A3: Algebra II Mathematical Institute, University of Oxford Hilary Term 2015

Part A Algebra II, examination questions and solutions.

1. Let R be a ring.

- a) [8 marks] Let $a, b \in R$. We say that a and b are associate if there is a unit $u \in R^{\times}$ such that a = ub.
 - *i*) Show that if *a* and *b* are associate then $\langle a \rangle = \langle b \rangle$.
 - *ii*) A ring in which the converse holds is called an *associator ring*. Show an integral domain is an associator ring.
 - *iii*) What are the ideals in $\mathbb{Z}/4\mathbb{Z}$? Show that $\mathbb{Z}/4\mathbb{Z}$ is an associator ring which is not an integral domain.
- b) [5 marks] Show that if R_1 and R_2 are associator rings then so is $R_1 \oplus R_2$.
- c) [6 marks] Let *R* be a PID, *p* a prime element in *R* and *k* a positive integer. Show that $S = R/p^k R$ is an associator ring.
- d) [6 marks] If R is a PID, and $\phi: R \to S$ is a surjective ring homomorphism, then S is an associator ring.

Solution: Part a): [BW] part i): If a = ub then $a \in \langle b \rangle$ so that $\langle a \rangle \subset \langle b \rangle$. But then $b = u^{-1}a$ similarly shows that $\langle b \rangle \subseteq \langle a \rangle$, so that $\langle a \rangle = \langle b \rangle$ as required. For part *ii*): if $\langle a \rangle = \langle b \rangle$ then there are $u, v \in R$ such that a = u.b and b = v.a. But then a = u.(va) so that a(1 - uv) = 0 and hence since R is an integral domain, either a = 0 or u, v are units. In the latter case a and b are clearly associates, while in the former $b \in \langle 0 \rangle = \{0\}$ so that b = 0 also and hence again a, b are associates. For part *iii*) let $R = \mathbb{Z}/4\mathbb{Z}$. We have $R^{\times} = \{1 + 4\mathbb{Z}, 3 + 4\mathbb{Z}\}$, so that R = 1.R = 3.R and $2R = \{0 + 2\mathbb{Z}, 2 + 2\mathbb{Z}\}$. Thus the only ideals in R are $\{0\}, 2R$ and R. Clearly R is thus an associator ring, because if $I = \langle a \rangle = \langle b \rangle$ then if I = R, a and b are units and hence associates, if I = 2R, then $a = b = 2 + 4\mathbb{Z}$ (as this is the only nonzero element in the ideal!) Finally if $I = \{0\}$ then a = b = 1.b = 0 are again associates. Since $(2 + 4\mathbb{Z})^2 = 0 + 4\mathbb{Z}$, clearly $\mathbb{Z}/4\mathbb{Z}$ is not an integral domain.

Part b) [S]: Suppose that $I = \langle (a_1, a_2) \rangle = \langle (b_1, b_2) \rangle \subseteq R_1 \oplus R_2$. Then $I \cap R_1 = a_1R_1 = b_1R_1$, and $I \cap R_2 = a_2R_2 = b_2R_2$, and thus since R_1 and R_2 are associator rings, there are units $u_1 \in R_1$ with $a_1 = u_1b_1$, $a_2 = u_2b_2$, so that $(a_1, a_2) = (u_1, u_2)(a_2, b_2)$. Since $(u_1, u_2).(u_1^{-1}, u_2^{-1}) = (1, 1)$ we see that $(u_1, u_2) \in S^{\times}$ so that (a_1, b_1) and (a_2, b_2) are associates as required.

