A4 Integration

Solution of Question 1. (a) [Book work] (Ω, \mathcal{F}) is called a measurable space if \mathcal{F} is a σ -algebra of some subsets of Ω , here \mathcal{F} is a σ -algebra on Ω if Ω and empty set \emptyset belong to \mathcal{F} , if $A \in \mathcal{F}$ then so does A^c , and if $A_n \in \mathcal{F}$ (where $n = 1, 2, \cdots$) then the countable union $\bigcup_{n=1}^{\infty} A_n \in \mathcal{F}$ [1 mark]. A mapping $\mu : \mathcal{F} \to [0, \infty]$ is a measure on a measurable space (Ω, \mathcal{F}) if $\mu(\emptyset) = 0, \ \mu(A) \leq \mu(B)$ whenever $A, B \in \mathcal{F}$ and $A \subset B$, and μ is countably additive: if $A_n \in \mathcal{F}$ are disjoint for $n = 1, 2, \cdots$, then $\mu(\bigcup_{n=1}^{\infty} A_n) = \sum_{n=1}^{\infty} \mu(A_n)$ [1 mark].

Suppose $E \in \mathcal{F}$, then $E \in \mathcal{F}_E$ and $\emptyset \in \mathcal{F}_E$. If $A \in \mathcal{F}_E$, then $A \in \mathcal{F}$ and $A \subset E$, then $E \setminus A = E \cap A^c \in \mathcal{F}$ as $A^c = \Omega \setminus A \in \mathcal{F}$, thus $E \setminus A \in \mathcal{F}_E$. Suppose now $A_n \subset E$ and $A_n \in \mathcal{F}$, then $\bigcup_{n=1}^{\infty} A_n \in \mathcal{F}$ and $\bigcup_{n=1}^{\infty} A_n \subset E$, hence $\bigcup_{n=1}^{\infty} A_n \in \mathcal{F}_E$. By definition, \mathcal{F}_E is a σ -algebra on E [2 marks].

We now prove that ν is a measure on (E, \mathcal{F}_E) . Clearly $v(\emptyset) = \mu(\emptyset) = 0$, and if $A \subset B \subset E$ and $A, B \in \mathcal{F}$ then $\nu(A) = \mu(A) \leq \mu(B) = \nu(B)$. Suppose $\{A_n\}$ is a disjoint sequence of elements in \mathcal{F}_E , then since $\mathcal{F}_E \subset \mathcal{F}$, and $\bigcup_{n=1}^{\infty} A_n \in \mathcal{F}_E$ we have by the countable additivity of μ

$$\nu(\cup_{n=1}^{\infty} A_n) = \mu(\cup_{n=1}^{\infty} A_n) = \sum_{n=1}^{\infty} \mu(A_n) = \sum_{n=1}^{\infty} \nu(A_n)$$

which shows that ν is a measure on (E, \mathcal{F}_E) [2 marks].

(b) [Book work] Let $E_1 = A_1$ and $E_n = A_n \setminus A_{n-1}$ for $n \ge 2$, $E_n \in \mathcal{F}$ are disjoint (for $n = 1, 2, \cdots$). More over $\bigcup_{k=1}^{n} E_k = \bigcup_{k=1}^{n} A_k = A_n$ for $n = 1, 2, \cdots$, and $\bigcup_{k=1}^{\infty} E_k = \bigcup_{k=1}^{\infty} A_k$, thus, by countable additivity of μ

$$\mu\left(\cup_{k=1}^{\infty}A_{k}\right) = \mu\left(\cup_{k=1}^{\infty}E_{k}\right) = \sum_{k=1}^{\infty}\mu\left(E_{k}\right) = \lim_{n \to \infty}\sum_{k=1}^{n}\mu\left(E_{k}\right)$$
$$= \lim_{n \to \infty}\mu\left(\cup_{k=1}^{n}E_{k}\right) = \lim_{n \to \infty}\mu\left(A_{n}\right)$$

[3 marks]. Apply what we proved to the increasing sequence $B_1 \setminus B_n$ and use the fact that

$$\cup_{k=1}^{\infty}(B_1 \setminus B_k) = B_1 \setminus \bigcap_{k=1}^{\infty} B_k$$

we obtain

$$\mu\left(B_1\setminus\cap_{k=1}^{\infty}B_k\right)=\lim_{n\to\infty}\mu\left(B_1\setminus B_n\right).$$

