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1. Let f ∈ Cn+1([x0, xn],R) be a function with (n + 1) continuous derivatives and with given
function values f(xi) = fi at n+ 1 points x0 < x1 < · · · < xn.

(a) [6 marks] Write down the Lagrange interpolating polynomial pn(x) of degree n for f at
the given nodes xi, and prove that for each x ∈ [x0, xn] there exists ξ(x) ∈ (x0, xn) such
that the following error formula holds,

en(x) := f(x)− pn(x) = (x− x0)(x− x1) . . . (x− xn)
f (n+1)(ξ(x))

(n+ 1)!
.

Answer: [Book work] pn(x) =
∑n

k=0 fkLn,k(x), where

Ln,k(x) =
(x− x0) · · · (x− xk−1)(x− xk+1) · · · (x− xn)

(xk − x0) · · · (xk − xk−1)(xk − xk+1) · · · (xk − xn)
[1 mark].

The error formula is trivial for x = xi, as en(x) = 0 by construction. Let x /∈ {x0, . . . , xn},
and define

φ(t) := en(t)− en(x)

π(x)
π(t),

where

π(t) := (t− x0)(t− x1) · · · (t− xn)

= tn+1 −

(
n∑

i=0

xi

)
tn + . . . (−1)n+1x0x1 . . . xn ∈ Πn+1 [2 marks].

By construction, φ vanishes at the n + 2 points x and xi (i = 0, . . . , n). Therefore, φ′

vanishes at n+ 1 points ξ0, . . . , ξn between these points, φ′′ vanishes at n points between
these new points, and so on until φ(n+1) vanishes at an (unknown) point ξ = ξ(x) in
(x0, xn) [1 mark]. But

φ(n+1)(t) = e(n+1)
n (t)− en(x)

π(x)
π(n+1)(t) = f (n+1)(t)− en(x)

π(x)
(n+ 1)!,

since p
(n+1)
n (t) ≡ 0 and because π(t) is a monic polynomial of degree n + 1. The result

follows immediately from this identity since φ(n+1)(ξ) = 0 [2 marks].

(b) [6 marks] Derive Simpsons Rule as a special case of Newton-Cotes quadrature.

Answer: [Adaptation of a known technique to a new example] Let x0, x1, x2 be equally
spaced points, i.e., x0 = x1 − h and x2 = x1 + h, and let

p2(x) =

2∑
k=0

f(xk)L2,k(x)

= f(x0)
(x− x1)(x− x1 − h)

2h2
− f(x1)

(x− x1 + h)(x− x1 − h)

h2
+ f(x2)

(x− x1 + h)(x− x1)

2h2

be the Lagrange interpolating polynomial of degree 2 [2 marks]. Newton-Cotes approxi-
mates the integral

∫ x2

x0
f(x)dx by
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∫ x2

x0

p2(x)dx =

2∑
k=0

f(xk)

∫ x2

x0

L2,kdx

=
1

2h2

(
f(x0)

∫ h

−h

x(x− h)dx− 2f(x1)

∫ h

−h

(x+ h)(x− h)dx+ f(x2)

∫ h

−h

(x+ h)xdx

)

=
h

3
(f(x0) + 4f(x1) + f(x2)) [4 marks].

(c) [6 marks] Derive an error estimate of Simpsons Rule from the approximation error of the
Lagrange interpolating polynomial of degree 2. What is the degree of accuracy of Simp-
sons Rule?

Answer: [Adaptation of book work]

∣∣∣∣∫ x2

x0

f(x)dx− h

3
(f(x0) + 4f(x1) + f(x2))

∣∣∣∣ =

∣∣∣∣∫ x2

x0

f(x)− p2(x)dx

∣∣∣∣
6
∫ x2

x0

|e2(x)|dx =

∫ h

−h

∣∣∣∣(x+ h)x(x− h)
f (3)(ξ(x))

3!

∣∣∣∣dx
=

∣∣∣∣f (3)(ξ)6

∣∣∣∣ h42 , [4 marks]

for some ξ ∈ (x0, x2), by the Integral Mean Value Theorem, which shows that Simpson’s
Rule is exact for polynomials of degree 2, as their third derivative vanishes [1 mark].
However, the refined theory developed in lectures shows that the degree of accuracy of
Newton-Cotes integration is in fact n+ 1, that is, Simpson’s rule is exact for polynomials
of degree 3 [1 mark].