Part *c*): [S] Suppose that $I = \langle a + p^k R \rangle = \langle b + p^k R \rangle$. Note we may assume $a, b \in R$ are both nonzero. If $q: R \to R/p^k R$ denotes the quotient map, $q^{-1}(I) = Ra + p^k R = gR$ where *g* is by definition a highest common factor of *a* and p^k . Since *p* is a prime element and *R* is a UFD, the highest common factor *g* must be (up to a unit) p^l for some $l \in \mathbb{Z}$ with $0 \le l \le k$, and we may write $a = cp^l$, where $p \nmid c$. Since $I = \langle b + p^k R \rangle$ also, we similarly have $b = dp^l$, where $p \nmid d$. But then *c* and p^k are coprime, so that $Rc + Rp^k = R$ and we may write $1 = \alpha.c + \beta.p^k$ and so $\alpha.c + p^k R = 1 + p^k R$ so that $c + p^k R$ is a unit in $R/p^k R$, and hence $a + p^k R$ and $p^l + p^k R$ are associates. By symmetry $b + p^k R$ and $p^l + p^k R$ are also associates, and hence $a + p^k R$ and $b + p^k R$ are associates as required.

Variant: As in part *a*) if $\bar{a}, \bar{b} \in S$ have $\langle \bar{a} \rangle = \langle \bar{b} \rangle$ then there exist \bar{r}, \bar{s} such that $\bar{a} = \bar{r}\bar{b}$ and $\bar{b} = \bar{s}\bar{a}$, so that $\bar{a} = \bar{a}(1 - \bar{r}\bar{s})$. Taking representatives $a, b, r, s \in R$ corresponding to $\bar{a}, \bar{b}, \bar{r}, \bar{s}$ respectively, we see that $p^k | a(1 - rs)$. But then since R is a UFD either p^k divides a, in which case $\bar{a} = 0$ and we are done trivially, or p | 1 - rs and hence clearly p does not divide r or s. But the r, s are coprime of p and hence also p^k , so that by Bezout's Lemma (which holds as R is a PID) there exist $\alpha_1, \alpha_2, \beta_1, \beta_2 \in R$ with $\alpha_1.a + \alpha_2.p^k = 1$ and $\beta_1.b + \beta_2.p^k = 1$. But then \bar{r} and \bar{s} are units in $R/p^k R$ and so \bar{a} and \bar{b} are associates. (Note that in contrast to part a) it does *not* follow that \bar{r}, \bar{s} are inverses of each other: for example in $\mathbb{Z}/4\mathbb{Z}$ above, one has 2 = 3.2 = 1.2.)

Part *d*):[N – see below.] Let $J = \text{ker}(\phi)$. Then $J = \langle c \rangle$ for some $c \in R$. Since $S \cong R/cR$ it is enough to prove that R/cR is an associator ring. If c = 0 then $R \cong S$ so that S is an associator ring by part *a*). If J = R then S is the zero ring, which is trivially an associator ring. We may thus assume that c is a nonzero nonunit, and hence since R is a PID and so UFD, we may write $c = p_1^{n_1} \dots p_k^{n_k}$ a product

of distinct primes, where $k \ge 1$ and $n_i \ge 1$ for each i, $(1 \le i \le k)$. We proceed by induction on k. If k = 1 then we are done by part c). If we know the claim for k and $c = \prod_{i=1}^{k+1} p_i^{n_i}$, then by the Chinese Remainder Theorem, (noting that $p_1^{n_1}$ and $d = \prod_{j=2}^{k+1} p_j^{n_j}$ are coprime) we have $R/cR \cong R/p_1^{n_1} \oplus R/dR$, which is an associator ring by part b), as $p_1^{n_1}$ and d both have k or fewer distinct prime factors.

Note that the Chinese Remainder Theorem argument in part *d*) is exactly what is used in deducing the primary decomposition form of the structure theorem from the canonical form, so the argument is one they have seen in lectures in a different context.

- 2. *a*) [5 marks] State a structure theorem for finitely generated modules over an Euclidean domain, and define the *rank* of such a module. Use it to show that if R is an Euclidean domain and M is a finitely generated torsion-free module, then M is free. [5]
 - b) [6 marks] The rational numbers \mathbb{Q} are an abelian group under addition and hence are a \mathbb{Z} -module. Show that any two elements of \mathbb{Q} are linearly dependent. Hence or otherwise show that any nonzero finitely generated submodule M of \mathbb{Q} is free of rank 1. [6]
 - c) [8 marks] Find a basis for the submodule of \mathbb{Q} generated by $\{\frac{2}{5}, \frac{3}{7}, \frac{1}{2}\}$. [8]
 - *d*) [6 marks] Show that \mathbb{Q} is not finitely generated as a \mathbb{Z} -module. [6]