Since $\mu(B_1) < \infty$ so that

$$\mu\left(B_1\setminus\bigcap_{k=1}^{\infty}B_k\right)=\mu\left(B_1\right)-\mu\left(\bigcap_{k=1}^{\infty}B_k\right)$$

and

$$\mu(B_1 \setminus B_n) = \mu(B_1) - \mu(B_n)$$

as $B_n \subset B_1$ and $\bigcap_{k=1}^{\infty} B_k \subset B_1$, which yields that $\mu (\bigcap_{k=1}^{\infty} B_k) = \lim_{n \to \infty} \mu (B_n)$ [4 marks].

(c) [New] Since $h(x) \ge m(\emptyset) \ge 0$, and $h(x) \le m(E) < \infty$, so h is a real valued, clearly increasing function on \mathbb{R} . Suppose $x \le y$, then

$$E \cap (-\infty, y] = (E \cap (-\infty, x]) \cup (E \cap (x, y])$$

and

$$(E \cap (-\infty, x]) \cap (E \cap (x, y]) = \emptyset$$

so by the additivity of the Lebesgue measure m we have

$$m(E \cap (-\infty, y]) = m(E \cap (-\infty, x]) + m(E \cap (x, y])$$

that is

$$h(y) = h(x) + m(E \cap (x, y])$$

so that, for $y \ge x$,

$$0 \le h(y) - h(x) = m(E \cap (x, y]) \le m((x, y]) = y - x$$

it follows that $|h(y) - h(x)| \le |y - x|$ for any x, y, thus h is uniformly continuous: for every $\varepsilon > 0$ choose $\delta = \varepsilon$, then $|h(y) - h(x)| < \varepsilon$ as long as $|y - x| < \delta$ [4 marks].

Now

$$h(n) = m(E \cap (-\infty, n]) \uparrow m(E) \text{ as } n \uparrow \infty$$

and

$$h(-n) = m(E \cap (-\infty, -n]) \downarrow m(\emptyset) = 0 \text{ as } n \uparrow \infty$$

by 2). Thus, for any $c \in (0, m(E))$ there is n_1 and n_2 such that $h(-n_1) < \frac{c}{2}$ and $h(n_2) > c + \frac{m(E)-c}{2}$ [4 marks]. Apply IVT to the continuous function h on $[-n_1, n_2]$, there is $\xi \in [-n_1, n_2]$ such that $h(\xi) = m(E \cap (-\infty, \xi])$, so that $A = E \cap (-\infty, \xi]$ which is Lebesgue measurable will do [4 marks].

Solution of Question 2: (a) [Similar] f is continuous on $(0, \infty)$ so is measurable, on (0, 1] we have $|f(x)| \leq \frac{x}{x^q} = \frac{1}{x^{q-1}}$. If q-1 < 1 i.e. q < 2, $\frac{1}{x^{q-1}}$ is integrable on (0, 1] [3 marks]. Now consider f on $[1, \infty)$. In this case, $|f| \geq 1_{[\pi, n\pi]} \frac{|\sin x|}{x^q}$ for every $n = 1, 2, \cdots$, so that

$$\int_{1}^{\infty} |f(x)| dx \geq \int_{\pi}^{n\pi} \frac{|\sin x|}{x^{q}} dx = \sum_{k=1}^{n-1} \int_{k\pi}^{(k+1)\pi} \frac{|\sin x|}{x^{q}} dx$$
$$= \sum_{k=1}^{n-1} \int_{0}^{\pi} \frac{\sin x}{(k\pi + x)^{q}} dx \geq \frac{\int_{0}^{\pi} \sin x dx}{\pi^{q}} \sum_{k=1}^{n-1} \frac{1}{\pi^{q} (k+1)^{q}}$$

Since $\sum_{k=1}^{\infty} \frac{1}{k^q} = \infty$ (divergent), so that, by letting $n \to \infty$ we obtain $\int_1^{\infty} |f(x)| dx = \infty$, so that |f| is not Lebesgue integrable, hence f is not Lebesgue integrable either [3 marks].

