
Solutions Topology A.5, 2018-19

Problem 1

a i) A family U = {Ui : i ∈ I} of subsets of a space X is called a cover if
X =

⋃
i∈I Ui. If each Ui is open in X then U is called an open cover for X.

A subcover of a cover {Ui : i ∈ I} for a space X is a subfamily {Uj : j ∈ J}
for some subset J ⊂ I such that {Uj : j ∈ J} is still a cover for X. We call
it a finite subcover if J is finite. A topological space X is compact if any
open cover of X has a finite subcover. K ⊂ X is compact if it is a compact
topological space with respect to the subspace topology. [B, 2]

A topological space X is path-connected if for any a, b ∈ X there is
f : [0, 1]→ X continuous such that f(0) = a, f(1) = b. [B, 1 ]

a ii) A basis for the topology of X × Y is given by B = {U × V : U ∈
TX , V ∈ TY }. More explicitly U ⊂ X × Y is open if it can be written as
union of elements of B. [B,1]

If U ⊂ X is open then p−1X (U) = U×Y which is clearly open in X×Y . So
pX is continuous. Similarly pY is continuous. If f is continuous pX ◦ f, pY ◦ f
are continuous as compositions of continuous functions. [B, 3]

Assume now the functions pX ◦ f, pY ◦ f are continuous. Let U be open
in X and V be open in Y . Then

f−1(U × V ) = (pX ◦ f)−1(U) ∩ (pY ◦ f)−1(V )

so f−1(U × V ) is open. Since the sets U × V form a basis of X × Y f is
continuous. [B, 3]

a iii) Suppose X×Y is path connected. Let a, b ∈ X and c ∈ Y . There is
a continuous f : [0, 1]→ X × Y continuous with f(0) = (a, c), f(1) = (b, c).
Then pX ◦ f is a path joining a, b in X so X is path connected.

Conversely if (a1, b1), (a2, b2) are points in X×Y and h, g are paths joining
a1, a2 in X and b1, b2 in Y respectively then F : [0, 1] → X × Y given by
F (x) = (h(x), g(x) is a continuous path joining (a1, b1), (a2, b2) since h, g are
continuous. [S, 3]

b i) The only open sets of Y are ∅, Y and f−1(∅), f−1(Y ) are open so f
is continuous. Define f : [0, 1]→ Y by f(0) = 0, f(x) = 1 for x > 0. Clearly
f is a path joining [0, 1] so Y is path connected. Since R is path-connected
by part a R× Y is path connected. [S, 2]
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By contradiction: say f(x, 0) = a, f(x, 1) = b. Then there is an open set
U which contains a but does not contain b. Then f−1(U) is open so it is of the
form O × Y with O ⊆ R open. Since (x, 0) ∈ O × Y we have (x, 1) ∈ O × Y
so b ∈ U which is a contradiction. [S, 2]

b ii) A is compact. Let U = {Ui : i ∈ I} be an open cover of A. Then
each Ui is of the form Vi × Y where Vi is open in R. Since [a, b] is compact
there is a finite subcover {Vj : j ∈ J}. Then {Vj × Y : j ∈ J} is a finite
subcover of U . [S, 4]

b iii) Since B is bounded B ⊆ [a, b] for some interval in R. Let C =
[a, b] \B and

K1 = B × {0} ∪ C × {1} K2 = [a, b]× {0}.

As in b ii) K1, K2 are compact in R× Y and clearly K1 ∩K2 = B×{0}. [N,
4]

Problem 2

a i) A topological space X is disconnected if there are disjoint open non-
empty subsets U and V such that U ∪ V = X. If X is not disconnected, it
is called connected.

