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. Let f € C""([zg,7,),R) be a function with (n + 1) continuous derivatives and with given
function values f(x;) = f; at n+ 1 points zp < 21 < -+ < Zp.

(a)

[6 marks] Write down the Lagrange interpolating polynomial p,(z) of degree n for f at
the given nodes z;, and prove that for each x € [zg, x,| there exists {(z) € (xg,zy) such
that the following error formula holds,

1D ()

en(@) = F(2) = pn(@) = (& = o) (@ —w0) .. 2 = ) =8

Answer: [Book work] p,(z) = >"}_ fuLnk(x), where

)

(

(—mo) (= zp—1) (@ — Tp41) - (& — )
)
(

L,i(x)= 1 mark].
nk(7) (g —20) - (T — Tp—1) (T — Tpy1) -+ (Th — Tn) [ }
The error formula is trivial for x = z;, as e, (z) = 0 by construction. Let « ¢ {xo,...,z,},
and define

t) = t) — t
o) 1= ealt) - T 2lr(),
where
w(t) = (t—xo)(t —x1) - (t —xp)
n
=l (Z xz> "+ (=) agzy .. xn €y [2 marks).

i=0
By construction, ¢ vanishes at the n + 2 points z and x; (i = 0,...,n). Therefore, ¢
vanishes at n + 1 points &, ..., &, between these points, ¢” vanishes at n points between

these new points, and so on until ¢(»*1) vanishes at an (unknown) point & = &(x) in
(20, zy) [1 mark]. But

$H(t) = el (e) — L) = () - S g 1)

since p%n+1)(t) = 0 and because 7(t) is a monic polynomial of degree n + 1. The result
follows immediately from this identity since ¢("+1) (&) = 0 [2 marks|.

[6 marks] Derive Simpsons Rule as a special case of Newton-Cotes quadrature.

Answer: [Adaptation of a known technique to a new example| Let xg,x1,z2 be equally
spaced points, i.e., g = x1 — h and 29 = 1 + h, and let

pa(@) = 3 £ k) Lok (o)
k=0
(x—z1)(x — 21— h)

(x—z1+h)(x—21 —h) (x —x1 4+ h)(x—z1)

= f(wo) — f(x1) + f(z2)

2h? h? 2h?

be the Lagrange interpolating polynomial of degree 2 [2 marks|. Newton-Cotes approxi-
mates the integral ff; f(z)dz by
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T2 2 T2
/ po(z)de = Zf(xk)/ Ly pdx

k=0

h h h
- % (f(aio)/ sc(x—h)dx—2f(m1)/ (x+h)(:v—h)d:c+f(:v2)/ (:E—i—h)xdx)

—h —h —h

(f(zo) +4f(x1) + f(x2)) [4 marks].

Wl

(c) [6 marks] Derive an error estimate of Simpsons Rule from the approximation error of the
Lagrange interpolating polynomial of degree 2. What is the degree of accuracy of Simp-
sons Rule?

Answer: [Adaptation of book work]

f () — 5 (F(zo) + 4/ (a2) +fx2‘

RIGONR

(x 4+ h)x(x — h) 3l

x

<Lowx>dx—/i

= f(?’;(f) ‘ %4, [4 marks]

for some £ € (xg,x2), by the Integral Mean Value Theorem, which shows that Simpson’s
Rule is exact for polynomials of degree 2, as their third derivative vanishes [1 mark].
However, the refined theory developed in lectures shows that the degree of accuracy of
Newton-Cotes integration is in fact n + 1, that is, Simpson’s rule is exact for polynomials
of degree 3 [1 mark]|.

(d) [7 marks] Recall that Gauss-Chebychev Quadrature is defined with respect to Chebychev
polynomials, which are orthogonal with respect to inner product defined on L2(—1,1)
with weight function w(z) = 1/v/1 — 2. Derive the Gauss-Chebychev Quadrature rule
for the Chebychev polynomial of degree 3,

¢3(x) = 423 — 3.

What is the degree of accuracy of this formula? [Hint: You may use the fact that

d/dzarcsinz = 1/v1 — 22 |.

