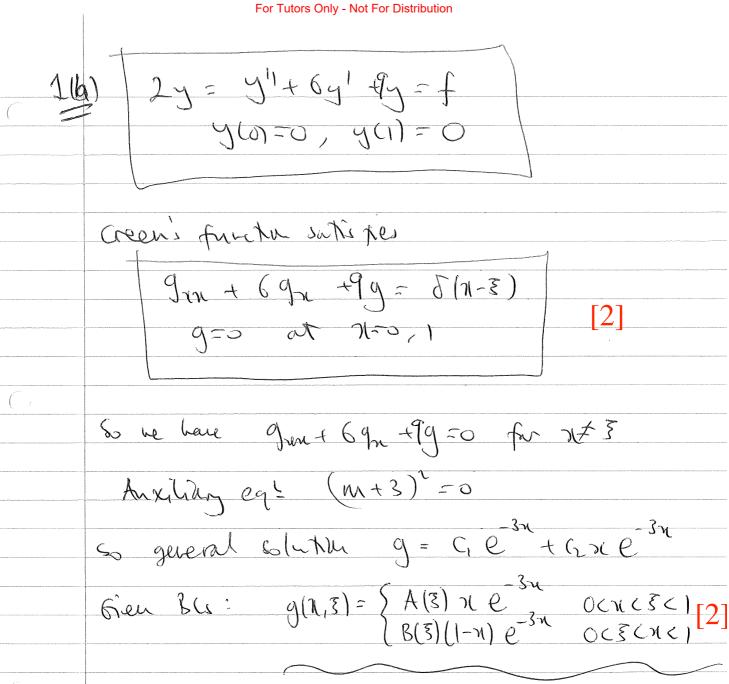
DES [
$$G'=1$$
]

(a) $2e^{mn} = F(m)e^{mn}$


So $2e^{xn} = F(x)e^{xn} = 0$

and $\frac{\partial}{\partial m} [2e^{mn}] = 2[\frac{\partial}{\partial m}e^{mn}] = 2[xe^{mn}]$

$$\therefore 2[xe^{mn}] = [F'(m) + x F(m)]e^{mn}$$

$$\therefore 2[xe^{xn}] = (F'(x) + x F(x))e^{xx} = 0$$
[4]

unseen - analogous to "differentiation method"

At
$$n=5$$
, jump combines $\begin{cases} 2 \\ 3 \\ 1 \end{cases} = 0$

$$\begin{cases} q_n \\ 3 \\ 1 \end{cases} = 1$$

give
$$3(1-5)e^{-35} = A5e^{-35}$$

 $B(35-4)e^{-35} - A(1-35)e^{-35}$ [2]

$$\begin{array}{c|c}
i9. & \underbrace{5} & -(1-\overline{5}) & A = 0 \\
(1-3\overline{5}) & \underbrace{(4-3\overline{5})} & B = -e^{3\overline{5}}
\end{array}$$

Determinant is
$$\xi(4-33) + (1-5)(1-33) = 1$$

$\begin{array}{c ccccccccccccccccccccccccccccccccccc$
$g(n,3) = \begin{cases} -x(1-3)e^{3(3-n)} & 0 < x < 3 < 1 \\ -(1-n) 3 e^{3(3-n)} & 0 < 3 < x < 1 \end{cases}$
Solution to inhorogeneous BUP is ten y(1) = (g(2,3) f(3)d?
similar to problem sheet