Solution: Part *a*): [BW] The structure theorem (in canonical form, they might state the primary decomposition form instead) states that if *M* is a finitely generated module over an Euclidean domain *R*, then there exist nonzero non-units $c_1, c_2 \ldots, c_k \in R$ (unique up to units) and a unique non-negative integer *s* such that $c_1|c_2|\ldots|c_k$ and

$$M \cong R^s \oplus R/c_1 R \oplus \ldots R/c_k R$$

The rank of M is defined to be the integer s. If M is torsion free then in the decomposition above we must have k = 0 (as every element of the summand $m \in R/c_1R$ has $c_1 \in Ann_R(m)$, and hence is torsion). But then $M \cong R^s$ is free as required.

Part *b*): [N] If $p, q \in \mathbb{Q}$ we may write p = a/b, q = c/d where $b, d \in \mathbb{Z}_{>0}$ and $a, b \in \mathbb{Z}$. But then clearly we have

$$(bc).p - (ad).q = ac - ac = 0,$$

so that p and q are linearly dependent provided bc and ad are not both zero. But since b, d are nonzero, this last happens only if c = a = 0, so p = q = 0 and then 1.p + 0.q = 0 is a nontrivial linear dependence. Suppose that $M \subseteq \mathbb{Q}$ is a nonzero finitely generated submodule of \mathbb{Q} . Then since \mathbb{Q} is torsion-free (it's a field, so an integral domain, so certainly torsion-free as a \mathbb{Z} -module, *i.e.* Abelian group) M is also and so it follows from the first part that M is free. On the other hand we have just seen that \mathbb{Q} has no linearly independent sets of size larger than 1, hence if M is nonzero it must be free of rank one.

Part *c*): [S] Let $M = \langle \frac{1}{2}, \frac{2}{5}, \frac{3}{7} \rangle$. Clearly *M* is a submodule of $\mathbb{Z}.(\frac{1}{70})$, and the reverse inclusion follows if we can write $\frac{1}{70} = \frac{a}{2} + \frac{2b}{5} + \frac{3c}{7}$ for some $a, b, c \in \mathbb{Z}$, or equivalently if we can write 1 = 35a + 14b + 30c, which is clear possible as this set has h.c.f. equal to 1, or more explicitly because 1 = 3.35 - 3.30 - 14. Thus $\frac{1}{70}$ is a basis for *M* as required. (*You could adapt this strategy to give a proof of part ii*) *that did not use the structure theorem.*)

Part *d*): [N] For the last part, if \mathbb{Q} were finitely generated, by the previous part if would be free of rank one. But then we would have $\mathbb{Q} = \mathbb{Z}.(\frac{m}{n})$ for some $\frac{m}{n} \in \mathbb{Q}$. But since $\frac{1}{n+1} \notin \mathbb{Z}.(\frac{m}{n})$ as $\frac{1}{n+1} < |\frac{a.m}{n}|$ for any $a \in \mathbb{Z}$, this is impossible, and hence \mathbb{Q} is not finitely generated as required.

- **3.** Let $P \subset \mathbb{Z}[t]$ be a nonzero prime ideal such that $P \cap \mathbb{Z} = \{0\}$.
 - a) [6 marks] Define the *content* c(f) of a nonzero polynomial f ∈ Z[t]. Define the content of nonzero polynomial g ∈ Q[t] and show that it is well-defined.
 Show that if g₁, g₂ ∈ Q[t] \{0} then c(g₁.g₂) = c(g₁).c(g₂).
 [You may assume, without proof, that c(f.g) = c(f).c(g) for f, g ∈ Z[t].]
 - b) [8 marks] Let

$$\tilde{P} = \{\frac{1}{n} \cdot f : n \in \mathbb{Z}_{>0}, f \in P\} \subseteq \mathbb{Q}[t]$$

Show that \tilde{P} is an ideal in $\mathbb{Q}[t]$, and that $\tilde{P} \cap \mathbb{Z}[t] = P$.

c) [7 marks] Show that there is a polynomial $f \in \mathbb{Z}[t]$ with content equal to 1 such that $\hat{P} = \langle f \rangle_{\mathbb{Q}[t]}$. Deduce that $P = \langle f \rangle_{\mathbb{Z}[t]}$ is a principal ideal in $\mathbb{Z}[t]$.