Answer: [New, though application of a known technique] The roots of ¢3 are zg = —/3/2,
x1 =0, x5 = 1/3/2 [1 mark]. The Gauss-Chebychev quadrature formula is

/ mdeZwkf x),

where .
Lo k()

1 mdx. [1 mark]

Wp =
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Thus, the quadrature formula is given by

/1 (=) dzN* f(z) / 3 dz
1 i-a? ¢ m RV

3 i 1 1 V3 1
,2f<z1>[/ \/jﬁdzfg/_l mdm]+f(zg) [/_1 \/13:7121:19: . /_1 \/iizzdm])
3

(f(sz 25 [ - )+ pen D)
s

w\:| w\m

(z0) +4f(z1) + f(z2)),

where we used

. . 1 . .
(integration by parts) (substitute = sint) T
—dx = 0 + V 1-— SU2dCC = -
/_1 vV 1-— .’E2 —1 2 ’
1

(by symmetry)

dz 0,

Lm

————dx " = arcsinz
/1 V1 — 22 -1
In lectures we proved that the degree of accuracy of Gauss Quadature is 2n + 1 when a
(n+ 1)-th degree orthogonal polynomial is used, that is the degree of accuracy is 5 in our
case. In other words, if f is a polynomial of degree 5, then the Gauss-Chebychev formula
is exact [1 mark].

use hin 1
(nse bint) ’ =7. [4 marks]

2. (a) [5 marks] Define the notion of a norm || - || on a real vector space V. Define the notion
of an inner product (-,-) on V, and prove that |ju| := (u,u)'/? defines a norm on V, the
inner product norm. If you use the Cauchy-Schwartz inequality, you need to prove its
validity.

Answer: [Book work] A mapping ||- || : V' — R is a norm on V if it satisfies
i) |lu|| =0 for all uw € V, with ||u|]| =0 if and only if u=0¢€ V,
ii) || Aul| = |Al||u]| for all A € R and all uw € V,
i) JJu+v|| < JJul| + ||v]| for all u,v € V. [1 mark]
A mapping (-,-) : V x V — R is an inner product if it satisfies
I) (u,u) >0 forall u € V and (u,u) = 0 if, and only if u = 0,
II) (u,v) = (v,u) for all u,v € V,
III) (ou+ Bo, z) = alu, z) + (v, z) for all u,v,z € V and all o, 8 € R. [1 mark]
Now let [|ul| := (u,u)!/2. Then I) implies property i), and

IT)

22 D v, 1) D N2 u)?

[Aul[* =" Au, Au)

implies property ii) [1 mark]. Finally,

), 1 I11) Cs.

ol = Guto,utv) V= ullP 420 o)+ o2 < ulP+2ul o]+ el = (lul+[o])?

implies property iii) [1 mark|, where the Cauchy-Schwartz Inequality (C.S.) is proven as
follows: For every A > 0,

0 < (u—Av,u— M) = [luf]* = 2X{u, v) + N*|lv]|* = 6(N),

which is a quadratic function in A and takes its minimiser at \* = (u,v)/||v||?>. The
C.S.-Inequality now follows from ¢(A\*) > 0 [1 mark].
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1/2

(b) [5 marks] Prove that any inner product norm ||u|| := (u,u)"/ satisfies the parallelogram

law
20ull® + 2|vll® = [lu+ o + lu—ol?>,  VuveV. (1)

Hence, or otherwise, prove that the L; norm on V = C([0,1]) is not an inner product
norm.

Answer: [New but elementary]

lu4v]|* + lu—v|]* = (u+v,u+v)+ (u—2v,u—2)
= (u,u) + 2<u7 U> + <’U,’U> + <u7u> - 2<U7U> + <1),’U>
= 2||ul|® + 2||v)|®>. [3 marks]

Let

0, (ze(1/21) 1,  (ze(1/2,1]).

Then h(z) := f(z) + g(xz) =1 and ¢(x) := f(z) —g(z) =1 for z € [0,1/2] and ¢(z) = —1
for x € (1/2,1]. We have

f@»:{L (z € [0.1/2), guﬂ:{& (e € 0.1/2]),

If +gllZ, +1If = gllZ, = IRIZ, + €12, =1+1
1

1
# 5+ = 21f13, +2llgl,.

The Li-norm does not satisfy the parallelogram law, and hence it cannot be induced by
an inner product [2 marks|.

(c¢) [7 marks] Let {¢o, ¢1, ...} be a set of orthogonal polynomials with respect to some inner
product (-,-), and such that ¢y (z) is of exact degree k (k = 0,1,...). Prove that there
exist sequences of real numbers (o), (Bk)p>; and (7%)p2, such that the following
three-term recursion holds,

brv1(z) = ag(z — Br)or(x) — Wwdr-1(z), (k=1,2,...). (2)

Answer: [Book work] Since x¢y, € Ilx1q and {¢o, ¢1,...,Pkr1} is a basis for x4, there
exist 01,0,0%,1,.--,0kk+1 in R such that
k+1

xop(x Zak idi(x). [l mark] (3)

Using z¢; € Il for j < k — 2, which implies (x¢y, ¢;) = (¢r(z), x¢j(x)) = 0 [1 mark],
we take inner products on both sides of (3) with ¢; and find that for j < k — 2,

k1 k+1
0= (x¢r, ¢j) = <Z Ukz¢z:¢]> = ZUk,i<¢i,¢j> = 0k,j{(Pj, ¢j). [2 mark]

i=0
Hence, oy, ; = 0 for j < k — 2, so that (3) becomes
$¢k($) = Uk,k+1¢k+1(x) + Uk,k¢k(x) + Uk,k71¢k—1(33)- [2 marks]

Since z¢y, is of exact degree k 4 1, we must have oy 11 # 0, which makes it possible to
solve for ¢1 as an expression of the form (2) [1 mark].