mh y(n=y(1)=0 Anxiliary eq2 (M+3) \$\frac{1}{2} \lambda = 0 => M=-3 \pm i f \lambda \tag{20} \text{Given bis: } \text{yn (n)} = \text{P} \text{Sin (n\text{N})} \text{n=1,1,3,} \text{nh } \text{Nn=-n\text{N}} \text{[2]} Adjoint operator \[\text{2^m w= w"-6w' flw} \] \text{You = w(y"+(y)+fy)-y(w"-6w' flw)} \text{You = w(y"+6wy)} \text{Sol [w 2y-y 2^m) dm= [wy'-yw' +6wy]} \text{To make (\text{Ni)} \(\frac{1}{2} \text{0} \text	1 (11 + 61=1)=6	14 1 - 1
Anxiliary ey: (M+3) \$ \$ \$ > 0 => M=-3 ± i fr (assum) \$ < 0) 6 an Bls:		
	y(1) = 0	und
6 in bis: $y_{n}(n) = e^{-3\pi} \sin(n\pi\pi)$ $n=1,1,3,$ where $x_{n}=-n^{2}\pi^{2}$ [2] Adjoint operator $x_{n}=-n^{2}\pi^{2}$ [2] Near $x_{n}=-n^{2}\pi^{2}$ $x_{n}=-n^{2}\pi$		
Adjoint operator [2] Adjoint operator [2] w= w"-6w" flw Ten w 2y - y 2"w = w (y"+6y"+y) - y (w"-6w"+h = (wy!-yw"+6wy) So [[w 2y - y 2"w] M= [wy!-yw"+6wy] [Glen bis] = w(i)y'(i) - w(i)y'(i) To make this = 0 , hyose adjoint 8(s [wlo]=w(i) Ten [2"w+7w = w"-6w"+ (97)w=0] who w(o) = w(i) = 0 [2] has solutions (as above) [wa(i) = e3" sin (nTh)		1
Adjoint operator $2^{2}w = w'' - 6w' + 7w'$ Then $w 2y - y 2^{2}w = w (y'' + 6y' + 7y') - y (w'' - 6w' + 7w')$ $= (wy' - yw' + 6wy)'$ So $\int (w 2y - y 2^{2}w) dm = [wy' - yw' + 6wy]'$ [Given $b(s)$] $= w(s)y'(s) - w(s)y'(s)$ To make $(wi) = 0$, hyper adjoint $b(s) = w(s) = w(s)$ Then $2^{2}w - 2w = w'' - 6w' + (972)w = 0$ when $w(s) = w(s) = 0$ [2] The solutions (as above) $w(s) = e^{3\pi} su(n\pi s)$	= e sin (uTin) n=1,43,	Gen Bls:
For $W = W = W = W = W = W = W = W = W = W $	N'T' [2]	uh
w = w + y + y + w	Nw = W"-6W' 79W	Adjoint operat
So $\int [w 2y - y 2^{3}w] dm = [wy' - yw' + (wy)]$ [Glen $b(s)] = w(s)y'(s) - w(s)y'(s)$ To make this $= 0$, there adjoint $b(s) = w(s)$ Len $b(s) = 0$, there adjoint $b(s) = w(s)$ Len $b(s) = 0$, there adjoint $b(s) = w(s)$ Len $b(s) = 0$, there adjoint $b(s) = 0$ [2] Los solutions (as above) $b(s) = 0$ $b(s) = 0$ Los solutions (as above) $b(s) = 0$ $b(s$) = W (y"+6y"+9y) -y (w"-6w"+9w)	ren W 2 y
So $\int [w 2y - y 2^{3}w] dM = [wy' - yw' + (wy)]_{0}$ [Glen $b(s)] = w(s)y'(s) - w(s)y'(s)$ To make this $\equiv 0$, there adjoint $b(s) = w(s)$ Len $b(s) = 0$, there adjoint $b(s) = w(s)$ Len $b(s) = 0$, there adjoint $b(s) = w(s)$ Len $b(s) = 0$, there adjoint $b(s) = 0$ [2] Los solutions (as above) $b(s) = 0$ [2]	[wy1-yw1+6wy]	
To walle this ≈ 0 , hyper adjoint $8(s W(s) = W(s) W(s) = W(s) - 6 W(s) + (9 = 1) W(s) = 0$ Then $2^{4} w_{0} + \lambda w = w' - 6 w' + (9 = 1) w' = 0$ Then $2^{4} w_{0} + \lambda w = w' - 6 w' + (9 = 1) w' = 0$ Then $2^{4} w_{0} + \lambda w = w' - 6 w' + (9 = 1) w' = 0$ Then $2^{4} w_{0} + \lambda w = w' - 6 w' + (9 = 1) w' = 0$ Then $2^{4} w_{0} + \lambda w = w' - 6 w' + (9 = 1) w' = 0$ Then $2^{4} w_{0} + \lambda w = w' - 6 w' + (9 = 1) w' = 0$ Then $2^{4} w_{0} + \lambda w = w' - 6 w' + (9 = 1) w' = 0$ Then $2^{4} w_{0} + \lambda w = w' - 6 w' + (9 = 1) w' = 0$ Then $2^{4} w_{0} + \lambda w = w' - 6 w' + (9 = 1) w' = 0$ Then $2^{4} w_{0} + \lambda w = w' - 6 w' + (9 = 1) w' = 0$ Then $2^{4} w_{0} + \lambda w = w' + (9 = 1) w' = 0$) dn = [wy' - yw' + 6wy]	So Shu Le
Ten $2^{\alpha}w^{\alpha} \lambda w = w'' - 6w' + (97)w = 0$ wh w(0) = w(1) = 0 [2] has solutions (as above) $w_{n}(1) = e^{3n} \sin(n\pi n)$	= W(1)y(1) - W(0)y(0)	Colen Bls]
has solutions (as above) Wn(11) = e3n sh (nTM)	, hyper adjoint B(s Wo)=W(1)=0	To wake 1
	w'' - 6w' + (971)w = 0 $w'' - 6w' + (971)w = 0$ $w'' - 6w' + (971)w$	Jen 2ª h
	$e) W_n(n) = e^{3n} sin(n\pi n)$	has solutions
ν=1,2, [2]	N=1,2, [2]	

