
Solutions Topology A.5

Problem 1

(a) i) A topological space X is disconnected if there are disjoint open
non-empty subsets U and V such that U ∪V = X. If X is not disconnected,
it is called connected.

A (non-empty) subset A of a topological space X is connected if A with
the subspace topology is connected. [B, 2]

ii) Assume that A ∪ B is disconnected. Then there are open subsets of
X, U, V , such that

(A ∪ B) ∩ U 6= ∅, (A ∪ B) ∩ V 6= ∅, (A ∪B) ∩ U ∩ V = ∅

Let x ∈ A ∩ B. Then x ∈ U or x ∈ V . Say x ∈ U . Since A is connected
A ⊂ U . For the same reason B ⊂ U . So (A ∪ B) ∩ V = ∅, a contradiction.
[B, 4]

iii) Assume that f(A) is not connected. Let U and V be open sets such
that

f(A) ∩ V 6= ∅, f(A) ∩ U 6= ∅, f(A) ∩ V ∩ U = ∅.

Then f−11(U) and f−1(V ) are open in X. So, f−1(U)∩A and f−1(V )∩A
are disjoint and open in A. Since A is connected, one of f−1(U) ∩ A and
f−1(V ) ∩ A is empty. Hence, one of f(A) ∩ U and f(A) ∩ V is empty. So,
f(A) is connected. [B, 4]

(b) i) Let B = {U × V : U ⊂ TX , V ⊂ TY }. Clearly X × Y ⊂ B. Also

(U1 × V1) ∩ (U2 × V2) = (U1 ∩ U2 × V1 ∩ V2)

hence (U1 × V1) ∩ (U2 × V2) lies in B. So B is a basis for a topology. [B, 4]

ii) Assume that X, Y are Hausdorff. Let (x, y) 6= (x′y′). Then either
x 6= x′ or y 6= y′. Without loss of generality we assume that x 6= x′. Then
there exist U, V open disjoint in X with x ∈ U, x′ ∈ V . It follows that
(x, y) ∈ U × Y, (x′y′) ∈ V × Y and U × Y ∩ V × Y = ∅. So X × Y is
Hausdorff.

Conversely we show that X is Hausdorff: Let x, x′ ∈ X with x 6= x′.
Given y ∈ Y there are open sets U1, U2 in X, V1, V2 in Y such that

(x, y) ∈ U1 × V1, (x
′, y) ∈ U2 × V2, U1 × V1 ∩ U2 × V2 = ∅.
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Then x ∈ U1, x
′ ∈ U2 and U1 ∩U2 = ∅. The same argument applies to Y . [B

and S, 4]

iii) We show first a lemma: If C and Ai, i ∈ I are connected sets in
a topological space Z and Ai ∩ B 6= ∅ for all i then F = C ∪

⋃
i∈I Ai is

connected. Indeed let U, V be open subsets of Z such that U ∩ V ∩ F = ∅
and F ⊂ U ∪ V . If C ∩ U 6= ∅ then C ⊂ U since C is connected. For the
same reason Ai ⊂ U for all i. It follows that F ⊂ U . We argue similarly if
C∩V 6= ∅. It follows that either F ∩U or F ∩V is empty. So F is connected.

Let x0 ∈ X − A, y0 ∈ Y − B.

X × Y \ A×B = X × (Y −B) ∪ Y × (X − A)

Each set X × {y} with y ∈ Y −B is connected and intersects {x0} × Y . So
by the lemma X × (Y −B)∪ {x0}× Y is connected. By the same argument
Y × (X −A)∪X ×{y0} is connected. (x0, y0) lies in both these sets so their
union which is equal to X × (Y −B)∪ Y × (X −A) is connected by part (a
ii). [N, 4]

iv) Let A ⊂ X be finite and let let a ∈ A. If A = {a} clearly A is
connected. Otherwise if B = A \ {a}, then X \ B,X \ {a} are open sets,
A ⊂ (X \ B) ∪ (X \ {a}) and (X \ B) ∩ (X \ {a}) ∩ A = ∅ so A is not
connected. If A is infinite and U, V are open non-empty then A∩U ∩ V 6= ∅
so A is connected. [N, 1]

Let A = {a, b} × X. Then U = X \ {a}, V = X \ {b} are open in X
so U × X, V × X are open in X × X, A ∩ (U × X) ∩ (V × X) = ∅ and
A ⊂ (U ×X) ∪ (V ×X). So A is not connected. [N, 2]

Problem 2

(a) i) A family U = {Ui : i ∈ I} of subsets of a space X is called a cover
if X =

⋃
i∈I Ui If each Ui is open in X then U is called an open cover for X.

