
A4 Integration

Solution of Question 1. (a) [Book work ] (Ω,F) is called a measurable space if F is a σ-algebra
of some subsets of Ω, here F is a σ-algebra on Ω if Ω and empty set ∅ belong to F , if A ∈ F then
so does Ac, and if An ∈ F (where n = 1, 2, · · · ) then the countable union ∪∞n=1An ∈ F [1 mark]. A
mapping µ : F → [0,∞] is a measure on a measurable space (Ω,F) if µ(∅) = 0, µ(A) ≤ µ(B) whenever
A,B ∈ F and A ⊂ B, and µ is countably additive: if An ∈ F are disjoint for n = 1, 2, · · · , then
µ (∪∞n=1An) =

∑∞
n=1 µ(An) [1 mark].

Suppose E ∈ F , then E ∈ FE and ∅ ∈ FE . If A ∈ FE , then A ∈ F and A ⊂ E, then E \ A =
E ∩Ac ∈ F as Ac = Ω \A ∈ F , thus E \A ∈ FE . Suppose now An ⊂ E and An ∈ F , then ∪∞n=1An ∈ F
and ∪∞n=1An ⊂ E, hence ∪∞n=1An ∈ FE . By definition, FE is a σ-algebra on E [2 marks].

We now prove that ν is a measure on (E,FE). Clearly v(∅) = µ(∅) = 0, and if A ⊂ B ⊂ E and
A,B ∈ F then ν(A) = µ(A) ≤ µ(B) = ν(B). Suppose {An} is a disjoint sequence of elements in FE ,
then since FE ⊂ F , and ∪∞n=1An ∈ FE we have by the countable additivity of µ

ν(∪∞n=1An) = µ(∪∞n=1An) =

∞∑
n=1

µ(An) =

∞∑
n=1

ν(An)

which shows that ν is a measure on (E,FE) [2 marks].
(b) [Book work ] Let E1 = A1 and En = An \An−1 for n ≥ 2, En ∈ F are disjoint (for n = 1, 2, · · · ).

More over ∪nk=1Ek = ∪nk=1Ak = An for n = 1, 2, · · · , and ∪∞k=1Ek = ∪∞k=1Ak, thus, by countable
additivity of µ

µ (∪∞k=1Ak) = µ (∪∞k=1Ek) =

∞∑
k=1

µ (Ek) = lim
n→∞

n∑
k=1

µ (Ek)

= lim
n→∞

µ (∪nk=1Ek) = lim
n→∞

µ (An)

[3 marks]. Apply what we proved to the increasing sequence B1 \Bn and use the fact that

∪∞k=1(B1 \Bk) = B1 \ ∩∞k=1Bk

we obtain
µ (B1 \ ∩∞k=1Bk) = lim

n→∞
µ (B1 \Bn) .

Since µ(B1) <∞ so that
µ (B1 \ ∩∞k=1Bk) = µ (B1)− µ(∩∞k=1Bk)

and
µ (B1 \Bn) = µ (B1)− µ(Bn)

as Bn ⊂ B1 and ∩∞k=1Bk ⊂ B1, which yields that µ (∩∞k=1Bk) = limn→∞ µ (Bn) [4 marks].
(c) [New ] Since h(x) ≥ m(∅) ≥ 0, and h(x) ≤ m(E) < ∞, so h is a real valued, clearly increasing

function on R. Suppose x ≤ y, then

E ∩ (−∞, y] = (E ∩ (−∞, x]) ∪ (E ∩ (x, y])

and
(E ∩ (−∞, x]) ∩ (E ∩ (x, y]) = ∅

so by the additivity of the Lebesgue measure m we have

m(E ∩ (−∞, y]) = m (E ∩ (−∞, x]) +m(E ∩ (x, y])
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that is
h(y) = h(x) +m(E ∩ (x, y])

so that, for y ≥ x,
0 ≤ h(y)− h(x) = m(E ∩ (x, y]) ≤ m((x, y]) = y − x

it follows that |h(y)−h(x)| ≤ |y−x| for any x, y, thus h is uniformly continuous: for every ε > 0 choose
δ = ε, then |h(y)− h(x)| < ε as long as |y − x| < δ [4 marks].