 We have $2y = f$
:. () Ly (x) Wn (n) M= < Ly, Wn7 = < f, Wn7
:. < f, wn7 = < y, 1 wn> = + mxy, wn>
(NB all In \$0]
Write y(x) = Sci yi(n)
Neu <f, wn=""> = + In \(\frac{2}{i} \) (i < yi, wn ></f,>
Note (Yi, wh) = (Sih (iTin) sih (uTin) dh = tolin
so $\langle f, W_n \rangle = + \frac{2nC_n}{c}$
$Cu = + \frac{2}{2} \langle f, w_n \rangle $ [2]
$y(n) = -\frac{2}{\sqrt{11}} \sum_{n=1}^{\infty} \frac{e^{-3x} \sin(n\pi x)}{\sqrt{11}} \int_{0}^{1} f(x) e^{3x} \sin(n\pi x) dx$
similar to problem sheet

1(d) from (1), we know that
$$\lambda_1 = -\pi^{1}$$
 is an eigenvalue of 2, who eigenvectors

 $y_1(N) = e^{-3N} \sin(4\pi x)$, $W_1(N) = e^{3N} \sin(\pi x)$

Note $\langle 2y + \pi^2 y, w \rangle - \langle y, 2^*w + \pi^2w \rangle$
 $= \int_0^1 \langle y'' + 6y' + 9y \rangle w - \langle w'' - 6w' + 9w \rangle y dx$
 $= [y'w - w'y + 6yw]_0^1$

[2]

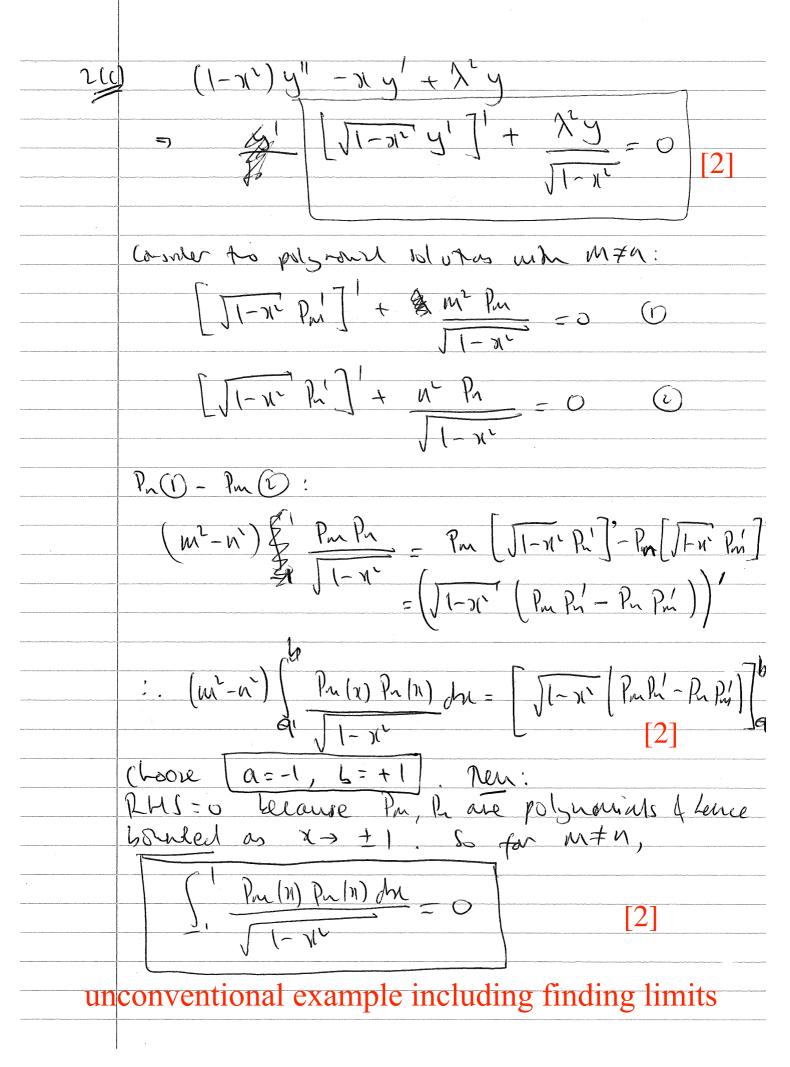
given $2^*w_1 + \pi^2w_1 = 0$,

 $\langle f_1w_1 \gamma = [y'w_1 - w_1'y + 6yw_1]_0^1$

who $w_1(0) = w_1(1) = 0$
 $w_1'[n] = [3 \sin(\pi n) + \pi \cos(\pi n)] e^{3n}$
 $w_1'(0) = \pi$, $w_1'(1) = -\pi e^3$

