- 1. Let R be a ring. We say that an element $x \in R$ is *nilpotent* if there is some $n \in \mathbb{N}$ such that $x^n = 0$. Let $N = \{x \in R : x \text{ is nilpotent}\}.$
 - (a) [8 marks] Show that if R is a commutative ring, then N is an ideal in R. Is N necessarily an ideal if R is not commutative?
 - (b) [9 marks] Define what it means for $x \in R$ to be a unit. Show that if R is commutative then the set $1 + N = \{1 + x : x \in N\}$ is a subgroup of R^{\times} the group of units of R.
 - (c) [8 marks] Let $R = \mathbb{Z}/n\mathbb{Z}$. Describe explicitly the elements of the group R^{\times} and the ideal N of nilpotent elements in terms of the prime factors of n. Calculate the order of N. Show that there are infinitely many n for which $1 + N = R^{\times}$.

Solution: Part a): [S] Clearly if $x \in N$ and $r \in R$ then if $x^n = 0$ it follows $(rx)^n = r^n \cdot x^n = 0$. If $x^n = y^m = 0$, then

$$(x+y)^{n+m} = \sum_{r+s=m+n} {m+n \choose r} x^r y^s = 0,$$

since if r + s = m + n we cannot have both r < n and s < m hence one of the factors x^r or y^s is zero, and hence each term in the sum vanishes. If R is not commutative then N is not an ideal: if $R = \text{Mat}_2(\mathbb{C})$ for example, then E_{12} and E_{21} are both nilpotent, but $A = E_{12} + E_{21}$ is a unit since $A^2 = I$.

Part b): [S] An element $x \in R$ is a unit if there is a $y \in R$ such that xy = yx = 1. The units in R form a group R^{\times} under multiplication. If $x, y \in N$ and R is commutative, then (1+x)(1+y) = 1 + (x+y+xy), and since N is an ideal $x + y + xy \in N$ if $x, y \in N$, so that 1 + N is closed under multiplication. Moreover, if $x^n = 0$ we have

$$(1+x)(1+\sum_{i=1}^{n-1}(-x)^i) = 1 + (-1)^{n-1}x^n = 1,$$

so that 1 + x is a unit, and since N is an ideal again, $\sum_{i=1}^{n-1} (-x)^i \in N$ so that $(1+x)^{-1}$ is in 1 + N. Thus 1 + N is a subgroup of R^{\times} as claimed.

Part c): [S] An element $k + n\mathbb{Z}$ is a unit in $\mathbb{Z}/n\mathbb{Z}$ if and only if there exists $a, b \in \mathbb{Z}$ such that a.k + bn = 1, and hence if and only if h.c.f.(k, n) = 1. In terms of the prime factors of n, $k + n\mathbb{Z}$ is a unit if and only if every prime p dividing n does not divide k.

[N] Next note that by the Chinese Remainder Theorem, if $n = \prod_{i=1}^{r} p_i^{a_i}$ is the prime factorization of n (where the $a_i > 0$ and p_i are distinct primes) then $k^m = 0 \mod n$ if and only if $k^m = 0 \mod p_i^{a_i}$ for each i $(1 \le i \le r)$. Clearly such an m exists if and only if p_i divides k for each i $(1 \le i \le r)$. It follows that $N = \{k(p_1 \dots p_r) + n\mathbb{Z} : k \in \mathbb{Z}\}$.

Alternative: Suppose that $k^m = 0 \mod n$. Then if p is a prime dividing n it follows p divides k^m , and hence p divides k (by the defining property of prime elements). Thus if p_i $(1 \le i \le r)$ are the distinct primes dividing n, then we must have $p_i \mid k$ for each every i $(1 \le i \le r)$. Conversely if $p_i \mid k$ for all i, then if $a = \max\{a_i : 1 \le i \le r\}$ (where $n = \prod_{i=1}^r p_i^{a_i}$), clearly n divides k^a , and so $k \mod n$ is nilpotent.