Now
h(n) = m(E ∩ (−∞, n]) ↑ m(E) as n ↑ ∞

and
h(−n) = m(E ∩ (−∞,−n]) ↓ m(∅) = 0 as n ↑ ∞

by 2). Thus, for any c ∈ (0,m(E)) there is n1 and n2 such that h(−n1) < c
2 and h(n2) > c + m(E)−c

2
[4 marks]. Apply IVT to the continuous function h on [−n1, n2], there is ξ ∈ [−n1, n2] such that
h(ξ) = m(E ∩ (−∞, ξ]), so that A = E ∩ (−∞, ξ] which is Lebesgue measurable will do [4 marks].

Solution of Question 2: (a) [Similar ] f is continuous on (0,∞) so is measurable, on (0, 1] we have
|f(x)| ≤ x

xq = 1
xq−1 . If q − 1 < 1 i.e. q < 2, 1

xq−1 is integrable on (0, 1] [3 marks]. Now consider f on

[1,∞). In this case, |f | ≥ 1[π,nπ]
| sinx|
xq for every n = 1, 2, · · · , so that

∫ ∞
1
|f(x)|dx ≥

∫ nπ

π

| sinx|
xq

dx =

n−1∑
k=1

∫ (k+1)π

kπ

| sinx|
xq

dx

=

n−1∑
k=1

∫ π

0

sinx

(kπ + x)q
dx ≥

∫ π
0 sinxdx

πq

n−1∑
k=1

1

πq(k + 1)q
.

Since
∑∞

k=1
1
kq = ∞ (divergent), so that, by letting n → ∞ we obtain

∫∞
1 |f(x)|dx = ∞, so that |f | is

not Lebesgue integrable, hence f is not Lebesgue integrable either [3 marks].
(b) [Similar] (x, y) → hy(x) is continuous in (0,∞) × [0,∞) so that it is measurable (and hy is

measurable for every y ≥ 0 fixed). For any fixed y ≥ 0, |hy(x)| ≤ y√
x

on (0, 1], so by comparison

to the integrable function 1√
x

on (0, 1] we may conclude that x → hy(x) is integrable on (0, 1]. While

|hy(x)| ≤ y
x
√
x

on (1,∞), again by comparison (to the integrable function 1

x
3
2

on (1,∞)), hy is integrable.

Putting together, we deduce that hy is integrable on (0,∞) [1 mark].
For every A > 0

|hy(x)| ≤ A√
x

1(0,1](x) +
A

x
√
x

1(1,∞)(x) ≡ g(x)

and for any y0 ∈ [0, A) we have hy(x) → hy0(x) for all x, thus by the theorem of taking limit under
integration, we have

lim
y→y0

F (y) =

∫ ∞
0

hy0(x)dx = F (y0)

which implies that F is continuous on [0, A) for any A > 0. Hence F is continuous on [0,∞) [2+4
marks – where 2 marks the theorem quoted].

We next show F is differentiable on (0,∞). We have

∂

∂y
hy(x) = e−x

cos(xy)√
x
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for all x > 0 and y > 0, moreover we have the following simple estimate:∣∣∣∣ ∂∂yhy(x)

∣∣∣∣ ≤ e−x√
x

for all y > 0 and x > 0. x→ e−x
√
x

is integrable by comparison: for x > 0

e−x√
x
≤ 1√

x
1(0,1](x) + e−x1(1,∞)(x),

thus, by the theorem of differentiating functions under integration, F ′(y) exists for all y > 0 and

F ′(y) =

∫ ∞
0

∂

∂y
hy(x)dx =

∫ ∞
0

e−x
cos(xy)√

x
dx.