so we have the solvability (and πa :

 $\int_0^1 f(x) \sin(\pi n) e^{3n} du = \pi + 2\pi e^3$


[2]

new example - inhomogeneous BCs make it tricky...

26	$\frac{1}{(1-x^2)y''-xy'+\lambda'y=0}$
	let x = ±1 + X
	$\left(\mp 2X - X^{2}\right)Y_{XX} + \left(\mp 1 - X\right)Y_{X} + \lambda^{2}Y = 0$
	is. $(2x \pm x^2) y_{xx} + (1 \pm x) y_x \mp \lambda^2 y = 0$
(write as y"+ P,y" + P,y =0
	whe $P_1 = \frac{1+x}{2x+x^2}$, $P_0 = \frac{1+x}{2x+x^2}$
	So P. & Po are not analyze of X=0, but XP, and X' Po are. : >1 = +1 are regular singular points. [2]
6	If y~ Xk as X>0, ten
	2k(k-1) x k-1 +kx k-1 + ~ 0
7-	is. k (2k-1) = 0 is the whicall eq2.
	I local behavior is
	y~ C,(1+9,6) + C2) x (146, X+)
($05 \times 171 \rightarrow 0$ [2] standard example

	_
	to analyse n= 00, let x= 1/X
	$d/dn = -X^2 d/dX$
	(1- x) x x [x dx] + x · x dx + n y = 0
	(X2-1) [X2 dy + 1x dy] + X dy + 12y = 0
	$ (1-x^2) \frac{d^2y}{dx^2} + (1-2x^2) \frac{dy}{dx} - \frac{\chi^2}{x^2} \frac{y=0}{2} $ $ (2)$
	again, it's a reguler singular pourt.
	uih y~ Xk as X~o
	k (k-1) xk-1 + kxk-2 - 2 x k-1 ~ 0
	k-2=0 is the Indicad equita
istoria in minimi erempeta primitet titoloria da per estandida da da servizio a desenva	[2]
	so gerent behavior is
	y~ C, xx (1+ 91+) + (2 xx x (1+ 51+ -)
	∞ x → ∞ standard example [1]
	If 2λ is an integer, ten the holices differ by an integer. In this case, the series with $k=+\lambda$ is unchanged but the series with $k=-\lambda$ might encourse a contradiction in the coefficient of $\chi^{2\lambda}$. If so,
	an where The This case, the series with k=+2
	is unchanged but the series with k=- 2 might encourse
	a contradiction in the coefficient of X. It so,
	Ten re need to intoline a lyanture tem gre
traducat del llata en en enema di anno a lleva e tren a presi a colonia e levalle di a pressa a susseni	for y= lyx y, 1x0 + Yr(x), bookwork
	[2]

215	$\int (1-x^2)y'' - xy' + \lambda^2 y = 0$
	120 is an artily point so ty regular expansion
	y(n) = Sanxin
	$\Rightarrow \sum_{n=0}^{\infty} \left[n(n-1) \alpha_n \left(\chi^{n-2} - \chi^n \right) - n \alpha_n \chi^n + \lambda^n \alpha_n \chi^n \right] =$
	re fist term varies when n=0 or 1, so we can unte
($\sum_{n=0}^{\infty} \left[(n+2)(n+1) Q_{n+2} - (n^2 - \lambda^2) Q_n \right] \chi^n = 0$
	Fartuis to le true Vn, Le must Love
	$a_{n+2} = (n^2 - \lambda^2) a_n$ for $n = 0, 1,$
	Glen a & a, pur blata determies az, ay,
	There is a polynomial solution iff the series forwhater, is either $a_{2k} = 0 + k > m$ for some or $a_{2k+1} = 0 + k > m$ M.
	This occurs iff $\lambda=n$ for some $n=0,1,$ [2]
	(gien >>0) standard example [2]