[You may assume, without proof, that $\mathbb{Q}[t]$ is a principal ideal domain. Note also that if R is a ring, and $r \in R$ then we write $\langle r \rangle_R$ for the ideal in R generated by r.]

iv) [4 marks] Give, with proof, an example of a prime ideal in $\mathbb{Z}[t]$ which is not principal.

Solution: Part *a*) [BW]: If $f \in \mathbb{Z}[t]$, and $f = \sum_{i=0}^{n} a_i t^i$ then we set $c(f) = \text{h.c.f.}\{a_i : 1 \le i \le n\}$. It follows that we may write $f = c(f) \cdot f_1$ where $f_1 \in \mathbb{Z}[t]$ has $c(f_1) = 1$, and this property uniquely determines c(f) (provided we insist c(f) > 0.)

If $f \in \mathbb{Q}[t]$ is nonzero then we define c(f) to be the unique positive $\alpha \in \mathbb{Q}_{>0}$ such that $f = \alpha.f_1$ where $f_1 \in \mathbb{Z}[t]$ has c(f) = 1. To see that such an α exists, pick any $N \in \mathbb{Z}_{>0}$ such that $N.f \in \mathbb{Z}[t]$ (take for example the product of the denominators of the coefficients of f) and set $\alpha = c(N.f)/N$ (where $N.f \in \mathbb{Z}[t]$, so that c(N.f) is already well-defined). It is then clear that $\alpha \in \mathbb{Q}_{>0}$ and that $\alpha^{-1}f = Nf/c(Nf)$ has content 1 as required. To see that α is unique, suppose that $f = \alpha_1 f_1 = \alpha_2 f_2$ where $\alpha_1, \alpha_2 \in \mathbb{Q}_{>0}$ and $f_1, f_2 \in \mathbb{Z}[t]$ have $c(f_1) = c(f_2) = 1$. Then for i = 1, 2 write $\alpha_i = m_i/n_i$ where $m_i, n_i \in \mathbb{Z}_{>0}$, so we have $(n_2m_1)f_1 = (n_1m_2)f_2$. But now by the multiplicativity of the content in $\mathbb{Z}[t]$ (viewing $n_2m_1, n_1m_2 \in \mathbb{Z}[t]$ as constant polynomials) we have $c(n_2m_1).c(f_1) = c(n_1m_2)c(f_2)$. But if $n \in \mathbb{Z} \subset \mathbb{Z}[t]$, clearly c(n) = |n|, and hence $n_2m_1 = n_1m_2$, that is, $\alpha_1 = \alpha_2$ as required.

Finally suppose that $f, g \in \mathbb{Q}[t]$ are nonzero polynomials. Picking $N_1, N_2 \in \mathbb{Z}_{>0}$ such that $N_1.f, N_2.g \in \mathbb{Z}[t]$, clearly $N_1N_2(f,g) = (N_1.f)(N_2.g) \in \mathbb{Z}[t]$, and so by the above we have

Part *b*) [N – simple application of definitions and results in course.]: Clearly \tilde{P} is nonempty, as if $f \in P$ then $f = \frac{1}{1} f \in \tilde{P}$. To check that \tilde{P} is an ideal, note that if $\frac{1}{n}f, \frac{1}{m}g \in \tilde{P}$ then

$$\frac{1}{n}.f - \frac{1}{m}.g = \frac{1}{n.m}(m.f - n.g) \in \tilde{P},$$

as clearly $m.f - n.g \in P$ since P is an ideal. Thus \tilde{P} is an abelian subgroup of $(\mathbb{Q}[t], +)$. If $\frac{1}{n}f \in \tilde{P}$ and $g \in \mathbb{Q}[t]$, then as above we can write $g = \frac{1}{m}.h$ for some $h \in \mathbb{Z}[t]$, $m \in \mathbb{Z}_{>0}$ and then $g.(\frac{1}{n}.f) = \frac{1}{m.n}(h.f) \in \tilde{P}$ and $h.f \in P$ since P is an ideal in $\mathbb{Z}[t]$.