(d) [7 marks] Recall that Gauss-Chebychev Quadrature is defined with respect to Chebychev
polynomials, which are orthogonal with respect to inner product defined on L2

w(−1, 1)
with weight function w(x) = 1/

√
1− x2. Derive the Gauss-Chebychev Quadrature rule

for the Chebychev polynomial of degree 3,

φ3(x) = 4x3 − 3x.

What is the degree of accuracy of this formula? [Hint: You may use the fact that
d/dx arcsinx = 1/

√
1− x2 ].

Answer: [New, though application of a known technique] The roots of φ3 are x0 = −
√

3/2,
x1 = 0, x2 =

√
3/2 [1 mark]. The Gauss-Chebychev quadrature formula is∫ 1

−1

f(x)√
1− x2

dx ≈
2∑

k=0

wkf(xk),

where

wk =

∫ 1

−1

L2,k(x)√
1− x2

dx. [1 mark]
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Thus, the quadrature formula is given by

∫ 1

−1

f(x)√
1− x2

dx ≈ =
2

3

(
f(x0)

[∫ 1

−1

x2√
1− x2

dx−
√

3

2

∫ 1

−1

x√
1− x2

dx

]

− 2f(x1)

[∫ 1

−1

x2√
1− x2

dx−
3

4

∫ 1

−1

1√
1− x2

dx

]
+ f(x2)

[∫ 1

−1

x2√
1− x2

dx +

√
3

2

∫ 1

−1

x√
1− x2

dx

])
=

2

3

(
f(x0)

π

2
− 2f(x1)

[
π

2
−

3π

2

]
+ f(x2)

π

2

)
=
π

3
(f(x0) + 4f(x1) + f(x2)) ,

where we used∫ 1

−1

x2√
1− x2

dx
(integration by parts)

= 0 +

∫ 1

−1

√
1− x2dx (substitute x = sin t)

=
π

2
,∫ 1

−1

x√
1− x2

dx
(by symmetry)

= 0,∫ 1

−1

1√
1− x2

dx
(use hint)

= arcsinx
∣∣∣1
−1

= π. [4 marks]

In lectures we proved that the degree of accuracy of Gauss Quadature is 2n + 1 when a
(n+ 1)-th degree orthogonal polynomial is used, that is the degree of accuracy is 5 in our
case. In other words, if f is a polynomial of degree 5, then the Gauss-Chebychev formula
is exact [1 mark].

2. (a) [5 marks] Define the notion of a norm ‖ · ‖ on a real vector space V . Define the notion
of an inner product 〈·, ·〉 on V , and prove that ‖u‖ := 〈u, u〉1/2 defines a norm on V , the
inner product norm. If you use the Cauchy-Schwartz inequality, you need to prove its
validity.

Answer: [Book work] A mapping ‖ · ‖ : V → R is a norm on V if it satisfies

i) ‖u‖ > 0 for all u ∈ V , with ‖u‖ = 0 if and only if u = 0 ∈ V ,

ii) ‖λu‖ = |λ|‖u‖ for all λ ∈ R and all u ∈ V ,

iii) ‖u+ v‖ 6 ‖u‖+ ‖v‖ for all u, v ∈ V . [1 mark]

A mapping 〈·, ·〉 : V × V → R is an inner product if it satisfies

I) 〈u, u〉 > 0 for all u ∈ V and 〈u, u〉 = 0 if, and only if u = 0,

II) 〈u, v〉 = 〈v, u〉 for all u, v ∈ V ,

III) 〈αu+ βv, z〉 = α〈u, z〉+ β〈v, z〉 for all u, v, z ∈ V and all α, β ∈ R. [1 mark]

Now let ‖u‖ := 〈u, u〉1/2. Then I) implies property i), and

‖λu‖2 III)
= λ〈u, λu〉 II)= λ〈λu, u〉 III)= λ2‖u‖2

implies property ii) [1 mark]. Finally,

‖u+v‖2 = 〈u+v, u+v〉 II),III)= ‖u‖2+2〈u, v〉+‖v‖2
C.S.
6 ‖u‖2+2‖u‖‖v‖+‖v‖2 = (‖u‖+‖v‖)2

implies property iii) [1 mark], where the Cauchy-Schwartz Inequality (C.S.) is proven as
follows: For every λ > 0,

