A4 Integration: Solutions January 16, 2019

(a) [almost all B] A subset $\mathcal{F} \subseteq \mathcal{P}(\Omega)$ is a σ -algebra if: Solution to Q.1

- $\emptyset \in \mathcal{F}$,
- If $E \in \mathcal{F}$, then $\Omega \setminus E \in \mathcal{F}$,
- If $E_n \in \mathcal{F}$ for $n = 1, 2, \ldots$, then $\bigcup_{n=1}^{\infty} E_n \in \mathcal{F}$. [2]

 $\mathcal{F}_{\mathcal{B}}$ is the unique σ -algebra on Ω satisfying

- $\mathcal{B} \subseteq \mathcal{F}_{\mathcal{B}}$,
- If \mathcal{F} is a σ -algebra on Ω and $\mathcal{B} \subseteq \mathcal{F}$, then $\mathcal{F}_{\mathcal{B}} \subseteq \mathcal{F}$.
- $f^{-1}(\emptyset) = \emptyset \in \mathcal{F}$ • If $f^{-1}(E) \in \mathcal{F}$, then $f^{-1}(\Omega \setminus E) = \Omega \setminus f^{-1}(E) \in \mathcal{F}$ • If $f^{-1}(E_n) \in f^{-1}(\mathcal{F})$, then $\bigcup_n f^{-1}(E_n) = f^{-1}(\bigcup_n E_n) \in \mathcal{F}$. [2]

For $\Omega = \mathbb{N}$, $\mathcal{F} = \{\emptyset, \{3\}, \mathbb{N} \setminus \{3\}, \mathbb{N}\}$, $f(3) = f(\mathcal{A}) = 3$, f(n) = n-1 for $n \ge 2$. Then $f(\mathcal{F}) = \{\emptyset, \{2\}, \mathbb{N}\}$ which is not a calculate [1] $\{\emptyset, \{\mathbf{\hat{x}}\}, \mathbb{N}\},$ which is not a σ -algebra.

(b) [all B or minor variants] Let $0 \leq a < b \leq 1$. Then

$$[a,b) = \bigcup_{n} [a,b-2^{-n}] \in \mathcal{F}_{\mathcal{B}_{1}}, \qquad (a,b] = \bigcup_{n} [a+2^{-1},b], \quad (a,b) = \bigcup_{n} [a+2^{-n},b-2^{-n}] \in \mathcal{F}_{\mathcal{B}_{1}}.$$

Hence $\mathcal{B}_2 \subseteq \mathcal{F}_{\mathcal{B}_1}$, so $\mathcal{F}_{\mathcal{B}_1} \subseteq \mathcal{F}_{\mathcal{B}_2}$. Since $\mathcal{B}_1 \subseteq \mathcal{B}_2 \subseteq \mathcal{F}_{\mathcal{B}_2}$, $\mathcal{F}_{\mathcal{B}_1} \subseteq \mathcal{F}_{\mathcal{B}_2}$.

Any singleton $\{a\}$ is either $\cap_n[a-2^{-n},b]$ or $\cap_n[a,b+2^{-n}]$, and hence in \mathcal{M}_{Bor} . Any countable set [1]is a countable union of singletons and hence is in \mathcal{M}_{Bor} .

(c) [(i)S; rest N] (i) If I is an interval in [0, 1], then $\Phi^{-1}(I)$ is an interval, since Φ is monotonic. Thus the σ -algebra \mathcal{H} contains \mathcal{B}_2 , and is contained in \mathcal{M}_{Bor} . Since \mathcal{M}_{Bor} is the smallest such σ algebra, $\mathcal{H} = \mathcal{M}_{Bor}$, and hence $\Phi_{\mathfrak{X}}(\mathcal{M}_{Bor}) \subseteq \mathcal{M}_{Bor}$. For $E \in \mathcal{M}_{Bor}$, $E = \Phi(\Phi^{-1}(E)) \in \Phi(\mathcal{M}_{Bor})$. 3

(ii) If $y \in \Phi(E) \cap \Phi(X \setminus E)$, then $y = \Phi(x_1) = \Phi(x_2)$ for distinct x_1, x_2 . There are at most [1]countably many such points.

