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1. Let R be a ring. We say that an element x € R is nilpotent if there is some n € N such that
2" =0. Let N = {z € R : z is nilpotent}.

(a) [8 marks| Show that if R is a commutative ring, then N is an ideal in R. Is N necessarily
an ideal if R is not commutative?

(b) [9 marks] Define what it means for z € R to be a unit. Show that if R is commutative
then the set 1 + N = {1+ xz:x € N} is a subgroup of R* the group of units of R.

(c¢) [8 marks] Let R = Z/nZ. Describe explicitly the elements of the group R* and the ideal
N of nilpotent elements in terms of the prime factors of n. Calculate the order of N.
Show that there are infinitely many n for which 1 + N = R*.

Solution: Part a): [S] Clearly if z € N and r € R then if 2" = 0 it follows (rz)" = r™.2" = 0.

If 2™ = y™ = 0, then
(x_’_y)ner: Z (m:n)$rys:07

r4+s=m+n

since if r + s = m + n we cannot have both r < n and s < m hence one of the factors z" or y*
is zero, and hence each term in the sum vanishes. If R is not commutative then N is not an
ideal: if R = Maty(C) for example, then Ej9 and FEo; are both nilpotent, but A = FE15 + Fa
is a unit since A% = I.

Part b): [S] An element € R is a unit if there is a y € R such that xy = yx = 1. The
units in R form a group R* under multiplication. If z,y € N and R is commutative, then
(I+2)(1+y) =1+ (z+y+axy), and since N is an ideal z +y + 2y € N if x,y € N, so that
1+ N is closed under multiplication. Moreover, if 2™ = 0 we have

n—1

I+ 2)(1+ Y (—2)) =1+ (-)" 2" =1,

=1

so that 1+ z is a unit, and since N is an ideal again, Y7~ (=)’ € N so that (1 +z)~ ! is in
14+ N. Thus 1+ N is a subgroup of R* as claimed.

Part ¢): [S] An element k + nZ is a unit in Z/nZ if and only if there exists a,b € Z such that
a.k + bn = 1, and hence if and only if h.c.f.(k,n) = 1. In terms of the prime factors of n,
k + nZ is a unit if and only if every prime p dividing n does not divide k.

[N] Next note that by the Chinese Remainder Theorem, if n = [],_, p{* is the prime factor-
ization of n (where the a; > 0 and p; are distinct primes) then £ = 0 mod n if and only if
E™ =0 mod p}* for each ¢ (1 < i < ). Clearly such an m exists if and only if p; divides k for
each i (1 <i<r). It follows that N = {k(p1...py) + nZ : k € Z}.

Alternative: Suppose that K™ =0 mod n. Then if p is a prime dividing n it follows p divides
k™, and hence p divides k (by the defining property of prime elements). Thus if p; (1 <i < r)
are the distinct primes dividing n, then we must have p; | k for each every ¢ (1 < i < k).
Conversely if p; | k for all i, then if @ = max{a; : 1 <4 < r} (where n = [[;_, p}*), clearly n
divides k%, and so kK mod n is nilpotent.

[N] The order of N is thus |[N| = [[5_, p»~'. If n = 2%, then there are 25! odd residues
modulo n, and hence 1+ N = R* for any such n. (In fact these are the only integers for which
1+ N = RX).
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2. Let n € Z be any integer.
(a) [5 marks| Show that R, = {a + by/n:a,b € Z} is a subring of the complex numbers C.

(b) [8 marks] Let F,, = {r/s : r,s € R,,s # 0} C C. Then F, is a field containing Q.
Calculate the degree d,, of the field extension F,,/Q.

(¢) [7 marks] Assume now that R, is a Euclidean domain. Prove that if x € F,, satisfies
2™ 4™ V4 b1+ ey =0, where ¢; € Ry, (1 <i<m —1) then x € R,,.

(d) [5 marks] Is Z[v/—3] a Euclidean domain? Justify your answer carefully.

[You may use any standard properties of a Euclidean domain provided you state them clearly.)

Solution: Part a):[B] Firstly R, clearly contains 1 and if we have ay + b1\/n, as + bay/n € Ry,
then
(a1 + bl\/ﬁ)((]a + bg\/ﬁ) = (alag + nblbg) + (albg + agbl)\/ﬁ € R,,

Similarly:
(a1 + bl\/ﬁ) — (ag -+ bzx/ﬁ) = (a1 — ag) + (bl — bg)\/ﬁ € R,
so that by the subring test, R, is a subring of C.

