
1. Let R be a ring. We say that an element x ∈ R is nilpotent if there is some n ∈ N such that
xn = 0. Let N = {x ∈ R : x is nilpotent}.
(a) [8 marks] Show that if R is a commutative ring, then N is an ideal in R. Is N necessarily

an ideal if R is not commutative?

(b) [9 marks] Define what it means for x ∈ R to be a unit. Show that if R is commutative
then the set 1 +N = {1 + x : x ∈ N} is a subgroup of R× the group of units of R.

(c) [8 marks] Let R = Z/nZ. Describe explicitly the elements of the group R× and the ideal
N of nilpotent elements in terms of the prime factors of n. Calculate the order of N .
Show that there are infinitely many n for which 1 +N = R×.

Solution: Part a): [S] Clearly if x ∈ N and r ∈ R then if xn = 0 it follows (rx)n = rn.xn = 0.
If xn = ym = 0, then

(x+ y)n+m =
∑

r+s=m+n

(
m+ n

r

)
xrys = 0,

since if r+ s = m+ n we cannot have both r < n and s < m hence one of the factors xr or ys

is zero, and hence each term in the sum vanishes. If R is not commutative then N is not an
ideal: if R = Mat2(C) for example, then E12 and E21 are both nilpotent, but A = E12 + E21

is a unit since A2 = I.

Part b): [S] An element x ∈ R is a unit if there is a y ∈ R such that xy = yx = 1. The
units in R form a group R× under multiplication. If x, y ∈ N and R is commutative, then
(1 + x)(1 + y) = 1 + (x+ y + xy), and since N is an ideal x+ y + xy ∈ N if x, y ∈ N , so that
1 +N is closed under multiplication. Moreover, if xn = 0 we have

(1 + x)(1 +
n−1∑
i=1

(−x)i) = 1 + (−1)n−1xn = 1,

so that 1 + x is a unit, and since N is an ideal again,
∑n−1

i=1 (−x)i ∈ N so that (1 + x)−1 is in
1 +N . Thus 1 +N is a subgroup of R× as claimed.

Part c): [S] An element k + nZ is a unit in Z/nZ if and only if there exists a, b ∈ Z such that
a.k + bn = 1, and hence if and only if h.c.f.(k, n) = 1. In terms of the prime factors of n,
k + nZ is a unit if and only if every prime p dividing n does not divide k.

[N] Next note that by the Chinese Remainder Theorem, if n =
∏r

i=1 p
ai
i is the prime factor-

ization of n (where the ai > 0 and pi are distinct primes) then km = 0 mod n if and only if
km = 0 mod paii for each i (1 6 i 6 r). Clearly such an m exists if and only if pi divides k for
each i (1 6 i 6 r). It follows that N = {k(p1 . . . pr) + nZ : k ∈ Z}.
Alternative: Suppose that km = 0 mod n. Then if p is a prime dividing n it follows p divides
km, and hence p divides k (by the defining property of prime elements). Thus if pi (1 6 i 6 r)
are the distinct primes dividing n, then we must have pi | k for each every i (1 6 i 6 k).
Conversely if pi | k for all i, then if a = max{ai : 1 6 i 6 r} (where n =

∏r
i=1 p

ai
i ), clearly n

divides ka, and so k mod n is nilpotent.

[N] The order of N is thus |N | =
∏s

i=1 p
ai−1
i . If n = 2k, then there are 2k−1 odd residues

modulo n, and hence 1+N = R× for any such n. (In fact these are the only integers for which
1 +N = R×).
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2. Let n ∈ Z be any integer.

(a) [5 marks] Show that Rn = {a+ b
√
n : a, b ∈ Z} is a subring of the complex numbers C.

(b) [8 marks] Let Fn = {r/s : r, s ∈ Rn, s 6= 0} ⊆ C. Then Fn is a field containing Q.
Calculate the degree dn of the field extension Fn/Q.