If $\Phi(E) \in \mathcal{M}_{Bor}$, then $\Phi([0,1] \setminus E) = ([0,1] \setminus \Phi(E)) \cup (\Phi(E) \cap \Phi(X \setminus E)) \in \mathcal{M}_{Bor}$, using (b). [2]

(iii) Trivially, $\emptyset \in \mathcal{G}$.

Let $E \in \mathcal{G}$. Then $X \setminus E \in \mathcal{G}$, by (ii).

Let $E_n \in \mathcal{G}$. Then $\Phi(\bigcup E_n) = \bigcup \Phi(E_n) \in \mathcal{M}_{Bor}$, so $\bigcup E_n \in \mathcal{G}$. Now $\mathcal{M}_{Bor} \subseteq \mathcal{G}$. By definition, $\mathcal{G} \subseteq \mathcal{M}_{Bor}.$ |2|

(iv) Let $E \in \mathcal{G}$. Then $\Phi(E) \in \mathcal{M}_{Bor}$, so $\Phi(X \setminus E) \in \mathcal{M}_{Bor}$ by (ii). Thus $X \setminus E \in \mathcal{G}$. If $E_n \in \mathcal{G}$ then $\Phi(\bigcup U_n) = \bigcup \Phi(E_n) \in \mathcal{M}_{Bor}$. So \mathcal{G} is a σ -algebra.

If I is an interval, then $\Phi(I)$ is an interval, so $I \in \mathcal{G}$. Thus \mathcal{G} is a σ -algebra containing \mathcal{B}_2 and contained in \mathcal{M}_{Bor} , so $\mathcal{G} = \mathcal{M}_{Bor}$. If $E \in \mathcal{M}_{Bor} = \mathcal{G}$, then $E = \Phi(\Phi^{-1}(E)) \in \Phi^*(\mathcal{M}_{Bor})$. [3]

(v) Let $E \subseteq [0,1]$. Since $\Phi(C) = [0,1]$, $E = \Phi(C \cap \Phi^{-1}(E))$. Since C is null, $C \cap \Phi^{-1}(E)$ is null, so $C \cap \Phi^{-1}(E) \in \mathcal{M}_{\text{Leb}}$, and $E \in \Phi(\mathcal{M}_{\text{Leb}})$. Thus $\Phi(\mathcal{M}_{\text{Leb}}) = \mathcal{P}([0,1])$. [3]

Page 1 of 3

Turn Over

[2]

Solution to Q.2

(a) (i) [B/S] No. Take $f(x) = \sin x$, and $g(x) = (x + 2\pi)^{-1}$ for example. [3]

(ii) [S] The given functions are continuous, hence measurable, and they are dominated by e^{-x} . This is a non-negative measurable function, and, by FTC,

$$\int_0^k \mathrm{e}^{-x} \, \mathrm{d}x = 1 - \mathrm{e}^{-k} \to 1$$

By the Baby MCT, e^{-x} is integrable over $(0, \infty)$. By comparison, the given functions are also integrable. [2]

$$I_{0} = \int_{0}^{\infty} e^{-x} dx = \lim_{k \to \infty} \int_{0}^{k} e^{-x} dx = 1,$$

$$J_{0} = \operatorname{Re} \int_{0}^{\infty} e^{-x} e^{ix} dx = \operatorname{Re} \lim_{k \to \infty} \left(\frac{1 - e^{-k} e^{ik}}{1 - i} \right) = \operatorname{Re} \left(\frac{1 + i}{2} \right) = \frac{1}{2}.$$

