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A4 Integration

Solution of Question 1. (a) [Book work] (€2, F) is called a measurable space if F is a o-algebra
of some subsets of €2, here F is a o-algebra on  if Q and empty set @) belong to F, if A € F then
so does A€, and if A,, € F (where n = 1,2,---) then the countable union U° ; A, € F [1 mark]. A
mapping p : F — [0,00] is a measure on a measurable space (Q, F) if u(0) =0, u( ) < u(B) whenever
A,B € F and A C B, and p is countably additive: if A, € F are disjoint for n = 1,2,---, then

0 (U3 A) = T2, w(Ay) [1 mark]

Suppose E € F, then E € Fp and §) € Fp. If A € Fp, then A € F and A C E, then E\ A =
ENA®e Fas A°=Q\ Aec F, thus E\ A € Fg. Suppose now A, C E and A4,, € F, then U2 | A, € F
and U® 1A, C E, hence U2, A,, € Fg. By definition, Fg is a o-algebra on E [2 marks].

We now prove that v is a measure on (F,Fg). Clearly v(0) = pu(0) =0, and if A C B C E and
A,B € F then v(A) = u(A) < u(B) = v(B). Suppose {4, } is a disjoint sequence of elements in Fg,
then since Fg C F, and U2 | A,, € Fg we have by the countable additivity of u

o

v(UnZiAn) = p(UnZ An) ZM = v(4n)
n=1

which shows that v is a measure on (F, Fg) [2 marks].

(b) [Book work] Let Ey = Aj and E,, = A, \ A1 for n > 2, E, € F are disjoint (forn =1,2,---).
More over Up_Ey = UL_jAr = A, for n = 1,2,---, and U2 | B, = UPZ | Ay, thus, by countable
additivity of p

p(UpgAx) = p(Upt ) = Z,u Ey) = hm Z“ Ex)
— U =l ()
[3 marks]. Apply what we proved to the increasing sequence B \ B,, and use the fact that
UpZ1(B1\ Br) = B1 \ N2, By,

we obtain
p(Bi\ M2 Bg) = lim p(B1\ By).
n—oo

Since p(B1) < oo so that
p(Br\ Mgy Br) = p(B1) — u(MgZ1 By)

and
p(B1\ Bp) = p(B1) — u(Bn)

as B, C By and N2 By, C By, which yields that p (N5, By) = lim, oo 1t (By) [4 marks].
(¢) [New] Since h(z) > m(0) > 0, and h(x) < m(FE) < oo, so h is a real valued, clearly increasing
function on R. Suppose z < y, then

En (—oo,y] = (E N (—OO,.%']) U (E n (xvy])

and
(EN(—o0,z]) N (EN (z,y]) =0

so by the additivity of the Lebesgue measure m we have

m(E N (—oo,y]) =m (EN (-0, z]) + m(E N (z,y])
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that is
h(y) = h(z) + m(E N (z,y])

so that, for y > x,
0<h(y) —h(z) =m(EN(z,y]) <m((z,y]) =y —=

it follows that |h(y) — h(x)| < |y — x| for any z,y, thus h is uniformly continuous: for every e > 0 choose
d = e, then |h(y) — h(z)| < € as long as |y — x| < ¢ [4 marks].
Now
h(n) =m(E N (—oo,n]) T m(E) asn T oo

and
h(—n) =m(E N (—oo,—n]) L m(@) =0 asn 1t oo

by 2). Thus, for any ¢ € (0,m(F)) there is n; and ng such that h(—n1) < § and h(n2) > c+ M

[4 marks]. Apply IVT to the continuous function h on [—nq,ns], there is & € [—nj,ns] such that
h(§) = m(E N (—00,&]), so that A = E'N (—o0,&] which is Lebesgue measurable will do [4 marks].