A subset A of X is connected if it is a connected topological space with
respect to the subspace topology. [B, 2]

Let U and V be open sets in Y such that f(A) ⊆ U∪V and f(A)∩U∩V =
∅. Then f−1(U) and f−1(V ) are open inX. So, f−1(U)∩A and f−1(V )∩A are
disjoint and open in A. Since A is connected, one of f−1(U)∩A, f−1(V )∩A is
empty. Hence, one of U \f(A) and V \f(A) is empty. So, f(A) is connected.
[B, 4]

a ii) Let X/R be the set of equivalence classes of R. The quotient topol-
ogy T of X/R consists of the sets U such that p−1(U) is open in X. Clearly
∅, X/R lie in T . Let U1, U2 ∈ T . Then p−1(U1 ∩ U2) = p−1(U1) ∩ p−1(U2) so
U1 ∩ U2 ∈ T . Also if {Ui : i ∈ I} ⊂ T then

p−1(
⋃

Ui) =
⋃

p−1(Ui)

so
⋃
Ui lies in T . [B, 4]

b i) It follows by the definition of the quotient topology p(K) is closed in
X/C if p−1(p(K)) is closed in X. We note that if K∩C = ∅, p−1(p(K)) = K
while if K∩C 6= ∅, p−1(p(K)) = K∪C, so in both cases p−1(p(K)) is closed.
[S, 3 ]
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b ii) R2/A is not Hausdorff since any open set in X/A containing [(1, 0)]
intersects A by the definition of the quotient topology on X/A. So there do
not exist open disjoint U, V in X/A containing [(1, 0)], A respectively. [S, 3 ]

b iii) Clearly R2/Y \{Y } is not connected. However R2 \{q} is connected
(as it is path-connected) for any q ∈ R2. Therefore R2/Y and R2 are not
homeomorphic. [S, 3 ]

Let U be an open set in R2/Y containing Y . Then p−1(U) contains
(1/n, 1) for sufficiently large n. So [(1/n, 1)] lies in U for sufficiently large n
and [(1/n, 1)] converges to Y . [N, 2]
{(1/n, n) : n ∈ N} is a closed subset of R2 that does not intersect Y .

Therefore by b i) {[(1/n, n)] : n ∈ N} is a closed subset of R2/Y that does
not intersect Y , so it does not converge to Y . [N, 4]

Problem 3

(a) i) An abstract simplicial complex is a pair (V,Σ), where V is a set
(whose elements are called vertices) and Σ is a set of non-empty finite subsets
of V (called simplices) such that

(1) for each v ∈ V , the 1-element set {v} is in Σ;
(2) if σ is an element of Σ, so is any non-empty subset of σ.
The standard n-simplex is the set

∆n = {(x1, ..., xn+1) ∈ Rn+1 : xi ≥ 0∀i and
∑
i

xi = 1}.

A face inclusion of a standard m-simplex ∆m into a standard n-simplex
∆n (where m < n) is a function ∆m → ∆n that is the restriction of an
injective linear map Rm+1 → Rn+1 which sends the vertices of ∆m to vertices
of ∆n.

The topological realisation |K| of an abstract simplicial complex K =
(V,Σ) is the space obtained by the following procedure: (1) For each σ ∈ Σ,
take a copy of the standard n-simplex, where n+1 is the number of elements
of σ. Denote this simplex by ∆σ. Label its vertices with the elements of
σ. (2) Whenever σ ⊂ τ ∈ Σ, identify ∆σ with a subset of ∆τ via the face
inclusion which sends the elements of σ to the corresponding elements of τ .

In other words, |K| is a quotient space, obtained by starting with the
disjoint union of the simplices in (1), and then imposing the equivalence
relation that is described in (2).
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The link of v , denoted lk(v) , is the subcomplex with vertex set {w ∈
V \ {v} : {v, w} ∈ Σ} and with simplices σ such that v /∈ σ and {v}∪σ ∈ Σ.
[B, 5]

a ii) The realisation |K| of a simplicial complex K is obtained from a
disjoint union of simplices, by forming a quotient space. The disjoint union
of finitely many simplices is compact. Hence, the quotient space is the con-
tinuous image of a compact space and therefore compact.