A subcover of a cover {Ui : i ∈ I} for a space X is a subfamily {Uj : j ∈ J}
for some subset J ⊂ I such that {Uj : j ∈ J} is still a cover for X. We call it
a finite subcover if J is finite. A topological space X is compact if any open
cover of X has a finite subcover. [B, 2]

ii) Let {Ui : i ∈ I} be an open cover of Y . Then {f−1(Ui) : i ∈ I} is
an open cover of X. The compactness of X implies that there exists a finite
subcover {f−1(Uj) : j ∈ J} Since f is onto, {Uj : j ∈ J} is a finite subcover
for Y . [B, 3]

(b) i) Let X/R be the set of equivalence classes of R. The quotient
topology T ′ of X/R consists of the sets U such that p−1(U) is open in X.
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Clearly ∅, X/R lie in T ′. Let U1, U2 ∈ T ′. Then p−1(U1 ∩ U2) = p−1(U1) ∩
p−1(U2) so U1 ∩ U2 ∈ T ′. Also if {Ui : i ∈ I} ⊂ T ′ then

p−1(
⋃

Ui) =
⋃

p−1(Ui)

so
⋃
Ui lies in T ′. [B, 3]

ii) Suppose that g is continuous. By the definition of the quotient topology
p is continuous. So, g ◦ p is continuous.

Suppose that g ◦ p is continuous. Let U be an open subset of Z. Then,
by assumption, g ◦ p−1(U) is open in X. This is p−11(g−1(U)) . By the
definition of the quotient topology, g−1(U) is therefore open in X/R. So, g
is continuous. [B, 2]

(c) i) We note that p is injective on K. So p−1(p(X −K)) = X −K. It
follows that p(X −K) is open. [S, 2]

ii) Let f : [0, 1] → S1 where f(t) = e2πit. Since f(0) = f(1), this gives a
well-defined function g : XA → S1 where g([x]) = f(x). So f = g ◦ p and g
is continuous by (b,ii). Since X = [0, 1] is compact XA is compact as well.
As S1 is Hausdorff and g 1− 1, g is a homeomorphism. [S, 2]

iii) Let f : [0, 1] → XA where f(x) = [x]. Then f is the restriction of p to
[0, 1] so it is continuous. As [0, 1] is compact and f is onto XA is compact.
Let h : [0, 1] → S1 where h(t) = e2πit. This gives a well-defined 1-1 and onto
function g : XA → S1 where g([x]) = h(x) if x /∈ A and g([x]) = h(0) = h(1)
if x ∈ A. So h is the restriction of g ◦ p to [0, 1] and g is continuous by (b,ii).
Since XA is compact and S1 is Hausdorff g is a homeomorphism. [S,4]

iv) Let [a], [b] ∈ XZ. If a, b /∈ Z pick open neighborhoods U, V of a, b in
R such that U ∩ V = ∅ and U ∩Z = ∅, V ∩Z = ∅. Then by i) p(U), p(V ) are
disjoint open containing respectively [a], [b]. If, say a ∈ Z, let m = min{|n−
b|; b ∈ Z}. If ǫ = m/3 then the sets U =

⋃
n(n− ǫ, n + ǫ), V = (b− ǫ, b + ǫ)

are an open saturated sets [a] ∈ p(U), [b] ∈ p(V ) and p(U) ∩ p(V ) = ∅. So
XZ is Hausdorff.

Let a, b be distinct irrational numbers. Then if U, V are open sets con-
taining [a], [b] respectively, p−1(U), p−1(V ) both intersect Q. It follows that
p(U) ∩ p(V ) 6= ∅ so XQ is not Hausdorff. [S, 4]

v) Let S be a countable subset of R. For each n ∈ N we pick xn ∈ (n, n+1)
with xn /∈ S. The sets Kr = {xn : n ∈ N, n ≥ r} are all closed disjoint from
S. So by (c, i) p(X −Kr) is open in XS. Clearly XS =

⋃
r p(X −Kr) and

this open cover has no finite subcover, so XS is not compact. [N, 3]
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Problem 3

(a) i) The standard n-simplex is the set

∆n = {(x1, ..., xn+1) ∈ Rn+1 : xi ≥ 0 ∀i and
∑

i

xi = 1}.

