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Part A Algebra II, examination questions and solutions.

1. Let R be a ring.

a) [8 marks] Let a, b ∈ R. We say that a and b are associate if there is a unit u ∈ R× such that a = ub.

i) Show that if a and b are associate then 〈a〉 = 〈b〉.
ii) A ring in which the converse holds is called an associator ring. Show an integral domain is

an associator ring.

iii) What are the ideals in Z/4Z? Show that Z/4Z is an associator ring which is not an integral
domain.

b) [5 marks] Show that if R1 and R2 are associator rings then so is R1 ⊕R2.

c) [6 marks] Let R be a PID, p a prime element in R and k a positive integer. Show that S = R/pkR
is an associator ring.

d) [6 marks] If R is a PID, and φ : R→ S is a surjective ring homomorphism, then S is an associator
ring.

Solution: Part a): [BW] part i): If a = ub then a ∈ 〈b〉 so that 〈a〉 ⊂ 〈b〉. But then b = u−1a similarly
shows that 〈b〉 ⊆ 〈a〉, so that 〈a〉 = 〈b〉 as required. For part ii): if 〈a〉 = 〈b〉 then there are u, v ∈ R such
that a = u.b and b = v.a. But then a = u.(va) so that a(1 − uv) = 0 and hence since R is an integral
domain, either a = 0 or u, v are units. In the latter case a and b are clearly associates, while in the former
b ∈ 〈0〉 = {0} so that b = 0 also and hence again a, b are associates. For part iii) let R = Z/4Z. We have
R× = {1 + 4Z, 3 + 4Z}, so that R = 1.R = 3.R and 2R = {0 + 2Z, 2 + 2Z}. Thus the only ideals in R
are {0}, 2R and R. Clearly R is thus an associator ring, because if I = 〈a〉 = 〈b〉 then if I = R, a and b
are units and hence associates, if I = 2R, then a = b = 2 + 4Z (as this is the only nonzero element in
the ideal!) Finally if I = {0} then a = b = 1.b = 0 are again associates. Since (2 + 4Z)2 = 0 + 4Z, clearly
Z/4Z is not an integral domain.

Part b) [S]: Suppose that I = 〈(a1, a2)〉 = 〈(b1, b2)〉 ⊆ R1 ⊕ R2. Then I ∩ R1 = a1R1 = b1R1, and
I ∩ R2 = a2R2 = b2R2, and thus since R1 and R2 are associator rings, there are units u1 ∈ R1 with
a1 = u1b1, a2 = u2b2, so that (a1, a2) = (u1, u2)(a2, b2). Since (u1, u2).(u−1

1 , u−1
2 ) = (1, 1) we see that

(u1, u2) ∈ S× so that (a1, b1) and (a2, b2) are associates as required.

Part c): [S] Suppose that I = 〈a+pkR〉 = 〈b+pkR〉. Note we may assume a, b ∈ R are both nonzero.
If q : R→ R/pkR denotes the quotient map, q−1(I) = Ra+pkR = gR where g is by definition a highest
common factor of a and pk. Since p is a prime element and R is a UFD, the highest common factor g
must be (up to a unit) pl for some l ∈ Z with 0 ≤ l ≤ k, and we may write a = cpl, where p - c. Since
I = 〈b + pkR〉 also, we similarly have b = dpl, where p - d. But then c and pk are coprime, so that
Rc + Rpk = R and we may write 1 = α.c + β.pk and so α.c + pkR = 1 + pkR so that c + pkR is a unit
in R/pkR, and hence a+ pkR and pl + pkR are associates. By symmetry b+ pkR and pl + pkR are also
associates, and hence a+ pkR and b+ pkR are associates as required.