Let K ′ be the simplicial complex with the vertex set V , but where every
non-empty subset of V is a simplex. Then |K ′| is homeomorphic to a standard
simplex. The inclusion |K| → |K ′| is a continuous injection. The standard
simplex is a subset of Rn . Hence, we obtain a continuous injection i : |K| →
Rn. If a, b ∈ |K| are distinct there are U, V open disjoint set containing
i(a), i(b) respectively. Then i−1(U), i−1(V ) are disjoint open sets containing
a, b respectively. [B, 5]

a iii) If K contains simplices of dimension 2 then there are points a, b
lying on a 2-simplex such that |K| \ {a, b} is connected. It follows that K
is of dimension 1. |K| is also connected. Suppose that the link of some
vertex v contains at least 3 points. We note that |K| \ {v} is connected.
Let e1, e2, e3 be three 1-simplices adjacent to v with vertices {v, v1}, {v, v2},
{v, v3} respectively.

Since |K| \ {v} is path connected there is a path joining vi, vj in |K| \ {v}
for i, j ∈ {1, 2, 3}. Therefore, without loss of generality we may assume that
there is a path in |K| \ {v} from v3 to v1 which does not contain v2 and a
path from v3 to v2 which does not contain v1. Let u1, u2 be points in the
interior of e1, e2 respectively.

Then |K| \ {u1, u2} is connected contradicting our assumption that |K|
is homeomorphic to S1. Similarly if the link of v contains only one point, e
is a 1-simplex adjacent to v and w is a vertex in its interior then |K| \ {v}
is not connected. We conclude that lk(v) has two points for every vertex v.
[N, 4]

b) A surface is a Hausdorff topological space S such that every point of
S lies in an open set that is homeomorphic to an open set in R2. [B, 1]

A closed combinatorial surface is a connected finite simplicial complex K
such that for every vertex v of K, the link of v is a simplicial circle. [B, 1]

Note that |K| is Hausdorff by a ii). Each point of |K| lies in the inside of
a 2-simplex, a 1-simplex or a 0-simplex. In each case, it has a neighbourhood
homeomorphic to an open disc in R2. For a point in the inside of a 2-simplex,
this is clear. Let {v1, v2} be a 1-simplex. Then v2 lies in the link of v1. This
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link is a simplicial circle. So, there are precisely two 1-simplices in this link
that are adjacent to v2. Hence, there are precisely two 2-simplices in |K| that
have {v1, v2} as a face. It follows that any point in the interior of a 1-simplex
has a neighbourhood homeomorphic to an open disc.

For a vertex, its link is a simplicial circle, and so its star is homeomorphic
to an open disc. [B, 4]

If |lk(v)| is homeomorphic to [0, 1] then for each vertex x in lk(v), lk(x)
has at most 2 points. Indeed if not then either |lk(v)| \ {x} has at least 3
connected components or lk(v) contains a simplicial circle. However in the
latter case for any point y in the interior of a 1-simplex on the simplicial
circle |lk(v)| \ {y} is connected. Since lk(v) is not a circle for at least one
vertex lk(x) has one point. As K is finite there are exactly 2 vertices of lk(v)
such that their link contains exactly 1 point.

Let v be a vertex of K with |lk(v)| homeomorphic to [0, 1]. Let x, y be
the two vertices of lk(v) which are adjacent to exactly one vertex of lk(v).
Then {v, x}, {v, y} are 1-simplices that lie in exactly one 2-simplex and for
each x, y we have that |lk(x)|, |lk(y)| is homeomorphic to [0, 1]. Continuing
the same way we see that v lies in a simplicial cicrle and for each vertex z of
this circle |lk(z)| is homeomorphic to [0, 1].

Arguing the same way for each vertex w with |lk(w)| homeomorphic to
[0, 1] we see that all such vertices lie in a disjoint union of simplicial circles.
Identifying the boundaries of appropriately subdivided discs along these cir-
cles we obtain a combinatorial surface S. So |K| is homeomorphic to |S|
minus finitely many open disks. [N, 5]
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