(c) [7 marks] Assume now that Rn is a Euclidean domain. Prove that if x ∈ Fn satisfies
xm + c1x

m−1 + . . .+ cm−1x+ cm = 0, where ci ∈ Rn, (1 6 i 6 m− 1) then x ∈ Rn.

(d) [5 marks] Is Z[
√
−3] a Euclidean domain? Justify your answer carefully.

[You may use any standard properties of a Euclidean domain provided you state them clearly.]

Solution: Part a):[B] Firstly Rn clearly contains 1 and if we have a1 + b1
√
n, a2 + b2

√
n ∈ Rn,

then
(a1 + b1

√
n)(a2 + b2

√
n) = (a1a2 + nb1b2) + (a1b2 + a2b1)

√
n ∈ Rn,

Similarly:
(a1 + b1

√
n)− (a2 + b2

√
n) = (a1 − a2) + (b1 − b2)

√
n ∈ Rn,

so that by the subring test, Rn is a subring of C.

Part b):[S] There are two cases: If n is a square, say n = m2, then clearly Rn = Z and so
Fn = Q and dn = 1. Now suppose that n is not a square. We claim that 1 and

√
n are

linearly independent over Q. Indeed if a + b
√
n = 0 where a, b ∈ Q, then multiplying by a

suitable common denominator we would obtain c+d
√
n = 0, where c, d ∈ Z, and by cancelling

common factors we can assume g.c.d.{c, d} = 1. But then we find c2 = nd2, and so since Z
is a unique factorisation domain, every prime occuring in n occurs to an even power, so that
n is a square, contradicting our assumption. Thus {1,

√
n} are Q-linearly independent. Let

Qn = Q-span{1,
√
n}. We claim that Fn = Qn and hence dn = 2 for n a non-square. Indeed

since the formulae in part a) show that Qn is clearly closed under addition and multiplication,
it is enough to check that if r = a+ b

√
n ∈ Rn\{0} then 1/r ∈ Qn. But if we set s = a− b

√
n,

then rs = a2 − nb2 6= 0 (since r, s 6= 0 as {1,
√
n} are Q-linearly independent and r 6= 0) and

so r.(s/(a2 − nb2)) = 1 and s/(a2 − nb2) ∈ Qn as required.

Alternative: There is a unique ring homomorphism φ : Q[t] → C such that φ(t) =
√
n. Its

image, im(φ) is a subring of C which, since it consists of linear combinations of powers of
√
n

is clearly the subring generated of Q generated by
√
n. Since C is an integral domain (it is

a field) im(φ) is an integral domain, and so ker(φ) is a prime ideal of Q[t]. Moreover, since
t2 − n ∈ ker(φ), the kernel is nonzero, and so since Q[t] is a PID it follows that ker(φ) is
maximal, and hence im(φ) ∼= Q[t]/ker(φ) is a field, and is therefore clearly the subfield Fn of
C generated by

√
n. Now since Q[t] is a PID, ker(φ) is a principal ideal 〈f〉 for a unique monic

irreducible polynomial f (since irreducibles are prime in a PID) and hence f | t2 − n. Now by
Gauss’s Lemma, t2 − n is reducible over Q[t] if and only if it is reducible in Z[t], which since
it is monic, is possible if and only if it has an integer root, that is, if and only if n is a square.
If n is a square, clearly Rn = Z and Fn = Q. Otherwise we see that t2 − n is irreducible and
so is equal to f and ker(φ) = 〈t2 − n〉. It follows Fn

∼= Q[t]/〈t2 − n〉 is of degree two over Q.

Part c): [S] If Rn is an ED, then we may write x = a/b where a, b ∈ Rn are coprime (indeed
this can done in any integral domain provided highest common factors exist, which they do in
any ED) then we find that

bm + c1a
m−1b+ . . .+ am = 0.