0 6 〈u− λv, u− λv〉 = ‖u‖2 − 2λ〈u, v〉+ λ2‖v‖2 =: φ(λ),

which is a quadratic function in λ and takes its minimiser at λ∗ = 〈u, v〉/‖v‖2. The
C.S.-Inequality now follows from φ(λ∗) > 0 [1 mark].
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(b) [5 marks] Prove that any inner product norm ‖u‖ := 〈u, u〉1/2 satisfies the parallelogram
law

2‖u‖2 + 2‖v‖2 = ‖u+ v‖2 + ‖u− v‖2, ∀u, v ∈ V. (1)

Hence, or otherwise, prove that the L1 norm on V = C([0, 1]) is not an inner product
norm.

Answer: [New but elementary]

‖u+ v‖2 + ‖u− v‖2 = 〈u+ v, u+ v〉+ 〈u− v, u− v〉
= 〈u, u〉+ 2〈u, v〉+ 〈v, v〉+ 〈u, u〉 − 2〈u, v〉+ 〈v, v〉
= 2‖u‖2 + 2‖v‖2. [3 marks]

Let

f(x) =

{
1, (x ∈ [0, 1/2]),

0, (x ∈ (1/2, 1])
g(x) =

{
0, (x ∈ [0, 1/2]),

1, (x ∈ (1/2, 1]).

Then h(x) := f(x) + g(x) ≡ 1 and `(x) := f(x)− g(x) = 1 for x ∈ [0, 1/2] and `(x) = −1
for x ∈ (1/2, 1]. We have

‖f + g‖2L1
+ ‖f − g‖2L1

= ‖h‖2L1
+ ‖`‖2L1

= 1 + 1

6= 1

2
+

1

2
= 2‖f‖2L1

+ 2‖g‖2L1
.

The L1-norm does not satisfy the parallelogram law, and hence it cannot be induced by
an inner product [2 marks].

(c) [7 marks] Let {φ0, φ1, . . . } be a set of orthogonal polynomials with respect to some inner
product 〈·, ·〉, and such that φk(x) is of exact degree k (k = 0, 1, . . . ). Prove that there
exist sequences of real numbers (αk)∞k=1, (βk)∞k=1 and (γk)∞k=1 such that the following
three-term recursion holds,

φk+1(x) = αk(x− βk)φk(x)− γkφk−1(x), (k = 1, 2, . . . ). (2)

Answer: [Book work] Since xφk ∈ Πk+1 and {φ0, φ1, . . . , φk+1} is a basis for Πk+1, there
exist σk,0, σk,1, . . . , σk,k+1 in R such that

xφk(x) =
k+1∑
i=0

σk,iφi(x). [1 mark] (3)

Using xφj ∈ Πk−1 for j 6 k − 2, which implies 〈xφk, φj〉 = 〈φk(x), xφj(x)〉 = 0 [1 mark],
we take inner products on both sides of (3) with φj and find that for j 6 k − 2,

0 = 〈xφk, φj〉 =

〈
k+1∑
i=0

σk,iφi, φj

〉
=

k+1∑
i=0

σk,i〈φi, φj〉 = σk,j〈φj , φj〉. [2 mark]

Hence, σk,j = 0 for j 6 k − 2, so that (3) becomes

xφk(x) = σk,k+1φk+1(x) + σk,kφk(x) + σk,k−1φk−1(x). [2 marks]

Since xφk is of exact degree k + 1, we must have σk,k+1 6= 0, which makes it possible to
solve for φk+1 as an expression of the form (2) [1 mark].
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(d) [8 marks] Recall that the Laguerre polynomials are orthogonal with respect to the inner
product 〈f, g〉 =

∫∞
0 e−x f(x)g(x)dx. For k = 1 compute the parameters βk and γk/αk in

the three-term recursion (2) that relates the degree 2 Laguerre polynomial φ2(x) to the
Laguerre polynomials of degrees 1 and 0, φ1(x) = 1− x and φ0(x) = 1.