Variant: As in part a) if ā, b̄ ∈ S have 〈ā〉 = 〈b̄〉 then there exist r̄, s̄ such that ā = r̄b̄ and b̄ = s̄ā,
so that ā = ā(1 − r̄s̄). Taking representatives a, b, r, s ∈ R corresponding to ā, b̄, r̄, s̄ respectively, we
see that pk|a(1 − rs). But then since R is a UFD either pk divides a, in which case ā = 0 and we are
done trivially, or p|1 − rs and hence clearly p does not divide r or s. But the r, s are coprime of p and
hence also pk, so that by Bezout’s Lemma (which holds as R is a PID) there exist α1, α2, β1, β2 ∈ R with
α1.a+α2.p

k = 1 and β1.b+β2.p
k = 1. But then r̄ and s̄ are units in R/pkR and so ā and b̄ are associates.

(Note that in contrast to part a) it does not follow that r̄, s̄ are inverses of each other: for example in
Z/4Z above, one has 2 = 3.2 = 1.2.)

Part d):[N – see below.] Let J = ker(φ). Then J = 〈c〉 for some c ∈ R. Since S ∼= R/cR it is enough
to prove that R/cR is an associator ring. If c = 0 then R ∼= S so that S is an associator ring by part
a). If J = R then S is the zero ring, which is trivially an associator ring. We may thus assume that c
is a nonzero nonunit, and hence since R is a PID and so UFD, we may write c = pn1

1 . . . pnk

k a product
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of distinct primes, where k ≥ 1 and ni ≥ 1 for each i, (1 ≤ i ≤ k). We proceed by induction on k. If
k = 1 then we are done by part c). If we know the claim for k and c =

∏k+1
i=1 p

ni
i , then by the Chinese

Remainder Theorem, (noting that pn1
1 and d =

∏k+1
j=2 p

nj

j are coprime) we have R/cR ∼= R/pn1
1 ⊕R/dR,

which is an associator ring by part b), as pn1
1 and d both have k or fewer distinct prime factors.

Note that the Chinese Remainder Theorem argument in part d) is exactly what is used in deducing the
primary decomposition form of the structure theorem from the canonical form, so the argument is one they have
seen in lectures in a different context.
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2. a) [5 marks] State a structure theorem for finitely generated modules over an Euclidean domain,
and define the rank of such a module. Use it to show that if R is an Euclidean domain and M is a
finitely generated torsion-free module, then M is free. [5]

b) [6 marks] The rational numbers Q are an abelian group under addtition and hence are a Z-
module. Show that any two elements of Q are linearly dependent. Hence or otherwise show
that any nonzero finitely generated submodule M of Q is free of rank 1. [6]

c) [8 marks] Find a basis for the submodule of Q generated by { 25 ,
3
7 ,

1
2}. [8]

d) [6 marks] Show that Q is not finitely generated as a Z-module. [6]

Solution: Part a): [BW] The structure theorem (in canonical form, they might state the primary decom-
position form instead) states that ifM is a finitely generated module over an Euclidean domainR, then
there exist nonzero non-units c1, c2 . . . , ck ∈ R (unique up to units) and a unique non-negative integer
s such that c1|c2| . . . |ck and

M ∼= Rs ⊕R/c1R⊕ . . . R/ckR.

The rank of M is defined to be the integer s. If M is torsion free then in the decomposition above we
must have k = 0 (as every element of the summand m ∈ R/c1R has c1 ∈ AnnR(m), and hence is
torsion). But then M ∼= Rs is free as required.

Part b): [N] If p, q ∈ Q we may write p = a/b, q = c/d where b, d ∈ Z>0 and a, b ∈ Z. But then clearly
we have

(bc).p− (ad).q = ac− ac = 0,

so that p and q are linearly dependent provided bc and ad are not both zero. But since b, d are nonzero,
this last happens only if c = a = 0, so p = q = 0 and then 1.p+0.q = 0 is a nontrivial linear dependence.
Suppose that M ⊆ Q is a nonzero finitely generated submodule of Q. Then since Q is torsion-free (it’s
a field, so an integral domain, so certainly torsion-free as a Z-module, i.e. Abelian group) M is also
and so it follows from the first part that M is free. On the other hand we have just seen that Q has no
linearly independent sets of size larger than 1, hence if M is nonzero it must be free of rank one.