Page 5 of 9 Turn Over



For Tutors Only - Not For Distribution

(d) [8 marks] Recall that the Laguerre polynomials are orthogonal with respect to the inner
product (f,g) = [;~ e ® f(x)g(xz)dz. For k = 1 compute the parameters 8, and 7/ in
the three-term recursion (2) that relates the degree 2 Laguerre polynomial ¢o(x) to the
Laguerre polynomials of degrees 1 and 0, ¢1(z) =1 — x and ¢p(z) = 1.

Answer: [New| By the previous part, we know that ag, Sk, v exist. We may also assume
that the ¢; are scaled so that (¢;, ¢;) = 1, which is easily checked for ¢g and ¢; [1 mark].
Since we must ensure that ¢y is orthogonal to ¢; (j < k), we must force this condition
in particular for j = k — 1, k, which yields two constraints [I mark| on the parameters
ag, B, Vk: Orthogonality with ¢ yields

0 = (Prt1, Px) = ar{(® — Br) Pk, D) — Vel k-1, Px) = ar ((Tdk, Pr) — Br) 5
where we have used (¢x, o) = 1 and (¢, ¢p—1) = 0, hence,
Br = /OO e " xg?(x)dr. [2 marks]
0
Orthogonality with ¢p_; implies
0 = (Pry1,Pr—1) = ar((z — Br)drs Pr—1) — Ve (Pr—1, Pr—1) = Qr{TPR, Pr—1) — Vi

where we have used (¢r_1,¢px—1) = 1 and (¢g, px—1) = 0, hence,

z—’; = /000 e " xop(r)pr—1(x)dzr. [l mark]

In the case k =1 this yields
o
61:/ e z(l—z)?dr=1-2-2143! =3,
0
aq

o0
71:/ e Pzr(l—z)de=1-2= -1,
0

where we used

oo
/ Fedr = —gFe
0

(e 9]

oo
+ k/ ¥ le ®dz=---=k! [3 marks]
0 0

3. Let n > 2 be an integer.

(a) [6 marks| Define the notion of an orthogonal matriz @@ € R™*™. Prove that for any given
vector u € R” there exists a vector w € R" such that H(w)u = v, where vT = (VaTy 0 ... 0)
and H(w) is the Householder reflection

2 T

H(w)=1 ww- .

wTw

Express w explicitly in terms of u, and show that H(w) is an orthogonal matrix.

Answer: [Book work] @ is orthogonal if QTQ = I, that is, QT = Q! [I mark]. If u =0,
we may choose w # 0 arbitrarily, as H(w)0 = 0 [1 mark|. If u # 0, choose w = (u — v)
(which is explicit in u, since v is defined in terms of u), so that H(w) is well defined and
2(u —v)Tu
(u—v)T(u—v)
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where the last equality follows from

T( T T

(u—v)(u—v) =uTu—2u" +vTv = uu — 20 v + vy = 2(uw — v)Tu.  [1 mark]

H(w) is orthogonal, because

T
ww? + w2wa =1. [l mark]

H(w)TH(w) = [ T

[7 marks] Define the notion of QR-factorisation of a matrix A € R"*™ and show how this
factorisation can be computed via Householder reflections. Show how the QR-factorisation
can, alternatively, be computed via Gram-Schmidt orthogonalisation and compare the flop
count of both algorithms.

Answer: [First part is book work. Alternative method is new, though students have seen
Gram-Schmidt orthogonalisation.] A QR factorisation of a n x n matrix A is the splitting
of A into a product A = QR of an orthogonal matrix () and an upper triangular matrix
R = (r4j), that is, r;j = 0 if ¢ > j [1 mark|. Let us recursively construct Householder
matrices H(w;) (i =1,...,n — 1) such that

H(wn_l) . H(wn_g) .o H(wl)A =R

is upper triangular, so that Q = H(w1)H (w2) ... H(wy,—1) satisfies A = QR. Inductively,
let B = A and