Now consider $\tilde{P} \cap \mathbb{Z}[t]$. As already noted, $P \subseteq \tilde{P}$ and so certainly $P \subseteq \tilde{P} \cap \mathbb{Z}[t]$. But if $\frac{1}{n}f \in \mathbb{Z}[t]$ where $f \in P$ and $n \in \mathbb{Z}_{>0}$ it follows that $n.(\frac{1}{n}.f) = f \in P$ and so since P is prime either $n \in P$ or $\frac{1}{n}.f \in P$. But $P \cap \mathbb{Z} = \{0\}$ and n > 0 so we must have $\frac{1}{n}.f \in P$ and $\tilde{P} \cap \mathbb{Z}[t] = P$ as required.

Part *c*): [S] Since $\mathbb{Q}[t]$ is a PID, \tilde{P} is principal, so it has a generator *g* say, and g = c(g).f where $f \in \mathbb{Z}[t]$ has content 1, so (as c(f) is a unit in $\mathbb{Q}[t]$) \tilde{P} has a generator with content 1 as required. We claim *P* is generated by *f*: indeed if $g \in P \subseteq \tilde{P}$ we can write g = h.f for some $h \in \mathbb{Q}[t]$, but then $c(h) = c(h).1 = c(h).c(f) = c(g) \in \mathbb{Z}$ so $h \in \mathbb{Z}[t]$. (Note that it follows from the existence and uniqueness of the content in $\mathbb{Q}[t]$ that a nonzero element $f \in \mathbb{Q}[t]$ lies in $\mathbb{Z}[t]$ if and only if $c(f) \in \mathbb{Z}$.) Moreover as $f \in \mathbb{Z}[t] \cap \tilde{P}$ by the previous part it lies in *P*, so $P = \langle f \rangle$ as required.

Minor variant: Since $P = \tilde{P} \cap \mathbb{Z}[t]$, it is enough to show that $\tilde{P} \cap \mathbb{Z}[t] = \langle f \rangle_{\mathbb{Q}[t]} \cap \mathbb{Z}[t] = \langle f \rangle_{\mathbb{Z}[t]}$. But if $h \in \mathbb{Q}[t]$ is such that $h.f \in \mathbb{Z}[t]$, then taking contents we see $c(h.f) = c(h).c(f) = c(h) \in \mathbb{Z}[t]$ so that $h \in \mathbb{Z}[t]$ and hence $\langle f \rangle_{\mathbb{Q}[t]} \cap \mathbb{Z}[t] \subseteq \langle f \rangle_{\mathbb{Z}[t]}$. Since the reverse inclusion is immediate we are done.

Part *d*) [S] Consider the ideal $I = \langle 2, t \rangle$. Then *I* is the kernel of the surjective homomorphism $\mathbb{Z}[t] \to \mathbb{Z}/2\mathbb{Z}$ given by $\sum_{i=0}^{n} a_i t^i \mapsto a_0 \mod 2$, and hence is a maximal (therefore prime) ideal. If it was generated by a single element *f*, then if 2 = a.f for some *a* implies deg(*f*) = 0 (since \mathbb{Z} is an integral domain so degrees of polynomials add) and f = c divides 2. But then either $c = \pm 2$ or c = 1. In the former case $t \notin \langle \pm 2 \rangle$ while in the latter we would have $I = \mathbb{Z}[t]$ both of which give a contradiction.

Note that this is also an example of how a UFD differs from a PID: in any UFD it makes sense to define highest common factors, but Bezout's Lemma fails – in the above example in $\mathbb{Z}[t]$ the highest common factor of 2 and t is 1, but 1 is not a linear combination of 2 and t.