Part c): [S] LetM = 〈 12 ,
2
5 ,

3
7 〉. ClearlyM is a submodule of Z.( 1

70 ), and the reverse inclusion follows
if we can write 1

70 = a
2 + 2b

5 + 3c
7 for some a, b, c ∈ Z, or equivalently if we can write 1 = 35a+ 14b+ 30c,

which is clear possible as this set has h.c.f. equal to 1, or more explicitly because 1 = 3.35 − 3.30 − 14.
Thus 1

70 is a basis for M as required. (You could adapt this strategy to give a proof of part ii) that did not use
the structure theorem.)

Part d): [N] For the last part, if Q were finitely generated, by the previous part if would be free of
rank one. But then we would have Q = Z.(m

n ) for some m
n ∈ Q. But since 1

n+1 /∈ Z.(m
n ) as 1

n+1 < |
a.m
n |

for any a ∈ Z, this is impossible, and hence Q is not finitely generated as required.
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3. Let P ⊂ Z[t] be a nonzero prime ideal such that P ∩ Z = {0}.

a) [6 marks] Define the content c(f) of a nonzero polynomial f ∈ Z[t]. Define the content of nonzero
polynomial g ∈ Q[t] and show that it is well-defined.

Show that if g1, g2 ∈ Q[t]\{0} then c(g1.g2) = c(g1).c(g2).

[You may assume, without proof, that c(f.g) = c(f).c(g) for f, g ∈ Z[t].]

b) [8 marks] Let

P̃ = { 1

n
.f : n ∈ Z>0, f ∈ P} ⊆ Q[t].

Show that P̃ is an ideal in Q[t], and that P̃ ∩ Z[t] = P .

c) [7 marks] Show that there is a polynomial f ∈ Z[t] with content equal to 1 such that P̃ = 〈f〉Q[t].
Deduce that P = 〈f〉Z[t] is a principal ideal in Z[t].

[You may assume, without proof, that Q[t] is a principal ideal domain. Note also that if R is a ring, and
r ∈ R then we write 〈r〉R for the ideal in R generated by r.]

iv) [4 marks] Give, with proof, an example of a prime ideal in Z[t] which is not principal.

Solution: Part a) [BW]: If f ∈ Z[t], and f =
∑n

i=0 ait
i then we set c(f) = h.c.f.{ai : 1 ≤ i ≤ n}. It follows

that we may write f = c(f).f1 where f1 ∈ Z[t] has c(f1) = 1, and this property uniquely determines
c(f) (provided we insist c(f) > 0.)

If f ∈ Q[t] is nonzero then we define c(f) to be the unique positive α ∈ Q>0 such that f = α.f1
where f1 ∈ Z[t] has c(f) = 1. To see that such an α exists, pick any N ∈ Z>0 such that N.f ∈ Z[t]
(take for example the product of the denominators of the coefficients of f ) and set α = c(N.f)/N
(where N.f ∈ Z[t], so that c(N.f) is already well-defined). It is then clear that α ∈ Q>0 and that
α−1f = Nf/c(Nf) has content 1 as required. To see that α is unique, suppose that f = α1f1 = α2f2
where α1, α2 ∈ Q>0 and f1, f2 ∈ Z[t] have c(f1) = c(f2) = 1. Then for i = 1, 2 write αi = mi/ni where
mi, ni ∈ Z>0, so we have (n2m1)f1 = (n1m2)f2. But now by the multiplicativity of the content in Z[t]
(viewing n2m1, n1m2 ∈ Z[t] as constant polynomials) we have c(n2m1).c(f1) = c(n1m2)c(f2). But if
n ∈ Z ⊂ Z[t], clearly c(n) = |n|, and hence n2m1 = n1m2, that is, α1 = α2 as required.