Part b):[S] There are two cases: If n is a square, say n = m?, then clearly R, = Z and so
F, = Q and d,, = 1. Now suppose that n is not a square. We claim that 1 and /n are
linearly independent over Q. Indeed if a 4+ by/n = 0 where a,b € Q, then multiplying by a
suitable common denominator we would obtain ¢+ dy/n = 0, where ¢, d € Z, and by cancelling
common factors we can assume g.c.d.{c,d} = 1. But then we find ¢> = nd?, and so since Z
is a unique factorisation domain, every prime occuring in n occurs to an even power, so that
n is a square, contradicting our assumption. Thus {1,+/n} are Q-linearly independent. Let
Qn = Q-span{1,/n}. We claim that F,, = @, and hence d,, = 2 for n a non-square. Indeed
since the formulae in part a) show that @, is clearly closed under addition and multiplication,
it is enough to check that if » = a + by/n € R,\{0} then 1/r € Q,,. But if we set s = a — by/n,
then rs = a® — nb? # 0 (since 7,5 # 0 as {1,/n} are Q-linearly independent and r # 0) and
so r.(s/(a®> —nb?)) = 1 and s/(a® — nb?) € Q,, as required.

Alternative: There is a unique ring homomorphism ¢: Q[t] — C such that ¢(t) = /n. Its
image, im(¢) is a subring of C which, since it consists of linear combinations of powers of \/n
is clearly the subring generated of Q generated by y/n. Since C is an integral domain (it is
a field) im(¢) is an integral domain, and so ker(¢) is a prime ideal of Q[t]. Moreover, since
t2 —n € ker(¢), the kernel is nonzero, and so since Q[t] is a PID it follows that ker(¢) is
maximal, and hence im(¢) = Q[t]/ker(¢) is a field, and is therefore clearly the subfield F), of
C generated by y/n. Now since Q[t] is a PID, ker(¢) is a principal ideal (f) for a unique monic
irreducible polynomial f (since irreducibles are prime in a PID) and hence f | 2 —n. Now by
Gauss’s Lemma, > — n is reducible over Q[#] if and only if it is reducible in Z[t], which since
it is monic, is possible if and only if it has an integer root, that is, if and only if n is a square.
If n is a square, clearly R, = Z and F,, = Q. Otherwise we see that t> — n is irreducible and
so is equal to f and ker(¢) = (t?> —n). It follows F}, = Q[t]/(t?> — n) is of degree two over Q.

Part ¢): [S] If R, is an ED, then we may write x = a/b where a,b € R,, are coprime (indeed
this can done in any integral domain provided highest common factors exist, which they do in
any ED) then we find that

V" + ™ b+ .+ a™ =0.

But then it follows b divides a™, and so in particular ¢ and b cannot be coprime unless b is a
unit, in which case x € R,, as required.
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Part d): [N] Note that x = 17\2/73 satisfies 2 —z + 1 = 0, but = ¢ R_3, whence by part ¢) it
cannot be a Euclidean domain.

Alternative: Note that the restriction of the map z — 22 is a multiplicative map N: R_3 — Z>¢
sending a + bv/—3 to a® + 3b%. Moreover, if z € R_3 is a unit with inverse w, it follows
1 = N(1) = N(2w) = N(2).N(w), so that N(z) = 1. Since a? + 3b> = 1 if and only if
a = %1 and b = 0 we see that R*; = {£1}. Next note that N takes the value 4 on each of
2,1+ /=3, and since the equation N(z) = 2 has no solutions it follows that these elements
are irreducible, and moreover since R* = {£1} they are not associates. But then the equation
2.2 = (1++/=3)(1 — v/—3) shows that irreducibles in R_3 are not prime, and so R_3 is not a
PID and hence not an ED. (This second solution is close to a problem sheet question, and for
that reason I would expect full justification along the lines given, so it is longer to write out
than the first solution.)
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3. Let R be a commutative ring.

(a) [6 marks| (i) Let M be an R-module and let X C M be any subset. Define what it
means for X to be linearly independent, what it means for X to span M, and what
it means for M to be a free module.

(ii) Show how any abelian group is naturally a Z-module.
[You need only describe the Z-module structure, not prove that it satisfies the axioms.]

(b) [6 marks] Let M be a free module over a commutative ring R. Give a proof or a counter-

example to the following;:
(i) If X is a spanning set for M then X necessarily contains a basis of M.
(ii) If Y is a linearly independent set, then there is a basis X of M containing Y.

(c) [9 marks] Now let R = Z, M = Z3 and X = {(2,4,6),(2,6,4),(4,6,2)}. Let N be

the submodule spanned by X. Find a basis of M adapted to N, that is, find a basis

{e1,...,en} for M and elements r1,...,7, € R such that {riei,...,rmen} is a basis of
N where m € N and m < n.

(d) [4 marks] State the theorem on the canonical form for a finitely generated module over
a Fuclidean domain R. Applying the theorem in the case R = 7Z or otherwise, find with
proof how many isomorphism classes of abelian groups there are of order 675.

