
1. (a) [7 marks for part (a). This is all [B].]
(i) [2 marks] I ⊆ R is an ideal if it is non-empty and i1 + i2 ∈ I whenever i1, i2 ∈ I; ri ∈ I for
i ∈ I, r ∈ R.
(ii) [2 marks] Say that r1 + I = s1 + I and r2 + I = s2 + I so that r1 − s1, r2 − s2 ∈ I. Then

(r1 + r2)− (s1 + s2) = (r1 − s1) + (r2 − s2) ∈ I. (r1r2 − s1s2) = r1(r2 − s2) + s2(r1 − s1) ∈ I.

(iii) [3 marks] Associativity and commutativity of + and × in R/I are then inherited from R and
the identities in R/I are 0R + I and 1R + I. Likewise distributivity is inherited. The additive
inverse of r + I is (−r) + I.

(b) [6 marks in total for part (b). This is [B/N]. The proof of maximal implies prime was given in
lectures via quotient rings.]
(i) [1 mark] I ⊂ R is prime if whenever ab ∈ I then a ∈ I or b ∈ I.
(ii) [1 mark] I ⊂ R is maximal if whenever J is an ideal and I ⊆ J ⊆ R then I = J or J = R.
[4 marks] Say that I is maximal and ab ∈ I. Suppose that a 6∈ I. Then I + 〈a〉 strictly contains
I and so by maximality I + 〈a〉 = R. So there exists i ∈ I, r ∈ R such that i + ra = 1 and hence
bi+ rab = b. But as i ∈ I then bi ∈ I and as ab ∈ I then rab ∈ I and hence b ∈ I as required.

(c) [4 marks in total for part (c). This is all [N].]
Say that φ : Z[x] → Z[x] is a surjective ring homomorphism and φ(x) = q(x). Then for any
p(x) ∈ Z[x] we have φ(p(x)) = p(q(x)) and deg(p(q(x)) = (deg p(x))(deg q(x)). Hence if φ is to be
onto then q(x) = ax+ b must be linear. As φ maps cx+ d to c(ax+ b) + d then it must also be the
case that a is a unit for x to be in the image of φ. So the only possibilities are that φ(x) = x+ b
and φ(x) = b−x. As these homomorphisms are both invertible then they are in fact isomorphisms.

(d) [8 marks in total for part (d). This is all [S/N]. Similar but different examples were set on the
problem sheets.]
(i) [2 marks] Let I = 〈3, x〉 and then Z[x]/I ∼= Z3. This can be seen by considering the homomor-
phism φ(p(x)) = p(0) mod 3.
(ii) [3 marks] Let I = 〈x(x − 1)〉 and then Z[x]/I ∼= Z2. This can be seen by considering the
homomorphism φ(p(x)) = (p(0), p(1)) or using the Chinese Remainder Theorem.
(iii) [3 marks] Say that there exists I such that Z[x]/I ∼= Z[x, y]. Then there is a surjective
homomorphism φ : Z[x] → Z[x, y] which has kernel I. But we have a surjective homomorhpshm
ψ : Z[x, y]→ Z[x] given by ψ(p(x, y)) = p(x, 0). We would then have a surjective homomorphism

ψ ◦ φ : Z[x]→ Z[x]

which by (c) would be an isomorphism. This would imply that φ is 1-1 and so an isomorphism
and so ψ would also be an isomorphism which is not the case. A contradiction and no such ideal
I exists.

Page 1 of 3 Turn Over

For Tutors Only - Not For Distribution



2. (a) [9 marks in total for part (a). All [B]]

(i) [1 mark] The degree of the field extension K : F equals dimF K, when K is considered as a
vector space over F .

(ii) [1 mark] α ∈ K is said to be algebraic over F if there exists a non-zero polynomial p(x) ∈ F [x]
such that p(α) = 0.

(iii) [1 mark] The minimal polynomial of α is the least degree monic polynomial mα(x) in F [x]
such that mα(α) = 0.

(iv) [2 marks] Suppose that mα(x) = f(x)g(x) were a genuine reduction of mα(x) in F [x]. Then
mα(α) = 0 implies f(α) = 0 or g(α) = 0, either of which would contradict the minimality of the
degree of mα(x).

(v) [4 marks] The evaluation homomorphism p(x) 7→ p(α) has kernel 〈mα(x)〉 and so induces an
isomorphism

F [α] ∼=
F [x]

〈mα(x)〉
.

This is a field as mα(x) is irreducible and a basis for this is 1 + 〈mα(x)〉, . . . , xd−1 + 〈mα(x)〉 where
d = degmα.

(b) [6 marks in total for part (b). (i) and (ii) are [B/S]. (iii) is [N].]

(i) [2 marks] The homomorphism Q[x] → Q[A] given by p(x) 7→ p(A) similarly yields an isomor-
phism Q[A] ∼= Q[x]/〈mA(x)〉. Therefore this will be a field if and only if mA(x) is irreducible.

(ii) [2 marks] mA(x) can have degree 1 or 2 and so these are possible degrees of Q[A] : Q.