Solution of Question 2: (a) [Similar] f is continuous on (0, c0) so is measurable, on (0, 1] we have
|fx)] < & = L. Ifg—1<1lie ¢<2, ¢ is integrable on (0,1] [3 marks]. Now consider f on

[1,00). In this case, |f| > 1[7“”7@'5%90' for every n =1,2,---, so that

0 nT | o n—1 k+1)m | o3
|sinz| ( | sin z|
[ it = [T -3 [ 7@:

k=1
B Z/ sin x fo sin xdx
- (km+ x)

Since Y32, & = oo (divergent), so that, by letting n — oo we obtain [ |f(z)|dz = oo, so that |f| is
not Lebesgue integrable, hence f is not Lebesgue integrable either [3 marks].

(b) [Similar] (z,y) — hy(z) is continuous in (0,00) x [0,00) so that it is measurable (and h, is
measurable for every y > 0 fixed). For any fixed y > 0, |hy(x)| < % on (0,1], so by comparison
1

[ﬁ

Pt k:—}—l

to the integrable function 7z on (0,1] we may conclude that © — hy(z) is integrable on (0,1]. While
|hy ()] < ﬁ on (1, 00), again by comparison (to the integrable function - on (1, 00)), hy, is integrable.
xr2

Putting together, we deduce that h, is integrable on (0,00) [1 mark].
For every A > 0

r<>\<}1<01<> f(loom o(z)

and for any yo € [0, A) we have hy(x) — hy,(x) for all z, thus by the theorem of taking limit under
integration, we have

o0
tim F() = [ hy(e)ds = Fun)
Y—Yo 0

which implies that F' is continuous on [0, A) for any A > 0. Hence F' is continuous on [0,00) [2+4
marks — where 2 marks the theorem quoted].

We next show F' is differentiable on (0, 00). We have

0, gcos(ay)
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for all x > 0 and y > 0, moreover we have the following simple estimate:
0
’ayhy(f)

= ﬁ

forally >0and z > 0. z — % is integrable by comparison: for z > 0
. 1 B

7z < ﬁl(o,l] (7) + e 1(1,00) (),

thus, by the theorem of differentiating functions under integration, F’(y) exists for all y > 0 and

o __cos(zy)
dw—/ e " dx.
/ 8y 0 \/5

[245 marks, where 2 marks for the theorem quoted]

Theorem 1. Let E be measurable, and J C R be an interval. For ¢ € J, fi : E — [—00,00] is
measurable. Suppose for any ¢y € J, fi = fi, almost surely on E, and there is g € L'(F) such that
| ft(x)] < g(z) almost surely on E for all ¢ € J. Then f; € L'(E) and F(t) = [, f; is continuous on J.

Theorem 2. Let E be a measurable set, and J C R be an interval. For each t € J, f; : E — R
is measurable, and the following conditions are satisfied: for every t € J, f; € L'(E), and define
F(t) = [ fi for t € J, for every x € E, the partial derivative

ft+h($) — fi()

h—>0 h

ft( )=

exists for every ¢ € J (here the limit runs over h — 0 such that ¢t + h € J), and there is a control
function g € L'(E) such that

2 @) < @)

almost surely on F for all t € J. Then F is differentiable on J and
0
Fity=[ =f.
®) ot

(c) [New] f, are measurable as f,, are continuous on (0,00). We can show for example by L'Hopital
rule that f,,(z) — 0 as n — oo for every x > 0. In order to apply CDT to conclude the limit, we need
to find a control function. If z € (0, 1], then

In(1+n)sinz
n xe

0< falz) <

In(1+n) In( l+n)
n

Since sinz < z and — 0, thus the sequence {
constant C7 > 0 such that w < (4 for all . Thus

:n = 1,2, } is bounded, hence there is a

xd—1’
Since ¢ — 1 < 1 so Cy -7 is integrable on (0,1]. Now we consider z > 1. Then

