p —nM
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foranyneZand 0 <p <r. Lettingp | 0, thenp™ — 0if —n > 0,sothatc_, =0forn=1,2,--.
Therefore -
@)=Y cu(z—b)"for0<|z—b| < r
n=0
The right-hand side defines a holomorphic function on D(b,r), including b too, so b is removable.
(¢, iv) [New, 5 marks ] For the last part, we introduce h(z) = sinz-+cosz whose zeros are isolated.

In fact -
h(z) = V2sin (2+ %)

80 its zeros are a, = nxt — % where n € Z. Now consider g(z) = f(z)/h(z) for z # ay, so that a, are
isolated singularity of g. Now |g(z)| < 1 for all z # ay, thus a, are all removable, and therefore g is
(extended to be) holomorphic in C, and still we have |g(z)| < 1, thus g is bounded and holomorphic
in C, so that g must be constant. It follows that

f(z) = Ah(z) = A(sinz+cosz)

for a constant A, with |A| < 1.

Q4. (a) [Similar + Book, 10 marks=5+5]
Solution. (a, 1) [5 marks] We show that A is open. Suppose a € R, then there is » > 0 such that
D(a,r) C R, and according to Taylor’s expansion

f(@) =Y an(z—a)" for|z—a| < r
n=0
where a, = f")(a). If a € A, then all a,, = 0 so that f (z) = 0 for z € D(a,r), and therefore f)(z) =0
too for alln > 0 and z € D(a, r). Therefore A is open. On the other hand for each n, {z ER: f(z) = O}

is the pre-image of {0} under f(”) which is continuous, and therefore is closed. It follows that

A= ﬁ {zeR:f(">(z) =0}

n=0

is closed in R. Therefore A is a closed and open subset of R. Since R is connected, so that A must be
empty or A = R.

(a, i) [5 marks] Identity Theorem. Suppose f is holomorphic on a connected open set R C C.
Suppose there is a sequence of z, € R, z, — a, where z, # a, a € R and f(z;,) =0 forn=1,2,---,
then f(z) =0 for all z € R. [Or other equivalent formulation].

Proof. Let A as defined above. We show that a € R. By Taylor’s expansion

f(2) = ian(z—a)" for[z—a| <r
n=0

for some r > 0. We claim that all a, = 0. Since f(a) = limy—w f(z,) = 0, 50 ag = 0. Suppose there
is k € N, such that a; # 0, and a,, = 0 for n < k, then

f(z)

(z—a)*

= ax+agpi(z—a) 4
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for any 0 < |z — a| < r. In particular

f (Zn)

N (zn — a)k

s0 by letting 7 — oo we obtain that a; = 0 which contradicts to the assumption. Therefore f () (a) =
a, = 0 for all k. Hence a € A, thus A is non-empty, so that A = R, which means that f(z) = 0 for every
ZER.

0 = g+ a1 (2 — @)

(b) [Similar, 5 marks = 2+1+2]

Solution. (b, i) [2 marks] Since % — 0 € D, by Constancy Theorem, f(z) =2 as f (71,;) =2, and
also f(z) =0as f (Zz’lﬁ) = 0, for every z € D. Therefore there is no such holomorphic
function.
(b, ii) [1 mark] f(z) = l—lﬂ- will do, which is unique.
(b, iii) [2 marks] f(z) = z* will do, also
£(2) = 22 +sin ——
-z

works as well. Constancy Theorem does not apply in this case as ’—’l_—ll — 1, but 1 does not belong to
the open unit disk D(0, 1).

(c) [New, 10 marks =4+3+3]
Solution. (c, 1) [4 marks] If a is an isolated singularity for f, then there is r > 0, we have Laurent’s
expansion about ¢ in the following form

f(Z) = i C_n(z—a)—n—*_ i cn(z—a)n for 0 < lZ"‘al <r

n=1 n=1

1 f(w)
“n = o /C(a,p) (w—ayt] aw

where 0 < p < r. The coefficient of (z— a)’l, that is,

_
27t Jc(a,p)

here the coefficient

_ flz)dz (1
is called the residue of f at a. [It is an acceptable answer that the residue of f at ais given by (1).]
a is essential if there are infinite many c¢_,, (where n € N) do not vanish.

(c, ii) [3 marks] By contradiction, if f is bounded, then a is removable and thus not essential. In
fact, suppose f is bounded near a, so that there is 0 < §y < & and M > 0 such that | f(z)] < M for
0 < |z—a| < r. Then, by part a), forn > 1, 0 < p < r, we have by Estimation Lemma

f(w)

(w—a)— "t <p'M

1
Al <=—27p m
le—nl < 5 P max
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by letting p | 0 we may conclude that all ¢_,, vanish for 7 = 1,2,---, so a is not essential by definition.