B*' = H(wg_1) - H(wp_2) ... H(w;)A,
which is of block form —_— -
_ _ R C*~
Bk-1 _— <bfj 1) — 0 Dk_l] (4)

with RF=! a (k — 1) x (k — 1) upper triangular matrix. Define

b’;ﬁil ,/u;fuk 0
_ 0 _ :
U = . cR" k+1, VE = cR"” k+1, WE = : c R".

k—1
bnk

Rk—l Rk—l
a7y = |y ]
and the last n — k entries of the first column of

H (wy) [gi:i]

Then

are zero, so that B¥ is also of the required (partially triangularised) block form (4).
The claim thus follows by induction [3 marks]. The complexity is Zz;é (n —k)? =
n3/3 +n?/2+ n/6 flops, plus O(n?) flops for the construction of the wy, [1 mark]. A QR
factorisation can also be computed via Gram-Schmidt orthogonalisation, in which the
k-th column g of @ is inductively defined from the k-th column a; of A as follows,

k—1

hie =ar — Y _(¢f ar)ar,
=1

1
hk7

T

Page 7 of 9 Turn Over



For Tutors Only - Not For Distribution

and setting R = (745), where r;; = q;raj for i < j and rj; = 1/fL;rij, a calculation that

takes > p_;2nk = n?(n + 1) = n3 + n? flops. This procedure is 3 times more costly,
but the columns of ) become available one by one, while the method with Householder
matrices can compute these columns only at the end [2 marks].

[5 marks] Prove that for any vector z € R"™ there exists an n x n orthogonal Givens
rotation matrix J(i,7) such that y = J(4,j)z has entries y; = 0, yp = zx (k ¢ {i,7}).
Determine y; and the entries of J(i,7) as a function of the entries of x.

Answer: [Book work and adaptation of seen material] If x; = 2; = 0, then J = I will do
and there is nothing to prove [1 mark]. If (z;,z;) # (0,0), let

1

J = (9ij) =

with 9ii = gj; = C = a:i/w/x?%—x?, gij = —@Gji = S = xj/,/x?%—x?, and Jke = 5k,€ if

(k,€) ¢ {i,j}? [2 marks]. Then J¥J =1 and y = Jz satisifes y, = x for k ¢ {i,5},
yi = cx; + sxj = yJx? +y2, and y; = —sz; + cx; = 0. Thus, J(i,j) := J satisfies the
requirements [2 marks|.

[7 marks] Show how, for any given symmetric n x n matrix A, Householder reflections
may be used to construct an orthogonal matrix @ such that B = QT AQ is a tri-diagonal
matrix, and compute the number of floating point operations this reduction requires.
Show how the eigenvalues and eigenvectors of A can be obtained from the eigenvalues and
eigenvectors of B. Show how Givens rotations may be used to compute a QR factorisation
of B, and explain the advantage of applying the symmetric QR algorithm to B instead
of A for the purposes of computing the eigenvalues and eigenvectors of A.

Answer: [Book work and adaptation of seen material] Let A be symmetric, and let
H(wp 1) -H(wp_9)-...- Hw))A=Q"A=R

be the upper triangularisation of A under the construction of Part (b). Then QT AQ = RQ
is symmetric, and since right multiplication by H (wy) only operates on columns k, ..., n,

RQ = RH(w1)H (w2) ... H(wp—1)

has only one lower nonzero subdiagonal. By symmetry, it also has only one upper nonzero
superdiagonal, hence B := QT AQ is tri-diagonal [2 marks]. The cost is twice the cost we
computed in Part (b) (except that v does not have to be computed, that is, (2/3)n3+0(n?)
[1 mark].

Since B is similar to A, it has the same eigenvalues, and the eigenvectors of A can easily
be found from the eigenvectors of B by left multiplication with @ [1 mark]|. In each step
of the symmetric QR factorisation applied to B, we need to compute a QR-factorisation
B = QR of B and form B, := RQ. If this were applied to A this would involve a cubic
cost. However, since B is tri-diagonal, the QR factorisation is achieved by the following
procedure, at a total cost of (16 + ¢;)(n — 1) flops [1 mark| for a small constant ¢;:
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R:=B ;
fori=1,...,n—1
x := R(:,i) (i-th column);
form J(i,i+ 1) as in Part (c) (4 flops, plus constant ¢; flops for square root);
R« J(i,i+1)R (12 flops);
end.
Since, due to the action of the rotations J (1,7), the factor R has only two nonzero super-
diagonals, the formation of By = RQ = RJ(1,2)1J(2,3)T...J(n—1,n)" also only takes
12(n — 1) flops and results in a symmetric matrix with only one non-zero subdiagonal,
i.e., a tri-diagonal matrix. Thus, each iteration of the symmetric QR algorithm takes only
linear instead of cubic time [2 marks].
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