[N] The order of N is thus $|N| = \prod_{i=1}^{s} p_i^{a_i-1}$. If $n = 2^k$, then there are 2^{k-1} odd residues modulo n, and hence $1 + N = R^{\times}$ for any such n. (In fact these are the only integers for which $1 + N = R^{\times}$).

- 2. Let $n \in \mathbb{Z}$ be any integer.
 - (a) [5 marks] Show that $R_n = \{a + b\sqrt{n} : a, b \in \mathbb{Z}\}$ is a subring of the complex numbers \mathbb{C} .
 - (b) [8 marks] Let $F_n = \{r/s : r, s \in R_n, s \neq 0\} \subseteq \mathbb{C}$. Then F_n is a field containing \mathbb{Q} . Calculate the degree d_n of the field extension F_n/\mathbb{Q} .
 - (c) [7 marks] Assume now that R_n is a Euclidean domain. Prove that if $x \in F_n$ satisfies $x^m + c_1 x^{m-1} + \ldots + c_{m-1} x + c_m = 0$, where $c_i \in R_n$, $(1 \le i \le m-1)$ then $x \in R_n$.
 - (d) [5 marks] Is $\mathbb{Z}[\sqrt{-3}]$ a Euclidean domain? Justify your answer carefully.

[You may use any standard properties of a Euclidean domain provided you state them clearly.]

Solution: Part a):[B] Firstly R_n clearly contains 1 and if we have $a_1 + b_1\sqrt{n}, a_2 + b_2\sqrt{n} \in R_n$, then

$$(a_1 + b_1\sqrt{n})(a_2 + b_2\sqrt{n}) = (a_1a_2 + nb_1b_2) + (a_1b_2 + a_2b_1)\sqrt{n} \in R_n$$

Similarly:

$$(a_1 + b_1\sqrt{n}) - (a_2 + b_2\sqrt{n}) = (a_1 - a_2) + (b_1 - b_2)\sqrt{n} \in R_n,$$

so that by the subring test, R_n is a subring of \mathbb{C} .

Part b):[S] There are two cases: If n is a square, say $n = m^2$, then clearly $R_n = \mathbb{Z}$ and so $F_n = \mathbb{Q}$ and $d_n = 1$. Now suppose that n is not a square. We claim that 1 and \sqrt{n} are linearly independent over \mathbb{Q} . Indeed if $a + b\sqrt{n} = 0$ where $a, b \in \mathbb{Q}$, then multiplying by a suitable common denominator we would obtain $c + d\sqrt{n} = 0$, where $c, d \in \mathbb{Z}$, and by cancelling common factors we can assume g.c.d. $\{c, d\} = 1$. But then we find $c^2 = nd^2$, and so since \mathbb{Z} is a unique factorisation domain, every prime occuring in n occurs to an even power, so that n is a square, contradicting our assumption. Thus $\{1, \sqrt{n}\}$ are \mathbb{Q} -linearly independent. Let $Q_n = \mathbb{Q}$ -span $\{1, \sqrt{n}\}$. We claim that $F_n = Q_n$ and hence $d_n = 2$ for n a non-square. Indeed since the formulae in part a) show that Q_n is clearly closed under addition and multiplication, it is enough to check that if $r = a + b\sqrt{n} \in R_n \setminus \{0\}$ then $1/r \in Q_n$. But if we set $s = a - b\sqrt{n}$, then $rs = a^2 - nb^2 \neq 0$ (since $r, s \neq 0$ as $\{1, \sqrt{n}\}$ are \mathbb{Q} -linearly independent and $r \neq 0$) and so $r.(s/(a^2 - nb^2)) = 1$ and $s/(a^2 - nb^2) \in Q_n$ as required.