[2+5 marks, where 2 marks for the theorem quoted]
Theorem 1. Let E be measurable, and J ⊂ R be an interval. For t ∈ J , ft : E → [−∞,∞] is

measurable. Suppose for any t0 ∈ J , ft → ft0 almost surely on E, and there is g ∈ L1(E) such that
|ft(x)| ≤ g(x) almost surely on E for all t ∈ J . Then ft ∈ L1(E) and F (t) =

∫
E ft is continuous on J .

Theorem 2. Let E be a measurable set, and J ⊂ R be an interval. For each t ∈ J , ft : E → R
is measurable, and the following conditions are satisfied: for every t ∈ J , ft ∈ L1(E), and define
F (t) =

∫
E ft for t ∈ J , for every x ∈ E, the partial derivative

∂

∂t
ft(x) = lim

h→0

ft+h(x)− ft(x)

h

exists for every t ∈ J (here the limit runs over h → 0 such that t + h ∈ J), and there is a control
function g ∈ L1(E) such that ∣∣∣∣ ∂∂tft(x)

∣∣∣∣ ≤ g(x)

almost surely on E for all t ∈ J . Then F is differentiable on J and

F ′(t) =

∫
E

∂

∂t
ft .

(c) [New ] fn are measurable as fn are continuous on (0,∞). We can show for example by L’Hopital
rule that fn(x)→ 0 as n→∞ for every x > 0. In order to apply CDT to conclude the limit, we need
to find a control function. If x ∈ (0, 1], then

0 ≤ fn(x) ≤ ln(1 + n)

n

sinx

xq
.

Since sinx ≤ x and ln(1+n)
n → 0, thus the sequence { ln(1+n)n : n = 1, 2, } is bounded, hence there is a

constant C1 > 0 such that ln(1+n)
n ≤ C1 for all x. Thus

0 ≤ fn(x) ≤ C1
1

xq−1
.

Since q − 1 < 1 so C1
1

xq−1 is integrable on (0, 1]. Now we consider x > 1. Then

ln(x+ n)

n
=

lnn+ ln(xn + 1)

n
≤ lnn+ ln(x+ 1)

n
≤ C1 + ln(x+ 1)
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thus

|fn(x)| ≤ C1

xq
+

ln(x+ 1)

xq

for all x ≥ 1. C1
xq is integrable on (1,∞) as q > 1, we show ln(x+1)

xq is integrable on (1,∞) as well. In
fact q > 1 so we may choose q > p > 1 and write

ln(x+ 1)

xq
=

ln(x+ 1)

xq−p
1

xp

for x ≥ 1. Let u(x) = ln(x+1)
xq−p . Then u is continuous and non-negative, u(1) = ln 2, u(x)→ 0 as x→∞,

thus u must be bounded on [1,∞). Thus there is C2 > 0 such that ln(x+1)
xq−p ≤ C2 for all x ≥ 1. Thus

|fn(x)| ≤ C1

xq
+
C2

xp

for x ≥ 1. Since both C1
xq and C2

xp are Lebesgue integrable on [1,∞). Hence, by DCT we have

lim
n→∞

∫ ∞
0

fn(x)dx =

∫ ∞
0

lim
n→∞

fn(x)dx = 0.

DCT : Let E be a measurable set, fn : E → [−∞,∞] be measurable, and f = limn→∞ fn almost
everywhere on E. Suppose that there is g ∈ L1(E) such that |fn(x)| ≤ g(x) for almost all x ∈ E. Then
f and fn are integrable, and

∫
E f = limn→∞

∫
E fn. [1+4 marks – 1 marks given to the theorem

quoted]
Solution of Question 3. (a) [Similar ] f is continuous at (x, y) 6= (0, 0) so it is measurable.