But then it follows b divides am, and so in particular a and b cannot be coprime unless b is a
unit, in which case x ∈ Rn as required.
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Part d): [N] Note that x = 1−
√
−3

2 satisfies x2 − x+ 1 = 0, but x /∈ R−3, whence by part c) it
cannot be a Euclidean domain.

Alternative: Note that the restriction of the map z 7→ zz̄ is a multiplicative mapN : R−3 → Z>0

sending a + b
√
−3 to a2 + 3b2. Moreover, if z ∈ R−3 is a unit with inverse w, it follows

1 = N(1) = N(zw) = N(z).N(w), so that N(z) = 1. Since a2 + 3b2 = 1 if and only if
a = ±1 and b = 0 we see that R×−3 = {±1}. Next note that N takes the value 4 on each of
2, 1 ±

√
−3, and since the equation N(z) = 2 has no solutions it follows that these elements

are irreducible, and moreover since R× = {±1} they are not associates. But then the equation
2.2 = (1 +

√
−3)(1−

√
−3) shows that irreducibles in R−3 are not prime, and so R−3 is not a

PID and hence not an ED. (This second solution is close to a problem sheet question, and for
that reason I would expect full justification along the lines given, so it is longer to write out
than the first solution.)
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3. Let R be a commutative ring.

(a) [6 marks] (i) Let M be an R-module and let X ⊆ M be any subset. Define what it
means for X to be linearly independent, what it means for X to span M , and what
it means for M to be a free module.

(ii) Show how any abelian group is naturally a Z-module.

[You need only describe the Z-module structure, not prove that it satisfies the axioms.]

(b) [6 marks] Let M be a free module over a commutative ring R. Give a proof or a counter-
example to the following:

(i) If X is a spanning set for M then X necessarily contains a basis of M .

(ii) If Y is a linearly independent set, then there is a basis X of M containing Y .

(c) [9 marks] Now let R = Z, M = Z3 and X = {(2, 4, 6), (2, 6, 4), (4, 6, 2)}. Let N be
the submodule spanned by X. Find a basis of M adapted to N , that is, find a basis
{e1, . . . , en} for M and elements r1, . . . , rm ∈ R such that {r1e1, . . . , rmem} is a basis of
N where m ∈ N and m 6 n.

(d) [4 marks] State the theorem on the canonical form for a finitely generated module over
a Euclidean domain R. Applying the theorem in the case R = Z or otherwise, find with
proof how many isomorphism classes of abelian groups there are of order 675.

Solution: Part a)i):[B] A subset X is linearly independent if for any n ∈ N and x1, . . . , xn ∈ X,
r1, . . . , rn ∈ R whenever

∑n
i=1 rixi = 0 then ri = 0 for all i (1 6 i 6 n). A subset X spans M

if M is the only submodule of M which contains X is the entire module M itself. A module
is free if it has a basis, that is, a set B which is linearly independent and which spans M .

Part a)ii):[B] If M is an abelian group, then for m ∈ M define 0.m = m, and inductively
(n + 1).m = n.m + m for n ∈ Z>0. If n < 0 then set n.m = −((−n).m) the additive inverse
(in M) of (−n).m.

Part b)i):[S] If we let R = Z and M = Z, then X = {2, 3} spans M (because 1 = 3− 2) but no
subset of X spans M , so a spanning set need not contain a basis.

Part b)ii): [S] If we take R = M = Z again, then {2} is a linearly independent set, but it
cannot be extended to a basis of M (as the only bases of Z are {1} and {−1}).
Part c): [S] Using row operations on the matrix with rows given by the three vectors in X,
we reduce to an upper triangular matrix with rows {(2, 4, 6), (0, 2,−2)(0, 0, 6)} (and thus these
rows are linearly independent). Thus if we let F = {(1, 2, 3), (0, 1,−1), (0, 0, 1)} then F is a
basis for M since

(a, b, c) = a.(1, 2, 3) + (b− 2a).(0, 1,−1) + (c− a+ b)(0, 0, 1)

and thus {2.(1, 2, 3), 2.(0, 1,−1), 12.(0, 0, 1)} is a basis for N (or note that the change of basis
matrix between this basis and the standard basis is invertible since it has determinant 1 ∈ Z×).