Alternative: There is a unique ring homomorphism $\phi: \mathbb{Q}[t] \to \mathbb{C}$ such that $\phi(t) = \sqrt{n}$. Its image, $\operatorname{im}(\phi)$ is a subring of \mathbb{C} which, since it consists of linear combinations of powers of \sqrt{n} is clearly the subring generated of \mathbb{Q} generated by \sqrt{n} . Since \mathbb{C} is an integral domain (it is a field) $\operatorname{im}(\phi)$ is an integral domain, and so $\operatorname{ker}(\phi)$ is a prime ideal of $\mathbb{Q}[t]$. Moreover, since $t^2 - n \in \operatorname{ker}(\phi)$, the kernel is nonzero, and so since $\mathbb{Q}[t]$ is a PID it follows that $\operatorname{ker}(\phi)$ is maximal, and hence $\operatorname{im}(\phi) \cong \mathbb{Q}[t]/\operatorname{ker}(\phi)$ is a field, and is therefore clearly the subfield F_n of \mathbb{C} generated by \sqrt{n} . Now since $\mathbb{Q}[t]$ is a PID, $\operatorname{ker}(\phi)$ is a principal ideal $\langle f \rangle$ for a unique monic irreducible polynomial f (since irreducibles are prime in a PID) and hence $f \mid t^2 - n$. Now by Gauss's Lemma, $t^2 - n$ is reducible over $\mathbb{Q}[t]$ if and only if it is reducible in $\mathbb{Z}[t]$, which since it is monic, is possible if and only if it has an integer root, that is, if and only if n is a square. If n is a square, clearly $R_n = \mathbb{Z}$ and $F_n = \mathbb{Q}$. Otherwise we see that $t^2 - n$ is irreducible and so is equal to f and $\operatorname{ker}(\phi) = \langle t^2 - n \rangle$. It follows $F_n \cong \mathbb{Q}[t]/\langle t^2 - n \rangle$ is of degree two over \mathbb{Q} .

Part c): [S] If R_n is an ED, then we may write x = a/b where $a, b \in R_n$ are coprime (indeed this can done in any integral domain provided highest common factors exist, which they do in any ED) then we find that

$$b^m + c_1 a^{m-1} b + \ldots + a^m = 0.$$

But then it follows b divides a^m , and so in particular a and b cannot be coprime unless b is a unit, in which case $x \in R_n$ as required.

Part d): [N] Note that $x = \frac{1-\sqrt{-3}}{2}$ satisfies $x^2 - x + 1 = 0$, but $x \notin R_{-3}$, whence by part c) it cannot be a Euclidean domain.

Alternative: Note that the restriction of the map $z \mapsto z\bar{z}$ is a multiplicative map $N: R_{-3} \to \mathbb{Z}_{\geq 0}$ sending $a + b\sqrt{-3}$ to $a^2 + 3b^2$. Moreover, if $z \in R_{-3}$ is a unit with inverse w, it follows 1 = N(1) = N(zw) = N(z).N(w), so that N(z) = 1. Since $a^2 + 3b^2 = 1$ if and only if $a = \pm 1$ and b = 0 we see that $R_{-3}^{\times} = {\pm 1}$. Next note that N takes the value 4 on each of $2, 1 \pm \sqrt{-3}$, and since the equation N(z) = 2 has no solutions it follows that these elements are irreducible, and moreover since $R^{\times} = {\pm 1}$ they are not associates. But then the equation $2.2 = (1 + \sqrt{-3})(1 - \sqrt{-3})$ shows that irreducibles in R_{-3} are not prime, and so R_{-3} is not a PID and hence not an ED. (*This second solution is close to a problem sheet question, and for that reason I would expect full justification along the lines given, so it is longer to write out than the first solution.*)