(b) [Similar] $(x, y) \to h_y(x)$ is continuous in $(0, \infty) \times [0, \infty)$ so that it is measurable (and h_y is measurable for every $y \ge 0$ fixed). For any fixed $y \ge 0$, $|h_y(x)| \le \frac{y}{\sqrt{x}}$ on (0, 1], so by comparison to the integrable function $\frac{1}{\sqrt{x}}$ on (0, 1] we may conclude that $x \to h_y(x)$ is integrable on (0, 1]. While $|h_y(x)| \le \frac{y}{x\sqrt{x}}$ on $(1, \infty)$, again by comparison (to the integrable function $\frac{1}{x^2}$ on $(1, \infty)$), h_y is integrable. Putting together, we deduce that h_y is integrable on $(0, \infty)$ [1 mark].

For every A > 0

$$|h_y(x)| \le \frac{A}{\sqrt{x}} \mathbf{1}_{(0,1]}(x) + \frac{A}{x\sqrt{x}} \mathbf{1}_{(1,\infty)}(x) \equiv g(x)$$

and for any $y_0 \in [0, A)$ we have $h_y(x) \to h_{y_0}(x)$ for all x, thus by the theorem of taking limit under integration, we have

$$\lim_{y \to y_0} F(y) = \int_0^\infty h_{y_0}(x) dx = F(y_0)$$

which implies that F is continuous on [0, A) for any A > 0. Hence F is continuous on $[0, \infty)$ [2+4 marks – where 2 marks the theorem quoted].

We next show F is differentiable on $(0, \infty)$. We have

$$\frac{\partial}{\partial y}h_y(x) = e^{-x}\frac{\cos(xy)}{\sqrt{x}}$$

for all x > 0 and y > 0, moreover we have the following simple estimate:

$$\left|\frac{\partial}{\partial y}h_y(x)\right| \le \frac{e^{-x}}{\sqrt{x}}$$

for all y > 0 and x > 0. $x \to \frac{e^{-x}}{\sqrt{x}}$ is integrable by comparison: for x > 0

$$\frac{e^{-x}}{\sqrt{x}} \le \frac{1}{\sqrt{x}} \mathbf{1}_{(0,1]}(x) + e^{-x} \mathbf{1}_{(1,\infty)}(x),$$

thus, by the theorem of differentiating functions under integration, F'(y) exists for all y > 0 and

$$F'(y) = \int_0^\infty \frac{\partial}{\partial y} h_y(x) dx = \int_0^\infty e^{-x} \frac{\cos(xy)}{\sqrt{x}} dx.$$

[2+5 marks, where 2 marks for the theorem quoted]

Theorem 1. Let E be measurable, and $J \subset \mathbb{R}$ be an interval. For $t \in J$, $f_t : E \to [-\infty, \infty]$ is measurable. Suppose for any $t_0 \in J$, $f_t \to f_{t_0}$ almost surely on E, and there is $g \in L^1(E)$ such that $|f_t(x)| \leq g(x)$ almost surely on E for all $t \in J$. Then $f_t \in L^1(E)$ and $F(t) = \int_E f_t$ is continuous on J.

Theorem 2. Let E be a measurable set, and $J \subset \mathbb{R}$ be an interval. For each $t \in J$, $f_t : E \to \mathbb{R}$ is measurable, and the following conditions are satisfied: for every $t \in J$, $f_t \in L^1(E)$, and define $F(t) = \int_E f_t$ for $t \in J$, for every $x \in E$, the partial derivative

$$\frac{\partial}{\partial t}f_t(x) = \lim_{h \to 0} \frac{f_{t+h}(x) - f_t(x)}{h}$$

exists for every $t \in J$ (here the limit runs over $h \to 0$ such that $t + h \in J$), and there is a control function $g \in L^1(E)$ such that

$$\left|\frac{\partial}{\partial t}f_t(x)\right| \le g(x)$$

almost surely on E for all $t \in J$. Then F is differentiable on J and

$$F'(t) = \int_E \frac{\partial}{\partial t} f_t$$

(c) $[New] f_n$ are measurable as f_n are continuous on $(0, \infty)$. We can show for example by L'Hopital rule that $f_n(x) \to 0$ as $n \to \infty$ for every x > 0. In order to apply CDT to conclude the limit, we need to find a control function. If $x \in (0, 1]$, then