Solution: Part a)i):[B] A subset X is linearly independent if for any n € N and z1,...,2, € X,
T1,...,7 € R whenever » " r;z; = 0 then r; = 0 for all ¢ (1 <i < n). A subset X spans M
if M is the only submodule of M which contains X is the entire module M itself. A module
is free if it has a basis, that is, a set B which is linearly independent and which spans M.

Part a)ii):[B] If M is an abelian group, then for m € M define 0.m = m, and inductively
(n+1)m =nm+m for n € Z>o. If n <0 then set n.m = —((—n).m) the additive inverse
(in M) of (—n).m

Part b)i):[S] If we let R =Z and M = Z, then X = {2,3} spans M (because 1 = 3 —2) but no
subset of X spans M, so a spanning set need not contain a basis.

Part b)ii): [S] If we take R = M = 7 again, then {2} is a linearly independent set, but it
cannot be extended to a basis of M (as the only bases of Z are {1} and {—1}).

Part ¢): [S] Using row operations on the matrix with rows given by the three vectors in X,
we reduce to an upper triangular matrix with rows {(2,4,6), (0,2, —2)(0,0,6)} (and thus these
rows are linearly independent). Thus if we let F' = {(1,2,3),(0,1,-1),(0,0,1)} then F is a
basis for M since

(a,b,¢) =a.(1,2,3) + (b —2a).(0,1,—1) + (¢ —a +b)(0,0,1)

and thus {2.(1,2,3),2.(0,1,—1),12.(0,0,1)} is a basis for N (or note that the change of basis
matrix between this basis and the standard basis is invertible since it has determinant 1 € Z*).

Alternative: Let {f1, f2, f3} be the standard basis of Z3 and let M; = Span{ei}, My =
Span{fi, fo} and M3 = Z3. We build a basis of M adapted to N by considering N; = M; N N.
We have

N ={n(a,b,c) = (2a + 2b + 4c,4a + 6b + 6¢,6a + 4b + 2¢) : a,b,c € Z}

so that n(a,b,c) lies in Ny if 4a + 6b 4 6¢ = 6a + 4b + 2¢ = 0. The general solution to these
two equations is (a, b, c) = (3k, —7k,5k) (k € Z), and so N1 = {(12k,0,0) : k € Z}. Tt follows
that if we set e; = (1,0,0) then {e;} is a basis of M; and {12e;} is a basis of Nj. Next
Ny ={n(a,b,c) : 6a+4b+2c =0}, and so ¢ = —3a — 2b, that is Ny = {(10a + 6b, 14a + 6b,0) :
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a,b € Z}. Then No/Ny = {(14a+6b: a,b € Z}, and since h.c.f.{14,6} is 2, where 14 —2.6 = 2,
it follows that if ea = (—1,1,0) then 2e5 € Ny and 2e2+ N is a basis of No/Nj. Thus {e1, ea} is
a basis of My and {12ey,2e5} is a basis of Na. Finally, N/Ny = {6a+4b+2c: a,b,c € Z} = 2Z,
and 2 = 2¢ lifts to (4,6,2) € N, thus {(12,0,0),(—2,2,0),(4,6,2)} is a basis of N. It follows
that if we set es = (2,3,1) and r = 12,79 = 2,73 = 2 then {e1,e2,e3} is a basis of M and
{r1e1,raez,r3e3} is a basis of N as required.

Part d): [B for statement of theorem, application is N| The canonical form theorem states that
if M is a finitely generated module over a Euclidean domain then there are non-zero non-unit

elements dy,ds,...,dp € R (where k € Z>() unique up to units, and a unique integer s € Z>
such that d; | da | ... | dg and
k
M = R* e P R/dR,
i=1

An abelian group of order 675 must be of the form Z/ciZ® ... ®Z/cyZ, where 1 < cilca] ... |cx
and Hle c; = 675. Since 675 = 52.3% we see k < max{2,3}. If k = 1 then the only possibility
is (675). If k = 2 the possibilities are (5,135),(3,225),(15,75), since ¢; can only be 5?37 where
i < 1andj <1, with (¢,5) # (0,0), while if & = 3, each ¢; is divisible by 3, and the only
possibilities are (3,3,75),(3,15,15), thus there are 6 isomorphism classes.

Alternative: The primary decomposition for modules over R a PID says that any finitely
generated R-module is isomorphic to a module of the form

R*® P R/p"R,
el

where I is a finite set, n; € Z~( and the p; a prime in R, and moreover the pairs (p; R, n;) are
unique. Applying this theorem, if M is an abelian group of order 675 = 52.33, we see that
s = 0, the primes p; must be 3 or 5. Moreover the integers n; attached to 3 must sum to 3
while those attached to 5 must sum to 2. It follows the integers must be (3),(2,1),(1,1,1) for
5 and (2),(1,1) for 3, thus there are 3.2 = 6 possibilities for the primary decomposition of M.
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