- 3. Let R be a commutative ring.
 - (a) [6 marks] (i) Let M be an R-module and let $X \subseteq M$ be any subset. Define what it means for X to be linearly independent, what it means for X to span M, and what it means for M to be a free module.
 - (ii) Show how any abelian group is naturally a Z-module.
 - [You need only describe the \mathbb{Z} -module structure, not prove that it satisfies the axioms.]
 - (b) [6 marks] Let M be a free module over a commutative ring R. Give a proof or a counterexample to the following:
 - (i) If X is a spanning set for M then X necessarily contains a basis of M.
 - (ii) If Y is a linearly independent set, then there is a basis X of M containing Y.
 - (c) [9 marks] Now let $R = \mathbb{Z}$, $M = \mathbb{Z}^3$ and $X = \{(2,4,6), (2,6,4), (4,6,2)\}$. Let N be the submodule spanned by X. Find a basis of M adapted to N, that is, find a basis $\{e_1, \ldots, e_n\}$ for M and elements $r_1, \ldots, r_m \in R$ such that $\{r_1e_1, \ldots, r_me_m\}$ is a basis of N where $m \in \mathbb{N}$ and $m \leq n$.
 - (d) [4 marks] State the theorem on the canonical form for a finitely generated module over a Euclidean domain R. Applying the theorem in the case $R = \mathbb{Z}$ or otherwise, find with proof how many isomorphism classes of abelian groups there are of order 675.

Solution: Part a)i):[B] A subset X is linearly independent if for any $n \in \mathbb{N}$ and $x_1, \ldots, x_n \in X$, $r_1, \ldots, r_n \in R$ whenever $\sum_{i=1}^n r_i x_i = 0$ then $r_i = 0$ for all $i \ (1 \leq i \leq n)$. A subset X spans M if M is the only submodule of M which contains X is the entire module M itself. A module is *free* if it has a basis, that is, a set B which is linearly independent and which spans M.

Part a)(i):[B] If M is an abelian group, then for $m \in M$ define 0.m = m, and inductively (n+1).m = n.m + m for $n \in \mathbb{Z}_{\geq 0}$. If n < 0 then set n.m = -((-n).m) the additive inverse (in M) of (-n).m.

Part b(i):[S] If we let $R = \mathbb{Z}$ and $M = \mathbb{Z}$, then $X = \{2, 3\}$ spans M (because 1 = 3 - 2) but no subset of X spans M, so a spanning set need not contain a basis.

Part b(i): [S] If we take $R = M = \mathbb{Z}$ again, then $\{2\}$ is a linearly independent set, but it cannot be extended to a basis of M (as the only bases of \mathbb{Z} are $\{1\}$ and $\{-1\}$).

Part c): [S] Using row operations on the matrix with rows given by the three vectors in X, we reduce to an upper triangular matrix with rows $\{(2, 4, 6), (0, 2, -2)(0, 0, 6)\}$ (and thus these rows are linearly independent). Thus if we let $F = \{(1, 2, 3), (0, 1, -1), (0, 0, 1)\}$ then F is a basis for M since

$$(a, b, c) = a.(1, 2, 3) + (b - 2a).(0, 1, -1) + (c - a + b)(0, 0, 1)$$

and thus $\{2.(1,2,3), 2.(0,1,-1), 12.(0,0,1)\}$ is a basis for N (or note that the change of basis matrix between this basis and the standard basis is invertible since it has determinant $1 \in \mathbb{Z}^{\times}$).

Alternative: Let $\{f_1, f_2, f_3\}$ be the standard basis of \mathbb{Z}^3 and let $M_1 = \text{Span}\{e_1\}, M_2 = \text{Span}\{f_1, f_2\}$ and $M_3 = \mathbb{Z}^3$. We build a basis of M adapted to N by considering $N_i = M_i \cap N$. We have

$$N = \{n(a, b, c) = (2a + 2b + 4c, 4a + 6b + 6c, 6a + 4b + 2c) : a, b, c \in \mathbb{Z}\}$$