$$0 \le f_n(x) \le \frac{\ln(1+n)}{n} \frac{\sin x}{x^q}.$$

Since $\sin x \leq x$ and $\frac{\ln(1+n)}{n} \to 0$, thus the sequence $\{\frac{\ln(1+n)}{n} : n = 1, 2, \}$ is bounded, hence there is a constant $C_1 > 0$ such that $\frac{\ln(1+n)}{n} \leq C_1$ for all x. Thus

$$0 \le f_n(x) \le C_1 \frac{1}{x^{q-1}}$$

Since q-1 < 1 so $C_1 \frac{1}{x^{q-1}}$ is integrable on (0,1]. Now we consider x > 1. Then

$$\frac{\ln(x+n)}{n} = \frac{\ln n + \ln(\frac{x}{n}+1)}{n} \le \frac{\ln n + \ln(x+1)}{n} \le \frac{\ln n + \ln(x+1)}{n}$$

thus

$$|f_n(x)| \le \frac{C_1}{x^q} + \frac{\ln(x+1)}{x^q}$$

for all $x \ge 1$. $\frac{C_1}{x^q}$ is integrable on $(1, \infty)$ as q > 1, we show $\frac{\ln(x+1)}{x^q}$ is integrable on $(1, \infty)$ as well. In fact q > 1 so we may choose q > p > 1 and write

$$\frac{\ln(x+1)}{x^q} = \frac{\ln(x+1)}{x^{q-p}} \frac{1}{x^p}$$

for $x \ge 1$. Let $u(x) = \frac{\ln(x+1)}{x^{q-p}}$. Then u is continuous and non-negative, $u(1) = \ln 2$, $u(x) \to 0$ as $x \to \infty$, thus u must be bounded on $[1, \infty)$. Thus there is $C_2 > 0$ such that $\frac{\ln(x+1)}{x^{q-p}} \le C_2$ for all $x \ge 1$. Thus

$$|f_n(x)| \le \frac{C_1}{x^q} + \frac{C_2}{x^p}$$

for $x \ge 1$. Since both $\frac{C_1}{r^q}$ and $\frac{C_2}{r^p}$ are Lebesgue integrable on $[1,\infty)$. Hence, by DCT we have

$$\lim_{n \to \infty} \int_0^\infty f_n(x) dx = \int_0^\infty \lim_{n \to \infty} f_n(x) dx = 0$$

DCT: Let *E* be a measurable set, $f_n : E \to [-\infty, \infty]$ be measurable, and $f = \lim_{n\to\infty} f_n$ almost everywhere on *E*. Suppose that there is $g \in L^1(E)$ such that $|f_n(x)| \leq g(x)$ for almost all $x \in E$. Then *f* and f_n are integrable, and $\int_E f = \lim_{n\to\infty} \int_E f_n$. [1+4 marks – 1 marks given to the theorem quoted]

Solution of Question 3. (a) [Similar] f is continuous at $(x, y) \neq (0, 0)$ so it is measurable. For $y \neq 0$, $x \rightarrow f(x, y)$ is continuous on [-1, 1], so it is Riemann integrable, thus must be Lebesgue integrable. The function is odd, so that

$$\int_{-1}^{1} f(x,y)dx = 0$$

for all $y \neq 0$. Hence

$$\int_{-1}^{1} \left(\int_{-1}^{1} f(x, y) dx \right) dy = 0.$$

By symmetry, we also have

$$\int_{-1}^{1} \left(\int_{-1}^{1} f(x, y) dy \right) dx = 0.$$

[3 marks]. The function is not integrable, as it is not integrable on $(0,1) \times (0,1)$ on which f is non-negative. In fact

$$\int_0^1 \frac{xy}{(x^2+y^2)^3} dx = \frac{y}{2} \left. \frac{1}{1-3} \frac{1}{(x^2+y^2)^2} \right|_0^1 = \frac{1}{4} \frac{1}{y^3} - \frac{1}{4} \frac{y}{(1+y^2)^2}$$

which is not integrable on (0, 1). According to Tonelli's theorem, f can not be integrable on $(0, 1) \times (0, 1)$, so neither on $[-1, 1] \times [-1, 1]$. [2+3 marks – 2 marks given to Tonelli's theorem].