For y 6= 0, x → f(x, y) is continuous on [−1, 1], so it is Riemann integrable, thus must be Lebesgue
integrable. The function is odd, so that ∫ 1

−1
f(x, y)dx = 0

for all y 6= 0. Hence ∫ 1

−1

(∫ 1

−1
f(x, y)dx

)
dy = 0.

By symmetry, we also have ∫ 1

−1

(∫ 1

−1
f(x, y)dy

)
dx = 0.

[3 marks]. The function is not integrable, as it is not integrable on (0, 1) × (0, 1) on which f is
non-negative. In fact∫ 1

0

xy

(x2 + y2)3
dx =

y

2

1

1− 3

1

(x2 + y2)2

∣∣∣∣1
0

=
1

4

1

y3
− 1

4

y

(1 + y2)2

which is not integrable on (0, 1). According to Tonelli’s theorem, f can not be integrable on (0, 1)×(0, 1),
so neither on [−1, 1]× [−1, 1]. [2+3 marks – 2 marks given to Tonelli’s theorem].

(b) [Similar - New ] f is measurable. Let us show f is integrable on R2 by using Tonelli’s theorem.
To this end, consider the iterated integral∫ ∞

−∞

(∫ ∞
−∞
|f(x, y)|dx

)
dy =

∫ ∞
−∞

(∫ ∞
−∞

| sin (x− y) |
|x− y|3/2

|g(y)|dx
)
dy.
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Since ∫ ∞
−∞

| sin (x− y) |
|x− y|3/2

|g(y)|dx = |g(y)|
∫ ∞
−∞

| sin (x− y) |
|x− y|3/2

dx.

By making change of variable t = x− y, we have∫ ∞
−∞

| sin (x− y) |
|x− y|3/2

dx =

∫ ∞
−∞

| sin t|
|t|3/2

dt = 2

∫ ∞
0

| sin t|
t3/2

dt

= 2

∫ 1

0

| sin t|
t3/2

dt+ 2

∫ ∞
1

| sin t|
t3/2

dt

≤ 2

∫ 1

0

1√
t
dt+ 2

∫ ∞
1

1

t3/2
dt

= 4 + 4 = 8

so that ∫ ∞
−∞
|f(x, y)|dx ≤ 8|g(y)|

for all y. Since g is integrable, so is |g|, hence∫ ∞
−∞

(∫ ∞
−∞
|f(x, y)|dx

)
dy ≤ 8

∫ ∞
−∞
|g(y)|dy <∞.

Thus, according to Tonelli’s theorem, f is integrable on R2 [10 marks], and Fubini’s theorem applies
(to both f and |f |). It follows that∣∣∣∣∫

R2

f

∣∣∣∣ ≤ ∫
R2

|f | =
∫ ∞
−∞

(∫ ∞
−∞
|f(x, y)|dx

)
dy

≤ 8

∫ ∞
−∞
|g(y)|dy.

Fubini’s theorem. Let A,B ∈ MLeb [so A × B ∈ MLeb(R2)] and f ∈ L2(A × B). Then for almost
all y ∈ B, fy ∈ L1(B), where fy(x) = f(y, x) for x ∈ A, so F (y) =

∫
A fy is well defined for almost

all y ∈ B, and F is integrable on B (so in particular, F is Lebesgue measurable), and
∫
B F =

∫
A×B f .

Therefore ∫
B

(∫
A
f(x, y)dx

)
dy =

∫
A

(∫
B
f(x, y)dy

)
dx =

∫
A×B

f(x, y)dxdy.

[3+4 marks – 3 marks given to Fubini’s theorem].

Tonelli’s theorem. Suppose that f : R2 → R is measurable, and suppose either of the repeated
integrals exists and is finite:∫

R

(∫
R
|f(x, y)|dx

)
dy,

∫
R

(∫
R
|f(x, y)|dy

)
dx.

Then f ∈ L1(R2), so that Fubini’s theorem is applicable to both f and |f |.
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