In(z +n) Inn +In(: +1) < Inn+In(z+1)

n n n
< Ci+In(x+1)
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thus o | ( 1)
n(x +
|fal@)] € =+ ———

x4 xd

for all z > 1. % is integrable on (1,00) as ¢ > 1, we show m(iél) is integrable on (1,00) as well. In

q
fact ¢ > 1 so we may choose ¢ > p > 1 and write

In(z+1) In(z+1)1
24 T pap P

for z > 1. Let u(z) = @+l Then u is continuous and non-negative, (1) =In2, u(z) - 0 as z — oo,

xd—PpP
thus w must be bounded on [1,00). Thus there is Cy > 0 such that 1nagqxfp1) < Oy for all z > 1. Thus
Ci Oy
[ful2)l < 2+

for > 1. Since both % and % are Lebesgue integrable on [1,00). Hence, by DCT we have

o0

oo
lim fo(z)de = / lim f,(z)dz = 0.

DCT: Let E be a measurable set, f, : E — [—00,00] be measurable, and f = lim,_,~ f, almost
everywhere on E. Suppose that there is g € L'(E) such that |f,(z)| < g(x) for almost all x € E. Then
f and f, are integrable, and [, f = lim, o0 [ fn- [14+4 marks — 1 marks given to the theorem
quoted]

Solution of Question 3. (a) [Similar] f is continuous at (x,y) # (0,0) so it is measurable.
For y # 0, x — f(z,y) is continuous on [—1,1], so it is Riemann integrable, thus must be Lebesgue
integrable. The function is odd, so that

/llf(w,y)dz =0

/_11 (/_llf(ﬁc,y)dx) dy = 0.
/_11 (/_11f(x,y)dy> dz = 0.

[3 marks|. The function is not integrable, as it is not integrable on (0,1) x (0,1) on which f is
non-negative. In fact

for all y # 0. Hence

By symmetry, we also have

11y
0 4y 4(1+y?)?

/1 Ty d y 1 1
— —dr = =
o (22 +y?)3 2 1-3 (2% +y?)?

which is not integrable on (0, 1). According to Tonelli’s theorem, f can not be integrable on (0, 1) x (0, 1),
so neither on [—1,1] x [-1,1]. [2+3 marks — 2 marks given to Tonelli’s theorem)].

(b) [Similar - New] f is measurable. Let us show f is integrable on R? by using Tonelli’s theorem.
To this end, consider the iterated integral

(e [ (] )



For Tutors Only - Not For Distribution

Since

|sin (x — y) | |sin (x — y) |
R el = s [ e

By making change of variable t = z — y, we have
/oo \Sin(m—y)\dx _ /°° |sint|dt:2/°° |sint|dt
o T —yl32 oo [t]3/2 o 132
L sint| | sint|
o [y [l

1
< / dt—|-2/ t?’Tdt

= 44+4=38

so that

[ 1 aids < slg)

—00

for all y. Since g is integrable, so is |g|, hence

[:(/jﬁﬂﬁwwﬁdySS[meww<@1

Thus, according to Tonelli’s theorem, f is integrable on R? [10 marks]|, and Fubini’s theorem applies
(to both f and |f]). It follows that

Ll < L= ([ i) a

< 8/m|<ﬂ@.

Fubini’s theorem. Let A, B € Myep, [s0 A x B € Mrep(R?)] and f € L?(A x B). Then for almost
all y € B, f, € LY(B), where fy(z) = f(y,z) for € A, so F(y) = [, f, is well defined for almost
all y € B, and F is integrable on B (so in particular, F is Lebesgue measurable), and [ gt = f axp

Fherefore /B(/Af@,y)dm) dy = /A (/B f(x,y)dy> dz = /AXB [z, y)dady.

[34+4 marks — 3 marks given to Fubini’s theorem]|.

Tonelli’s theorem. Suppose that f : R?> — R is measurable, and suppose either of the repeated
integrals exists and is finite:

/R</R|f(x,y)|da:> dy, /ﬂg(/RU(x’y)‘dy) dr.

Then f € L*(R?), so that Fubini’s theorem is applicable to both f and |f|.