Let $n \ge 1$, and let I_n^k and J_n^k be the corresponding integrals over $[0, k\pi]$. By integration by parts (noting that $\sin^n k\pi = 0$), we obtain that

$$I_n^k = \int_0^{k\pi} e^{-x} n \sin^{n-1} x \cos x \, dx = n J_{n-1}^k,$$

$$J_n^k = \int_0^{k\pi} e^{-x} \left(n \sin^{n-1} x \cos^2 x - \sin^n x \sin x \right) \, dx$$

$$= \int_0^{k\pi} e^{-x} \left(n \sin^{n-1} x - (n+1) \sin^{n+1} x \right) \, dx = n I_{n-1}^k - (n+1) I_{n+1}^k.$$

157

[6]

Letting $k \to \infty$ gives the desired equalities.

(b) (i) [S] $1 + \sin x$ and its derivative both vanish at $x = 3\pi/2$, and $|1 + \sin x| < |x - 3\pi/2|$ for all x (for example, by Mean Value Theorem). For $x \in (\pi, 2\pi)$, $e^{-x}(1 + \sin x)^{-1} \ge e^{-2\pi}|x - 3\pi/2|^{-1}$, which is not integrable over $(\pi, 2\pi)$, so $e^{-x}(1 + \sin x)^{-1}$ is not integrable, by comparison. [3]

(iii) [S]
$$e^{-x}(1+r\sin x)^{-1} = e^{-x}\sum_{n=0}^{\infty}(-r\sin x)^n = \sum_{n=0}^{\infty}(-1)^n r^n e^{-x}\sin^n x = \lim_{m \to \infty}g_m(x),$$

where $g_m(x) = \sum_{n=0}^m (-1)^n r^n e^{-x} \sin^n x$. Then $|g_m(x)| \leq \sum_{n=0}^m r^n e^{-x} \leq (1-r)^{-1} e^{-x}$, which is integrable over $(0,\infty)$. By the DCT, $e^{-x}(1+r\sin x)^{-1}$ is integrable and its integral is

$$\lim_{m \to \infty} \int_0^\infty g_m(x) \, dx = \lim_{m \to \infty} \sum_{n=0}^m (-1)^n r^n I_n = \sum_{n=0}^\infty (-1)^n r^n I_n.$$
 [6]

(iv) [N] Suppose that $\sum_{n=0}^{\infty} (-1)^n I_n$ converges (to a real number). Then, using Abel's continuity theorem, (iii), MCT, and (i),

$$\sum_{n=0}^{\infty} (-1)^n I_n = \lim_{r \nearrow 1} \sum_{n=0}^{\infty} (-1)^n r^n I_n = \lim_{r \nearrow 1} \int_0^\infty e^{-x} (1+r\sin x)^{-1} dx$$
$$\ge \lim_{r \nearrow 1} \int_{\pi}^{2\pi} e^{-x} (1+r\sin x)^{-1} dx = \infty.$$

This is a contradiction.

Solution to Q.3

(a) [all B] Fubini: Let $f : \mathbb{R}^2 \to \mathbb{R}$ be integrable. Then, for almost all y, the function $x \mapsto f(x, y)$ is integrable over \mathbb{R} . Moreover, if F(y) is defined (for almost all y) by $F(y) = \int_{\mathbb{R}} f(x, y) dx$, then F is integrable, and

$$\int_{\mathbb{R}^2} f(x,y) \, d(x,y) = \int_{\mathbb{R}} \left(\int_{\mathbb{R}} f(x,y) \, dx \right) \, dy.$$
^[3]

Tonelli: Let $f : \mathbb{R}^2 \to \mathbb{R}$ be a measurable function, and suppose that either of the following repeated integrals is finite:

$$\int_{\mathbb{R}} \left(\int_{\mathbb{R}} |f(x,y)| \, dx \right) \, dy, \qquad \int_{\mathbb{R}} \left(\int_{\mathbb{R}} |f(x,y)| \, dy \right) \, dx.$$

Then f is integrable. Hence, Fubini's theorem is applicable to both f and |f|.