(b) [Similar - New] f is measurable. Let us show f is integrable on \mathbb{R}^2 by using Tonelli's theorem. To this end, consider the iterated integral

$$\int_{-\infty}^{\infty} \left(\int_{-\infty}^{\infty} |f(x,y)| dx \right) dy = \int_{-\infty}^{\infty} \left(\int_{-\infty}^{\infty} \frac{|\sin(x-y)|}{|x-y|^{3/2}} |g(y)| dx \right) dy$$

Since

$$\int_{-\infty}^{\infty} \frac{|\sin(x-y)|}{|x-y|^{3/2}} |g(y)| dx = |g(y)| \int_{-\infty}^{\infty} \frac{|\sin(x-y)|}{|x-y|^{3/2}} dx.$$

By making change of variable t = x - y, we have

$$\begin{split} \int_{-\infty}^{\infty} \frac{|\sin(x-y)|}{|x-y|^{3/2}} dx &= \int_{-\infty}^{\infty} \frac{|\sin t|}{|t|^{3/2}} dt = 2 \int_{0}^{\infty} \frac{|\sin t|}{t^{3/2}} dt \\ &= 2 \int_{0}^{1} \frac{|\sin t|}{t^{3/2}} dt + 2 \int_{1}^{\infty} \frac{|\sin t|}{t^{3/2}} dt \\ &\leq 2 \int_{0}^{1} \frac{1}{\sqrt{t}} dt + 2 \int_{1}^{\infty} \frac{1}{t^{3/2}} dt \\ &= 4 + 4 = 8 \end{split}$$

so that

$$\int_{-\infty}^{\infty} |f(x,y)| dx \le 8|g(y)|$$

for all y. Since g is integrable, so is |g|, hence

$$\int_{-\infty}^{\infty} \left(\int_{-\infty}^{\infty} |f(x,y)| dx \right) dy \le 8 \int_{-\infty}^{\infty} |g(y)| dy < \infty.$$

Thus, according to Tonelli's theorem, f is integrable on \mathbb{R}^2 [10 marks], and Fubini's theorem applies (to both f and |f|). It follows that

$$\begin{split} \left| \int_{\mathbb{R}^2} f \right| &\leq \int_{\mathbb{R}^2} |f| = \int_{-\infty}^{\infty} \left(\int_{-\infty}^{\infty} |f(x,y)| dx \right) dy \\ &\leq 8 \int_{-\infty}^{\infty} |g(y)| dy. \end{split}$$

Fubini's theorem. Let $A, B \in \mathcal{M}_{\text{Leb}}$ [so $A \times B \in \mathcal{M}_{\text{Leb}}(\mathbb{R}^2)$] and $f \in L^2(A \times B)$. Then for almost all $y \in B$, $f_y \in L^1(B)$, where $f_y(x) = f(y, x)$ for $x \in A$, so $F(y) = \int_A f_y$ is well defined for almost all $y \in B$, and F is integrable on B (so in particular, F is Lebesgue measurable), and $\int_B F = \int_{A \times B} f$. Therefore

$$\int_{B} \left(\int_{A} f(x, y) \mathrm{d}x \right) \mathrm{d}y = \int_{A} \left(\int_{B} f(x, y) \mathrm{d}y \right) \mathrm{d}x = \int_{A \times B} f(x, y) \mathrm{d}x \mathrm{d}y$$

[3+4 marks – 3 marks given to Fubini's theorem].

Tonelli's theorem. Suppose that $f : \mathbb{R}^2 \to \mathbb{R}$ is measurable, and suppose either of the repeated integrals exists and is *finite*:

$$\int_{\mathbb{R}} \left(\int_{\mathbb{R}} |f(x,y)| \mathrm{d}x \right) \mathrm{d}y, \quad \int_{\mathbb{R}} \left(\int_{\mathbb{R}} |f(x,y)| \mathrm{d}y \right) \mathrm{d}x.$$

Then $f \in L^1(\mathbb{R}^2)$, so that Fubini's theorem is applicable to both f and |f|.