(¢, 1ii) [3 marks] For every complex number C, a is an essential singularity of f(z) — C too. If
there is a sequence z, — a such that f(zy) — C = 0, then we are done. Otherwise, there is 7 > 0 such
that f(z) — C # 0 has on D(a,r) \ {a} for some r > 0. Now consider the function h(z) = Tz)l:c““ for
0 < |z—al| < r, so that a is an isolated singularity. We show that 4 is unbounded. Suppose / is bounded,
then a is a removable singularity of / so that and limy,_,, (z) exists. If h(z) — 0, then a is a zero of h.
Since A is not identically equal to zero, so that a is an isolated zero. Hence h(z) = (z—a)*g(z) where
8(z) is homolorphic, and has no zero in |z — a| < r for some r > 0. Hence

1 1 1
f(Z):C-i—m)—:C-I———*—(Z_a)kE(Z)-

and therefore a is a pole of order k, not an essential one, which is a contradiction. Hence h(a) #0. In
this case /2 7 0 is holomorphic in D(a, ) for some r > 0, hence f (z)=C+ 7(15 is holomorphic up to
a too, thus a is removable, a contradiction too.

We therefore can conclude that a is an essential singularity of / too. In particular 4 is unbounded,
hence there is z such that 0 < |z—a| < & but |A(z)| > 1 thatis [f(z) —C| < e.

It follows that lim,_., f(z) can not exist or equal to .

Q5. (a) [Book+Similar, 9 marks = 3+6]

Solution. The Residue Theorem: Let D be an open subset enclosed by a piece-wise smooth
curve C, so D = DUC. Suppose f is holomorphic in D except for finite many isolated singularities
ag,"--,am € D and f is at any z € C. Suppose C is orientated positively with respect to D. Then

/ f(2)dz = 2mi Zn: Res(f, ar).
C i=1

[3 marks]

Let us do the substitution z = ' with 6 : 0 — 27 in the integral on the left-hand side, which is
denoted by I for simplicity. Then d6 = dz/(iz), cos@ = % (z+ %) so that [ can be turned into the
following contour integral

1 dz
I= _ N 25,
co 1 =p(z+1)+p2iz
1 1
_ d
i/c(o,l)z—p(zz—kl)—kpzz ¢
1/ 1
= - ————*dz
i Jew,n) (z—p)(1— pz)
1 2r

:27[ =
l—-pp 1-p?

where the last equality follows from the Cauchy formula applying to function lep—i at point p, which

is holomorphic in D(0, ﬁ) [6 marks]
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(b) [Similar+New, 8 marks=4+4]

2 . .
Solution. Let f(z) = \™2 where Inz is a holomorphic branch to be chosen later. Set up contour as

T2

the following. Let 0 < € < R where € < 1 and R > 1. The contour I consists of the upper semi-circle
Cg with center zero and radius R, starting at R to —R, which has a parameterization z = Re® 6:0—7
and dz = iRe'®d 0. The second part I is the section along the real line [—R, —&], and the 3rd part I'3 is
[¢,R], both has parameterization z = x and dz = dx. The last part is the small semi-circle C~ center at
0 with radius &, with clock-wise orientation, so that it has parameterization z = ee wheret : T — 0,

and dz = iee' dt.

Choose a holomorphic branch Inz so that it is holomorphic inside the contour, so we may choose

: : T 3n
Inz = In|z| +iargz, with — 5 <argz <5

Then f has one simple pole i inside the contour I', whose residue
In’z

Res(f,i) = m

2

In?i 1 <7r,)2 1 a3
_ AR
27mi 4

T2 2 -

z=i

so that by Residue Theorem
3

/ f(z)dz = 2miRes(f,1) = T
r 4

On the other hand,

/Ff(Z)dz=/Bf(Z)der/Bf(Z)der/CRf(Z)dz+/C;f(Z)dz
= / R / QLI IR (TR Vo / f(2)dz
£ Cr C;

g 1+x? 1+x%
€ (In|x| +ir) /R In?x / /
= A ———dx+ dx+ dz+ d
[ B e [ s@ae [ s
R R R 12
Inx 1 In“x
= 2mi dx—nz/ d +2/ dx+ d +/ dz.
l/s 1+x2 e 1+X2 X e 1+X2 CRf(Z) Z C;f(Z) Z
[4 marks]
While the path integral
T (InR+i6)*,_
dz= | ~————2iRe®d6
CRf(z) z /0 T e e
so that 5
InR
f(z)dz| < nﬂn—z—i’f)—Rams R* .
Cr R2—1
Similarly
T (Ine+it)* . 4
/CE fz)dz= —/0 T e ige" dt
so that