Answer: [New] By the previous part, we know that αk, βk, γk exist. We may also assume
that the φj are scaled so that 〈φj , φj〉 = 1, which is easily checked for φ0 and φ1 [1 mark].
Since we must ensure that φk+1 is orthogonal to φj (j 6 k), we must force this condition
in particular for j = k − 1, k, which yields two constraints [1 mark] on the parameters
αk, βk, γk: Orthogonality with φk yields

0 = 〈φk+1, φk〉 = αk〈(x− βk)φk, φk〉 − γk〈φk−1, φk〉 = αk (〈xφk, φk〉 − βk) ,

where we have used 〈φk, φk〉 = 1 and 〈φk, φk−1〉 = 0, hence,

βk =

∫ ∞
0

e−x xφ2k(x)dx. [2 marks]

Orthogonality with φk−1 implies

0 = 〈φk+1, φk−1〉 = αk〈(x− βk)φk, φk−1〉 − γk〈φk−1, φk−1〉 = αk〈xφk, φk−1〉 − γk,

where we have used 〈φk−1, φk−1〉 = 1 and 〈φk, φk−1〉 = 0, hence,

γk
αk

=

∫ ∞
0

e−x xφk(x)φk−1(x)dx. [1 mark]

In the case k = 1 this yields

β1 =

∫ ∞
0

e−x x(1− x)2dx = 1− 2 · 2! + 3! = 3,

γ1
α1

=

∫ ∞
0

e−x x(1− x)dx = 1!− 2! = −1,

where we used∫ ∞
0

xk e−x dx = −xk e−x
∣∣∣∞
0

+ k

∫ ∞
0

xk−1 e−x dx = · · · = k! [3 marks]

3. Let n > 2 be an integer.

(a) [6 marks] Define the notion of an orthogonal matrix Q ∈ Rn×n. Prove that for any given
vector u ∈ Rn there exists a vector w ∈ Rn such thatH(w)u = v, where vT = (

√
uTu 0 ... 0 )

and H(w) is the Householder reflection

H(w) = I− 2

wTw
wwT.

Express w explicitly in terms of u, and show that H(w) is an orthogonal matrix.

Answer: [Book work] Q is orthogonal if QTQ = I, that is, QT = Q−1 [1 mark]. If u = 0,
we may choose w 6= 0 arbitrarily, as H(w)0 = 0 [1 mark]. If u 6= 0, choose w = (u − v)
(which is explicit in u, since v is defined in terms of u), so that H(w) is well defined and

H(w)u = Iu− 2(u− v)Tu

(u− v)T(u− v)
(u− v) = u− (u− v), [2 marks]
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where the last equality follows from

(u− v)T(u− v) = uTu− 2uTv + vTv = uTu− 2uTv + uTu = 2(u− v)Tu. [1 mark]

H(w) is orthogonal, because

H(w)TH(w) = I− 4

wTw
wwT +

4wTw

(wTw)2
wwT = I . [1 mark]

(b) [7 marks] Define the notion of QR-factorisation of a matrix A ∈ Rn×m and show how this
factorisation can be computed via Householder reflections. Show how the QR-factorisation
can, alternatively, be computed via Gram-Schmidt orthogonalisation and compare the flop
count of both algorithms.

Answer: [First part is book work. Alternative method is new, though students have seen
Gram-Schmidt orthogonalisation.] A QR factorisation of a n×n matrix A is the splitting
of A into a product A = QR of an orthogonal matrix Q and an upper triangular matrix
R = (rij), that is, rij = 0 if i > j [1 mark]. Let us recursively construct Householder
matrices H(wi) (i = 1, . . . , n− 1) such that

H(wn−1) ·H(wn−2) . . . H(w1)A = R

is upper triangular, so that Q = H(w1)H(w2) . . . H(wn−1) satisfies A = QR. Inductively,
let B0 = A and

Bk−1 = H(wk−1) ·H(wn−2) · . . . ·H(w1)A,

which is of block form

Bk−1 =
(
bk−1ij

)
=

[
Rk−1 Ck−1

0 Dk−1

]
(4)

with Rk−1 a (k − 1)× (k − 1) upper triangular matrix. Define

uk =

b
k−1
kk
...

bk−1nk

 ∈ Rn−k+1, vk =


√
uTk uk

0
...
0

 ∈ Rn−k+1, wk =


0
...
0

uk − vk

 ∈ Rn.