Finally suppose that f, g ∈ Q[t] are nonzero polynomials. PickingN1, N2 ∈ Z>0 such thatN1.f,N2.g ∈
Z[t], clearly N1N2(f.g) = (N1.f)(N2.g) ∈ Z[t], and so by the above we have

c(f.g) = c(N1N2.fg)/N1N2 = c(N1f)c(N2g)/N1N2 = (c(N1f)/N1).(c(N2g)/N2) = c(f).c(g).

Part b) [N – simple application of definitions and results in course.]: Clearly P̃ is nonempty, as if f ∈ P
then f = 1

1 .f ∈ P̃ . To check that P̃ is an ideal, note that if 1
nf,

1
mg ∈ P̃ then

1

n
.f − 1

m
.g =

1

n.m
(m.f − n.g) ∈ P̃ ,

as clearly m.f − n.g ∈ P since P is an ideal. Thus P̃ is an abelian subgroup of (Q[t],+). If 1
nf ∈ P̃

and g ∈ Q[t], then as above we can write g = 1
m .h for some h ∈ Z[t], m ∈ Z>0 and then g.( 1

n .f) =
1

m.n (h.f) ∈ P̃ and h.f ∈ P since P is an ideal in Z[t].
Now consider P̃ ∩ Z[t]. As already noted, P ⊆ P̃ and so certainly P ⊆ P̃ ∩ Z[t]. But if 1

nf ∈ Z[t]
where f ∈ P and n ∈ Z>0 it follows that n.( 1

n .f) = f ∈ P and so since P is prime either n ∈ P or
1
n .f ∈ P . But P ∩ Z = {0} and n > 0 so we must have 1

n .f ∈ P and P̃ ∩ Z[t] = P as required.

Part c): [S] Since Q[t] is a PID, P̃ is principal, so it has a generator g say, and g = c(g).f where
f ∈ Z[t] has content 1, so (as c(f) is a unit in Q[t]) P̃ has a generator with content 1 as required.
We claim P is generated by f : indeed if g ∈ P ⊆ P̃ we can write g = h.f for some h ∈ Q[t], but
then c(h) = c(h).1 = c(h).c(f) = c(g) ∈ Z so h ∈ Z[t]. (Note that it follows from the existence and
uniqueness of the content in Q[t] that a nonzero element f ∈ Q[t] lies in Z[t] if and only if c(f) ∈ Z.)
Moreover as f ∈ Z[t] ∩ P̃ by the previous part it lies in P , so P = 〈f〉 as required.

Minor variant: Since P = P̃ ∩ Z[t], it is enough to show that P̃ ∩ Z[t] = 〈f〉Q[t] ∩ Z[t] = 〈f〉Z[t]. But
if h ∈ Q[t] is such that h.f ∈ Z[t], then taking contents we see c(h.f) = c(h).c(f) = c(h) ∈ Z[t] so that
h ∈ Z[t] and hence 〈f〉Q[t] ∩ Z[t] ⊆ 〈f〉Z[t]. Since the reverse inclusion is immediate we are done.
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Part d) [S] Consider the ideal I = 〈2, t〉. Then I is the kernel of the surjective homomorphism
Z[t]→ Z/2Z given by

∑n
i=0 ait

i 7→ a0 mod 2, and hence is a maximal (therefore prime) ideal. If it was
generated by a single element f , then if 2 = a.f for some a implies deg(f) = 0 (since Z is an integral
domain so degrees of polynomials add) and f = c divides 2. But then either c = ±2 or c = 1. In the
former case t /∈ 〈±2〉while in the latter we would have I = Z[t] both of which give a contradiction.

Note that this is also an example of how a UFD differs from a PID: in any UFD it makes sense to define
highest common factors, but Bezout’s Lemma fails – in the above example in Z[t] the highest common factor of 2
and t is 1, but 1 is not a linear combination of 2 and t.
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