3	(a) $\frac{qy^2}{1+ny} + n^2y = x^2 \text{with } x>0$ $0 < q < < 1$
	(M) = F(y; x, E) (sag)
	= EN[- Hayi] + aiy
	10 2f = 2Ey + 12 >0 far y>0
(and Foom you, for as you.
	for any x2 >0, there is a unite purite not for y. [2]
	If y~ y, (N) + & y, (N) +
	ten $[y_0 = 1]$ & $x^2 y_1(x) + \frac{y_1(x)}{1+2x} = 0$
	$: - \left \mathcal{Y}_{1}(x) \right = - \frac{1}{\alpha^{2}(1+\alpha)}$
	$S_{0} \left[y(n; \epsilon) \sim 1 - \frac{\varepsilon}{x^{2}(1+n)} \right] $ [2]
	re expansion fails if the second term stops send much smiler train the first term, which happens when $x = 0$ ($\sqrt{\epsilon}$)
	which hoppers when $3c = O(JE)$ [1]

	To exame his distil regime, restale
	$\frac{\chi = \sqrt{2} \chi}{\chi^2 \chi} = \frac{\chi^2 \chi}{\chi^2} \qquad \text{where } \chi(\chi, \xi) = \chi(\chi, \xi)$
	$\frac{Y^2}{1+\sqrt{2}XY^2} + \frac{\chi^2Y}{} = \chi^2 \qquad \text{where } y(\chi;\xi) = Y(\chi;\xi)$
	To leady order $\frac{1}{\sqrt{3}} + \frac{1}{\sqrt{3}} + \frac{1}{\sqrt{3}} = 0$
	:. Yo = = [-x' + [x4+4x]
	positive colute: \\ \(\frac{1}{6} = \frac{1}{2} \left[-X^2 + X \int X^2 + 4 \right]
	As $\times \rightarrow \infty$: $\forall_0 = \frac{1}{2} \times^2 \left[-1 + \sqrt{1 + \frac{4}{2}} \right]$ [2]
- A Marine & Galleria	$\sim \frac{1}{2} \times \left[-1 + \left(1 + \frac{2}{x^2} + \cdots \right) \right]$
	ie to > 1 as x>0
	which does water under leady - order order y = 1 [2]
	new example - trickyish matching

30	9 y" + (+ { } + { } (y") - { } 4y^2) y=0
	y (0)=0, y (T)=0
	unite y~ y, + &y, +
	ren y" + y" = 0,
	y, (a) = 0, y, (T) = 0
	$\begin{cases} y'' + y' = [y^2 - (y')^2 - \lambda]y \end{cases}$
and the second s	$y_1(0)=0$, $y_1(\pi)=0$
	The leading -order problem is satisfied by
	Yo(r) = Asih (r) where A is apparently
	Yo(1)= Asih(11) where A is apparently artsi Many. [2]
	nen y + y = [A2 sil2 x - A2 coo2 x - 2] Ash x
. (= 2A351/3 x - (X+A2) A silv x
	$=\frac{A^3}{2}\left[3\sin n-\sin (3n)\right]-\left(\lambda A+A^3\right)\sin n$ $\left[\cos n\sin \ln t\right]$
	$=\frac{1}{2}A^{3}\sin x-\chi A\sin x-\frac{A^{3}}{2}\sin (3x)=R(\pi), say$
	$\begin{bmatrix} 1 & 1 & 1 \\ 1 & 1 & 1 \end{bmatrix}$
	She Zy=0 has nontilal solution,
	90
	24, = R loss is solvable only if R is or two rad to kersel of 2th.

Here λ (and β C) is self-adjact, to solvability condition is $\langle R, sin \rangle = 0$ i.e. $A(A^2 - 2\lambda) = 0$ There is self-adjact, to $\langle R, sin \rangle = 0$ Therefore $A(A^2 - 2\lambda) = 0$ Therefore

3(ey" - (1+x²)y1 +x1y=0
	y(0)=1, y(1)=0
	(eading-order order (1+n) y' = >1 yo
	=) Y' = 71 To Itn'
	=> Y_(11)= A / I+x for some contar A.
	Usot-1 gives A=1, J(1)=0 gives A=0. soit's impossible to satisfy Goth.
	She (1+x') >0, the brunds layer is at the njut-hard boundary x=1.
	So we impose the BL y(v)=1 on the outer to get $ y_0(x) = \sqrt{1 + x^2} \qquad [3] $
	B-layer analyn) of= 1-EX, y(x)= Y(X)
	gives Y" + (2-29x+4'x') Y1+E(1-8x) Y=0
	At leady over 10" + 270 = 0
	BC Yo (0) = 0
	matchy Yo(X) -> J2 as X-) as