An abstract simplicial complex is a pair (V,Σ), where V is a set (whose
elements are called vertices) and Σ is a set of non-empty finite subsets of V
(called simplices) such that

(1) for each v ∈ V , the 1-element set {v} is in Σ;
(2) if σ is an element of Σ, so is any non-empty subset of σ.
A face inclusion of a standard m-simplex ∆m into a standard n-simplex

∆n (where m < n) is a function ∆m → ∆n that is the restriction of an
injective linear map Rm+1 → Rn+1 which sends the vertices of ∆m to vertices
of ∆n.

The topological realisation |K| of an abstract simplicial complex K =
(V,Σ) is the space obtained by the following procedure: (1) For each σ ∈ Σ,
take a copy of the standard n-simplex, where n+1 is the number of elements
of σ. Denote this simplex by ∆σ. Label its vertices with the elements of
σ. (2) Whenever σ ⊂ τ ∈ Σ, identify ∆σ with a subset of ∆τ via the face
inclusion which sends the elements of σ to the corresponding elements of τ .

In other words, |K| is a quotient space, obtained by starting with the
disjoint union of the simplices in (1), and then imposing the equivalence
relation that is described in (2). [B, 4]

ii) LetK ′ be the simplicial complex with the vertex set V , but where every
non-empty subset of V is a simplex. Then |K ′|is homeomorphic to a standard
simplex. The inclusion |K| → |K ′| is a continuous injection. The standard
simplex is a subset of Rn. Hence, we obtain the required continuous injection
f : |K| → Rn. Let a, b ∈ |K|. If U, V are disjoint open neighborhoods of
f(a), f(b), f−1(U), f−1(V ) are disjoint open neighborhoods of a, b. [B and S,
3]

iii) An n-dimensional manifold is a Hausdorff topological space M such
that every point of M lies in an open set that is homeomorphic to an open
set in Rn. A 2-dimensional manifold is a surface. [B, 2]

iv)
[S, 4]
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b) i) Let P be a finite-sided convex polygon in R2 . Suppose that P has an
even number of sides. Arrange these sides into pairs. For each such pair, the
two sides of the pair will be identified. More specifically, suppose that e and
e′ are two sides of a pair. If e is an edge of P1 edge joining (x1, y1) to (x2, y2)
and e′ is an edge of P joining some points (x′

1, y
′
1) to (x′

2, y
′
2) we identify the

point (1 − t)(x1, y1) + t(x2, y2) to the point (1 − t)(x′
1, y

′
1) + t(x′

2, y
′
2) where

t ∈ [0, 1].
Once one has chosen the edges e and e′ to identify, there is still some

choice about how this identification is made, because we can choose e to run
from (x1, y1) to (x2, y2) , or the other way round. We encode this choice by
drawing an arrow on e, running from (x1, y1) to (x2, y2). When arrows have
been drawn on both e and e′ , this determines how they are identified. This
construction is a polygon with a complete set of side identifications. [B, 3]

ii) It is convenient to describe a polygon with side identifications using
a word, which is a string of letters, possibly with ()−1 signs. We start with
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some vertex of the polygon, and run around the boundary of the polygon.
Each pair of edges that is to be identified is given a letter. We orient the
edge in some way. When we come to that edge, we write down the letter
or its inverse, depending on whether we traverse the edge in the forwards or
backwards direction.

With this notation let M0 be the surface corresponding to the word
xx−1yy−1. For g ≥ 1 let Mg be the surface obtained from the word:

x1y1x
−1

1 y−1

1 ....xgygx
−1
g y−1

g . Let N1 be the surface obtained from the word
xxyy−1. For h > 1,letNh be the surface obtained from the word: x1x1....xhxh.

The classification theorem of closed combinatorial surfaces states that
every closed combinatorial surface is homeomorphic to one of the manifolds
Mg , for some g ≥ 0, or Nh , for some h ≥ 1.[B, 4]

iii) All these squares can be encoded by words. Without loss of generality
we may assume that the 1st letter of the word is b. Then the second letter
will be either b±1 or c±1. By relabelling we may assume that if the second
letter is not b±1 then it is c. Similarly if the second letter is b±1 we may
assume that the 3rd letter is c.

So, up to relabelling the 4 sides we obtain the following words correspond-
ing to the indicated surfaces:

bbcc = N2, bbcc
−1 = N1, bb

−1cc−1 = M0, bb
−1cc = N1, bcbc = N1

,
bcbc−1 = N2, bcb

−1c−1 = M1, bcb
−1c = N2

We see that the words bcbc corresponds to N1 and bcb−1c to N2 by the
following ‘cut and paste’ diagrams:

[ N, 5]
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