(iii) [2 marks] As Q[
√

2] is isomorphic to Q[x]/〈x2 − 2〉 then we need to find a rational matrix A
such that A2 = 2I. Such a matrix is

A =

(
0 1
2 0

)
.

(c) [7 marks in total for part (c). (i) is [B/S] and (ii) is [N].]
(i) [4 marks] Z2[x] is a PID as Z2 is a field. Now x2 + x+ 1 is irreducible as it has no roots in Z2

and so generates a maximal ideal. The quotient ring is therefore a field. By the division algorithm
its elements are 0, 1, x, x+ 1.
(ii) [3 marks] As y2 + y equals 0 or 1 for all y ∈ F4 then y2 + y + x is irreducible in F4[y]. So if we
can find a matrix B with entries in F4 with minimal polynomial y2 + y + x then

F4[y]

〈y2 + y + x〉
∼= F4[B]

will be a field with 16 elements. Such a matrix B is

B =

(
1 1
x 0

)
.

(d) [3 marks in total for part (d). It is a known result that C(f) has minimal polynomial f but
this has not been used at all in this context and so (d) might be considered [B/N]]
We need to find a square matrix C with minimal polynomial mα but the companion matrix C(mα)
has minimal polynomial mα. Recall that

C(mα) =



0 0 0 · · · 0 −a0
1 0 0 · · · 0 −a1
0 1 0 · · · 0 −a2
0 0 1 · · · 0 −a3
...

...
...

...
...

...
0 0 0 · · · 1 −ad−1


where mα(x) = xd + ad−1x

d−1 + · · ·+ a0.
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3. (a) [11 marks in total for part (a). All [B].]
(i) [1 mark] φ : M1 →M2 is a homomorphism if

φ(r1m1 + r2m2) = r1φ(m1) + r2φ(m2) ∀r1, r2 ∈ R,m1,m2 ∈M1.

(ii) [3 marks] kerφ = {m ∈ M1 : φ(m) = 0}. Note 0 ∈ kerφ as φ(0) = 0, and if m1,m2 ∈
kerφ, r1, r2 ∈ R then

φ(r1m1 + r2m2) = r1φ(m1) + r2φ(m2) = 0 =⇒ r1m1 + r2m2 ∈ kerφ.

(iii) [3 marks] Imφ = {φ(m) : m ∈ M1}. Note 0 ∈ Imφ as φ(0) = 0, and if φ(m1), φ(m2) ∈
Imφ, r1, r2 ∈ R then

r1φ(m1) + r2φ(m2) = φ(r1m1 + r2m2) ∈ Imφ.

(iv) [4 marks] Define the map Φ : M1/ kerφ→ Imφ by Φ(m+ kerφ) = φ(m). Note that

φ(m1) = φ(m2) ⇐⇒ φ(m1 −m2) = 0 ⇐⇒ m1 −m2 ∈ kerφ ⇐⇒ m1 + kerφ = m2 + kerφ.

This shows that Φ is well-defined and 1-1. Φ is clearly onto and is a homomorphism as

Φ(r1(m1 + kerφ) + r2(m2 + kerφ)) = Φ((r1m1 + r2m2) + kerφ)

= φ(r1m1 + r2m2)

= r1φ(m1) + r2φ(m2)

= r1Φ(m1 + kerφ) + r2Φ(m2 + kerφ).

(b) [7 marks in total for part (b). This is all [S].]
[3 marks] Determining the characteristic polynomial of A we find

χA(x) = (x− 1)(2− x)x+ 2− 2 + 2x+ (1− x) + 2(x− 2)

= (x− 1)(2− x)x+ 3x− 3

= (x− 1)(3− x)(x+ 1).

[4 marks] As the eigenvalues are distinct then M is diagonalizable with eigenvectors v−1,v1,v3.
Hence we have M = 〈v−1〉⊕〈v1〉⊕〈v3〉 as a decomposition into submodules. As x.vλ = Avλ = λvλ
on each of these submodules then

〈vλ〉 ∼=
R[x]

〈x− λ〉
,

and the result follows.

(c) [7 marks in total for part (c). This is all [N].]
(i) [3 marks] Any module homomorphism φ : M → N in particular satisfies

φ(r1v1 + r2v2) = r1φ(v1) + r2φ(v2) for real scalars r1, r2

and so is a linear map, given by some 2× 3 matrix with respect to the standard bases. Further, to
be a module homomorphism we must have that

PAv = φ(Av) = φ(x.v) = x.φ(v) = x.(Pv) = BPv

for all v and so PA = BP .
(ii) [2 marks] The characteristic polynomial of N equals

χB(x) = (2− x)(2− x) + 2

which clearly has no real roots.
[2 marks] Note then that

BPvλ = PAvλ = λPvλ

so that Pvλ is a λ-eigenvector of B or 0. As B has no real eigenvalues this means that Pvλ = 0 for
each of the three eigenvectors. As the eigenvectors v−1,v1,v3 form a basis then P = 0 as required.
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