Then

H(wk)

[
Rk−1

0

]
=

[
Rk−1

0

]
and the last n− k entries of the first column of

H(wk)

[
Ck−1

Dk−1

]
are zero, so that Bk is also of the required (partially triangularised) block form (4).
The claim thus follows by induction [3 marks]. The complexity is

∑n−1
k=0(n − k)2 =

n3/3 + n2/2 + n/6 flops, plus O(n2) flops for the construction of the wk [1 mark]. A QR
factorisation can also be computed via Gram-Schmidt orthogonalisation, in which the
k-th column qk of Q is inductively defined from the k-th column ak of A as follows,

hk = ak −
k−1∑
j=1

(qTj ak)qk,

qk =
1√
hTk hk

hk,
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and setting R = (rij), where rij = qTi aj for i < j and rjj =
√
hTj hj , a calculation that

takes
∑n

k=1 2nk = n2(n + 1) = n3 + n2 flops. This procedure is 3 times more costly,
but the columns of Q become available one by one, while the method with Householder
matrices can compute these columns only at the end [2 marks].

(c) [5 marks] Prove that for any vector x ∈ Rn there exists an n × n orthogonal Givens
rotation matrix J(i, j) such that y = J(i, j)x has entries yj = 0, yk = xk (k /∈ {i, j}).
Determine yi and the entries of J(i, j) as a function of the entries of x.

Answer: [Book work and adaptation of seen material] If xi = xj = 0, then J = I will do
and there is nothing to prove [1 mark]. If (xi, xj) 6= (0, 0), let

J = (gij) =



1
·

c s
·

−s c
·

1


with gii = gjj = c := xi/

√
x2i + x2j , gij = −gji = s := xj/

√
x2i + x2j , and gk` = δk,` if

(k, `) /∈ {i, j}2 [2 marks]. Then JTJ = I and y = Jx satisifes yk = xk for k /∈ {i, j},
yi = cxi + sxj =

√
x2i + y2i , and yj = −sxi + cxj = 0. Thus, J(i, j) := J satisfies the

requirements [2 marks].

(d) [7 marks] Show how, for any given symmetric n × n matrix A, Householder reflections
may be used to construct an orthogonal matrix Q such that B = QTAQ is a tri-diagonal
matrix, and compute the number of floating point operations this reduction requires.
Show how the eigenvalues and eigenvectors of A can be obtained from the eigenvalues and
eigenvectors of B. Show how Givens rotations may be used to compute a QR factorisation
of B, and explain the advantage of applying the symmetric QR algorithm to B instead
of A for the purposes of computing the eigenvalues and eigenvectors of A.

Answer: [Book work and adaptation of seen material] Let A be symmetric, and let

H(wn−1) ·H(wn−2) · . . . ·H(w1)A = QTA = R

be the upper triangularisation of A under the construction of Part (b). Then QTAQ = RQ
is symmetric, and since right multiplication by H(wk) only operates on columns k, . . . , n,

RQ = RH(w1)H(w2) . . . H(wn−1)

has only one lower nonzero subdiagonal. By symmetry, it also has only one upper nonzero
superdiagonal, hence B := QTAQ is tri-diagonal [2 marks]. The cost is twice the cost we
computed in Part (b) (except that v does not have to be computed, that is, (2/3)n3+O(n2)
[1 mark].

Since B is similar to A, it has the same eigenvalues, and the eigenvectors of A can easily
be found from the eigenvectors of B by left multiplication with Q [1 mark]. In each step
of the symmetric QR factorisation applied to B, we need to compute a QR-factorisation
B = Q̃R̃ of B and form B+ := R̃Q̃. If this were applied to A this would involve a cubic
cost. However, since B is tri-diagonal, the QR factorisation is achieved by the following
procedure, at a total cost of (16 + c1)(n− 1) flops [1 mark] for a small constant c1:
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R̃ := B;

for i = 1, . . . , n− 1

x := R̃(:, i) (i-th column);

form J(i, i+ 1) as in Part (c) (4 flops, plus constant c1 flops for square root);

R̃← J(i, i+ 1)R̃ (12 flops);

end.

Since, due to the action of the rotations J(i, j), the factor R̃ has only two nonzero super-
diagonals, the formation of B+ = R̃Q̃ = R̃J(1, 2)TJ(2, 3)T . . . J(n− 1, n)T also only takes
12(n − 1) flops and results in a symmetric matrix with only one non-zero subdiagonal,
i.e., a tri-diagonal matrix. Thus, each iteration of the symmetric QR algorithm takes only
linear instead of cubic time [2 marks].
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