Alternative: Let {f1, f2, f3} be the standard basis of Z3 and let M1 = Span{e1}, M2 =
Span{f1, f2} and M3 = Z3. We build a basis of M adapted to N by considering Ni = Mi ∩N .
We have

N = {n(a, b, c) = (2a+ 2b+ 4c, 4a+ 6b+ 6c, 6a+ 4b+ 2c) : a, b, c ∈ Z}

so that n(a, b, c) lies in N1 if 4a + 6b + 6c = 6a + 4b + 2c = 0. The general solution to these
two equations is (a, b, c) = (3k,−7k, 5k) (k ∈ Z), and so N1 = {(12k, 0, 0) : k ∈ Z}. It follows
that if we set e1 = (1, 0, 0) then {e1} is a basis of M1 and {12e1} is a basis of N1. Next
N2 = {n(a, b, c) : 6a+ 4b+ 2c = 0}, and so c = −3a− 2b, that is N2 = {(10a+ 6b, 14a+ 6b, 0) :
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a, b ∈ Z}. Then N2/N1
∼= {(14a+6b : a, b ∈ Z}, and since h.c.f.{14, 6} is 2, where 14−2.6 = 2,

it follows that if e2 = (−1, 1, 0) then 2e2 ∈ N2 and 2e2+N1 is a basis of N2/N1. Thus {e1, e2} is
a basis of M2 and {12e1, 2e2} is a basis of N2. Finally, N/N2

∼= {6a+4b+2c : a, b, c ∈ Z} = 2Z,
and 2 = 2c lifts to (4, 6, 2) ∈ N , thus {(12, 0, 0), (−2, 2, 0), (4, 6, 2)} is a basis of N . It follows
that if we set e3 = (2, 3, 1) and r1 = 12, r2 = 2, r3 = 2 then {e1, e2, e3} is a basis of M and
{r1e1, r2e2, r3e3} is a basis of N as required.

Part d): [B for statement of theorem, application is N] The canonical form theorem states that
if M is a finitely generated module over a Euclidean domain then there are non-zero non-unit
elements d1, d2, . . . , dk ∈ R (where k ∈ Z>0) unique up to units, and a unique integer s ∈ Z>0

such that d1 | d2 | . . . | dk and

M ∼= Rs ⊕
k⊕

i=1

R/diR,

An abelian group of order 675 must be of the form Z/c1Z⊕ . . .⊕Z/ckZ, where 1 < c1|c2| . . . |ck
and

∏k
i=1 ci = 675. Since 675 = 52.33 we see k 6 max{2, 3}. If k = 1 then the only possibility

is (675). If k = 2 the possibilities are (5, 135),(3, 225),(15, 75), since c1 can only be 5i3j where
i 6 1 and j 6 1, with (i, j) 6= (0, 0), while if k = 3, each ci is divisible by 3, and the only
possibilities are (3, 3, 75),(3, 15, 15), thus there are 6 isomorphism classes.

Alternative: The primary decomposition for modules over R a PID says that any finitely
generated R-module is isomorphic to a module of the form

Rs ⊕
⊕
i∈I

R/pni
i R,

where I is a finite set, ni ∈ Z>0 and the pi a prime in R, and moreover the pairs (piR,ni) are
unique. Applying this theorem, if M is an abelian group of order 675 = 52.33, we see that
s = 0, the primes pi must be 3 or 5. Moreover the integers ni attached to 3 must sum to 3
while those attached to 5 must sum to 2. It follows the integers must be (3), (2, 1), (1, 1, 1) for
5 and (2), (1, 1) for 3, thus there are 3.2 = 6 possibilities for the primary decomposition of M .
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