(ln£+7r)28_ n(\/Eln8+7r\/§)2 o
1—-¢2 = 1-¢€2

f(2)dz

Ce

<m

2
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as £ 0.
Therefore by letting € | 0 then by letting R 1o in (2) to obtain

“ Inx <1 * In%x b
27i dx — m* dx-+2 dx = lim]i dz=—"_,
7”/0 1+2 ”/0 T2t /0 1+2% ﬁ&éﬁ’/rf(z) R

Therefore we must have, by comparing the real parts of two sides in the above equation,

1 “ In’x n’
2
. dx+2 dx=-"
71:/0 1+x2 o /0 1+2™ 4
* In’x 2 [ 1 Y. A A
/0 1+ /0 T R

/°° In?x 3
2dx= —_—
0 1+x 8

so that

and therefore

[4 marks]

(c) [Book-New, 8 marks=5+3]
Solution. (c,i) [5 marks] By Taylor’s expansion

FD=Y ayz—a)

n=0

for all z such that |z —a| < r, where r > 0 is any such that D(a,r) € D(0,1). If f is not identically
equal to zero, then not all a,, = 0, thus, there is m such that am # 0 but g; = 0 for any [ < m. Hence

f(z) — (Z_a)m i ak(z_a)n—m — (Z_a)nlg(z)

n=k

©o

where g(z) = Yo as(z — @)™ which is holomorphic and g(a) # 0. If f is not identically equal
to zero, then a is an isolated zero, so that a is an isolated singularity of f'/f. In fact, since f/(z) =
m(z—a)" 'g(z) + (z—a)"g'(z), so that

(@) _ m(z—a)"g(z) + (z— a)"g (z)

f(z) (z—a)"g(z)
_.m + £'(2)
z—a  g(z)

Since g(a) # 0, so g'/g is holomorphic near a, thus a is a simple pole of f'/f.
(c,ii) [3 marks] Similar to (i), if a is a zero of f, then

£@) L malg@)+ - a2
P&y =@ a5
_om §'(2)
=)+ ¢(Z)——g(z) :
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Since g(a) # 0 and g and ¢ are holomorphic, so that a is a simple pole of ¢(z)%, whose residue

equals

i)+ lite ~ 0

=m¢(a).

Therefore, according to the Residue Theorem

lim(e— )o@

1 f@ . _ 3 S [ @) = - m;iQ(a;
i C(0,1)¢(Z) 7@ dz—i;IRe (¢(2) 72 l)_i:ZI i9(ai)

which completes the proof.

Q6. (a) [Similar, 7 marks=4+3]
Solution. By the basic properties of Mdbius transformations, if 2 maps H onto D, and sends a to
0, then A sends a to oo, so that

] — g —a
h(z) =e —a

where 0 is real. The inverse of 2 maps D onto H. To work out the inverse of & explicitly. [4 marks]
Let w = h(z). Then

_ z—a
e Oy = -
z—a
solves z to obtain .
aw — ae'®
A= Ty —el

[3 marks]

(b) [New, 6 marks] Let w = ¢(z), where |a| # 1. Then

2—0 I—0

l1-az1—0z

_ (=laP)(-1)
1—az—az+|al |z

1—|ef?
Zm(mz—l)

w2—1=

so that, if || < 1, then |w| < 1 if and only if |z| < 1. [3 marks]
If || > 1, then |w| > 1 if and only if |z| < 1. That is, if |a| < 1, then (D) = D, and if |a| > 1
then ¢(D) = D°. [3 marks]
(C\D)

(c) [Similar, 12 marks]
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Solution. The circle |z| = 1 and the real line Imz = 0 intersect at —1 and 1, thus we first apply the
Mobius transformation f; which sends 1 to 0, —1 to oo, that is
z—1
f 1 (Z) = Z_"F-I

Now i eupper semi-circle |z] = 1 with Imz > 0, and

sty =ip =D

so the unit circle is mapped to the line Rez = 0, i.e. the y-axis.
0 € Imz =0, and f(0) = —1, so f; maps the real line to real line.
Choose a point say i/2 inside the domain R. Since

i, i=2 (i-2)(=i+2) -3+4i
f(i)“i+z“ 5 -5

we thus may conclude that
AR)={z=x+iy:y>0,x<0}.

[6 marks] .
Let f5(z) = e~ 2z = —iz, so that

frofi(R)={z=x+iy:y>0,x> 0}

and then apply f3(z) = 22, so that

o z—1 2_ z—1\?
pesosio= (<558) - ()

maps R to H. Therefore, by part 1)

maps R one to one onto the unit disk D, where 0 is any real, a € H can be any. [6 marks]