so that n(a, b, c) lies in N_1 if 4a + 6b + 6c = 6a + 4b + 2c = 0. The general solution to these two equations is (a, b, c) = (3k, -7k, 5k) $(k \in \mathbb{Z})$, and so $N_1 = \{(12k, 0, 0) : k \in \mathbb{Z}\}$. It follows that if we set $e_1 = (1, 0, 0)$ then $\{e_1\}$ is a basis of M_1 and $\{12e_1\}$ is a basis of N_1 . Next $N_2 = \{n(a, b, c) : 6a + 4b + 2c = 0\}$, and so c = -3a - 2b, that is $N_2 = \{(10a + 6b, 14a + 6b, 0) :$ $a, b \in \mathbb{Z}$ }. Then $N_2/N_1 \cong \{(14a+6b:a, b \in \mathbb{Z}\})$, and since h.c.f. $\{14, 6\}$ is 2, where 14-2.6=2, it follows that if $e_2 = (-1, 1, 0)$ then $2e_2 \in N_2$ and $2e_2 + N_1$ is a basis of N_2/N_1 . Thus $\{e_1, e_2\}$ is a basis of M_2 and $\{12e_1, 2e_2\}$ is a basis of N_2 . Finally, $N/N_2 \cong \{6a+4b+2c:a, b, c \in \mathbb{Z}\} = 2\mathbb{Z}$, and 2 = 2c lifts to $(4, 6, 2) \in N$, thus $\{(12, 0, 0), (-2, 2, 0), (4, 6, 2)\}$ is a basis of N. It follows that if we set $e_3 = (2, 3, 1)$ and $r_1 = 12, r_2 = 2, r_3 = 2$ then $\{e_1, e_2, e_3\}$ is a basis of M and $\{r_1e_1, r_2e_2, r_3e_3\}$ is a basis of N as required.

Part d): [B for statement of theorem, application is N] The canonical form theorem states that if M is a finitely generated module over a Euclidean domain then there are non-zero non-unit elements $d_1, d_2, \ldots, d_k \in \mathbb{R}$ (where $k \in \mathbb{Z}_{\geq 0}$) unique up to units, and a unique integer $s \in \mathbb{Z}_{\geq 0}$ such that $d_1 \mid d_2 \mid \ldots \mid d_k$ and

$$M \cong R^s \oplus \bigoplus_{i=1}^k R/d_i R,$$

An abelian group of order 675 must be of the form $\mathbb{Z}/c_1\mathbb{Z}\oplus\ldots\oplus\mathbb{Z}/c_k\mathbb{Z}$, where $1 < c_1|c_2|\ldots|c_k$ and $\prod_{i=1}^k c_i = 675$. Since $675 = 5^2 \cdot 3^3$ we see $k \leq \max\{2,3\}$. If k = 1 then the only possibility is (675). If k = 2 the possibilities are (5, 135), (3, 225), (15, 75), since c_1 can only be $5^i \cdot 3^j$ where $i \leq 1$ and $j \leq 1$, with $(i, j) \neq (0, 0)$, while if k = 3, each c_i is divisible by 3, and the only possibilities are (3, 3, 75), (3, 15, 15), thus there are 6 isomorphism classes.

Alternative: The primary decomposition for modules over R a PID says that any finitely generated R-module is isomorphic to a module of the form

$$R^s \oplus \bigoplus_{i \in I} R/p_i^{n_i} R$$

where I is a finite set, $n_i \in \mathbb{Z}_{>0}$ and the p_i a prime in R, and moreover the pairs $(p_i R, n_i)$ are unique. Applying this theorem, if M is an abelian group of order $675 = 5^2 \cdot 3^3$, we see that s = 0, the primes p_i must be 3 or 5. Moreover the integers n_i attached to 3 must sum to 3 while those attached to 5 must sum to 2. It follows the integers must be (3), (2, 1), (1, 1, 1) for 5 and (2), (1, 1) for 3, thus there are 3.2 = 6 possibilities for the primary decomposition of M.