(b) [all S] Consider the region $u := \{(x, y) : 0 < y < x < 1\}$, where f(x, y) > 0. For fixed x consider

$$\int_{0}^{x} f(x,y) \, dy = \lim_{n \to \infty} \left(x \log x - \frac{x}{2} \log(x^{2} - (x - n^{-1})^{2}) \right) = \infty$$

Thus the function $f(x, \cdot)$ is not integrable for any $x \in (0, 1)$. By the contrapositive of Fubini's theorem, f is not integrable over U and hence not integrable over $(0, 1) \times (0, 1)$. [5]

(c) [S] Let $f(x,y) = e^{-x^2/y}e^{-y}y^{-1}$ on $\mathbb{R} \times (0,\infty)$. Then f is measurable and non-negative. Moreover, for fixed y > 0, putting $x = u\sqrt{y}$,

$$\int_{\mathbb{R}} f(x,y) \, \mathrm{d}x = \int_{\mathbb{R}} \mathrm{e}^{-u^2} \mathrm{e}^{-y} y^{-1/2} \, \mathrm{d}u = \sqrt{\pi} e^{-y} y^{-1/2}.$$

This function of y is integrable over $(0, \infty)$, by comparison with $y^{-1/2}$ on (0, 1), and e^{-y} on $(1, \infty)$. By Tonelli, f is integrable; by Fubini, g is integrable over \mathbb{R} . [4]

[S/N] Now the function $(x, y) \mapsto e^{-isx} f(x, y)$ is measurable, and its absolute value is f, so the function is integrable over $(0, \infty) \times \mathbb{R}$. Using Fubini and the given information,

$$\widehat{g}(s) = \int_{\mathbb{R}} \int_{0}^{\infty} e^{-isx} f(x,y) \, \mathrm{d}y \, \mathrm{d}x = \int_{0}^{\infty} \int_{\mathbb{R}} e^{-isx} f(x,y) \, \mathrm{d}x \, \mathrm{d}y \\ = \int_{0}^{\infty} e^{-s^{2}y/4} e^{-y} y^{-1/2} \quad \mathrm{d}y = \int_{0}^{\infty} e^{-(1+s^{2}/4)y} \sqrt[4]{\pi} y^{-1/2} \, \mathrm{d}y.$$

Making the further change of variable, $u = (1 + s^2/4)^{-1}$ y gives

$$\widehat{g}(s) = \left(2 \iint_{0}^{\infty} e^{-u} u^{-1/2} \, du\right) (4+s^2)^{-1/2} \tag{5}$$

(d) [N] Assume that \tilde{h} is integrable, so $|\tilde{h}|$ is integrable. Let $a \in (0,1)$. For fixed $x \in (0,a)$, putting t = xy,

$$\int_{1}^{\infty} \left| \widetilde{h}(x,y) \right| \, \mathrm{d}y = \left(\int_{x}^{\infty} \left| \mathbf{h}(t) - \mathbf{h}(2t) \right| \, \mathrm{d}\mathbf{t} \right) x^{-1} \ge \left(\int_{a}^{\infty} \left| \mathbf{h}(t) - \mathbf{h}(2t) \right| \, \mathrm{d}\mathbf{t} \right) x^{-1}.$$

By Fubini, the left-hand side is integrable over (0,1) and hence over (0,a). By comparison, the left-hand side is integrable over (0,a). But x^{-1} is not integrable over (0,a), so the term $\int_a^{\infty} |\mathbf{k}| t - \int_{\mathbf{k}} (2t) |\mathbf{k}| t$ must be 0. This implies that the integrand is 0 a.e. in (a, ∞) . Since a is arbitrary this implies that $\int_{\mathbf{k}} (t) = \mathbf{k}(2t)$ a.e. in $(0, \infty)$.

On the other hand, if h(t) = h(2t) a.e., then $\tilde{h} = 0$ a.e., and \tilde{h} is integrable.

[2]