
A8 Probability – solutions

Question (1) [convergence, MGFs]

Marks: (a) 3+4, (b) 1+2+2, (c) 2+7+4.

(a) S (b) (i) B (ii) S (iii) S (c) (i) N (ii) S (iii) N.

Comments: (a) and (b) are standard. Part (c)(i)-(ii) is essentially a special case

of the proof of the central limit theorem that was given in lectures. Part (iii) of (c)

is new.

Solution (1):

(a) If x ≥ 1 then P(Mn ≤ x) = 1 for all n.

If x < 1 then

P(Mn ≤ x) = P(Xi ≤ x for i = 1, 2, . . . , n)

= P(X1 ≤ x)n since Xi are i.i.d.

= max(0, x)n

→ 0 as n→∞.

So indeed FMn(x) → F (x) for all x, where F (x) = I(x ≥ 1) is the c.d.f. of the

constant r.v. 1.

Hence Mn → 1 in distribution as n→∞, as required.

If x ≤ 0 then P(n(1−Mn) ≤ x) = 0. So let x > 0. Then

P(n(1−Mn) ≤ x) = P(Mn ≥ 1− x

n
)

= 1− P(Mn < 1− x

x
)

= 1−
(

1− x

n

)n
for large enough n

→ 1− e−x as n→∞.

I(x > 0)(1 − e−x) is the c.d.f. of an Exp(1) random variable. So we have

n(1−Mn)→ Exp(1) in distribution as n→∞.

(b) The moment generating function of a random variableX is the functionMX(t) =

E(etX).
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If X ∼ Poisson(µ),

MX(t) =

∞∑
n=0

etn
e−µµn

n!

= e−µ
∞∑
n=0

(etµ)n

n!

= e−µ exp(etµ)

= exp
(
µ(et − 1)

)
.

If X ∼ N(0, 1), then

MX(t) =

∫ ∞
−∞

ext
1√
2π
e−x

2/2dx

= et
2/2

∫ ∞
−∞

1√
2π

exp

(
−(x− t)2

2

)
dx

= et
2/2

since the integrand on the previous line is the p.d.f. of N(t, 1).

(c) (i) We have Nk ∼ Poisson(k), with mean k and variance k, so

Yk =
Nk√
k
−
√
k.

Then

MYk(t) = E
(

exp

(
t√
k
Nk − t

√
k

))
= e−t

√
kMNk

(t/
√
k)

= e−t
√
k exp

(
k
(

exp(t/
√
k)− 1

))
(from above, since Nk ∼ Poisson(k))

= exp
(
−t
√
k + k[exp(t/

√
k)− 1]

)
.

(ii) Now consider k → ∞. Then t/
√
k → 0. So by the Taylor expansion of

exp(x) around x = 0,

exp(t/
√
k)− 1 =

t√
k

+
t2

2k
+ o

(
1

k

)
.

Hence

MYk(t) = exp

(
−t
√
k + t

√
k +

t2

2
+ o

(
1

k

))
→ exp

(
t2

2

)
as k →∞.
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This holds for all t ∈ R.

Now exp(t2/2) is the m.g.f. of N(0, 1), and is finite for all t ∈ R.

Continuity theorem for m.g.fs.: suppose Y is a r.v. whose m.g.f. is finite on an

open interval I containing the origin, and MYk(t) → MY (t) as k → ∞ for all

t ∈ I; then Yk → Y in distribution as k →∞.

So in this case Yk → N(0, 1) in distribution as k →∞.

(iii) Let

Zk =
N2k − 2Nk√

k
.

Then

Zk =
(N2k −Nk)− E(N2k −Nk)√

Var(N2k −Nk)
− Nk − ENk√

Var(Nk)
.

By stationary independent increments, Nk and N2k −Nk are i.i.d. So the two

terms in the expression for Zk above are i.i.d. and each has the same distribution

as Yk above.

Hence Zk has m.g.f. MYk(t)MYk(−t) which converges to et
2

which is the m.g.f.

of N(0, 2).

So Zk → N(0, 2) in distribution as k →∞.

An acceptable answer would also be to observe that both terms converge in

distribution toN(0, 1), and the two terms are independent, so that the difference

converges to the distribution of Z−Z ′ where Z and Z ′ are i.i.d. ∼ N(0, 1), which

gives N(0, 2) (even without giving a precise result supporting this argument,

which was not covered in the course).
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Question (2) [transformation/change of variables]

Marks: (a) (6+2+2)+5; (b) 5+2+3.

(a): (i) S,S,N; (ii) S; (b) N.

Comments: (a) similar to questions on example sheets. (b) familiar techniques

but a new example. The transformation is linear so the Jacobian is easy, but one

needs to be particularly careful with the range on which the joint density is non-zero

(experience suggests that students find this tricky). (b)(ii) is there partly to prompt

a sanity-check on the answer to (b)(i).

Solution (2):

(a) (i) fX,Y (x, y) = 1
2π exp

(
−x2+y2

2

)
.

If x = r cos θ and y = r sin θ then x2 + y2 = r2.

We have

J =

∣∣∣∣∣∂x∂r ∂x
∂r

∂y
∂θ

∂y
∂θ

∣∣∣∣∣ =

∣∣∣∣∣cos θ −r sin θ

sin θ r cos θ

∣∣∣∣∣ = |r|.

So

fR,Θ(r, θ) = rfX,Y (x, y)

=
1

2π
r exp

(
−r

2

2

)
for θ ∈ [0, 2π) and r ≥ 0.

This density is a product, so R and Θ are independent. The density is constant

in θ, so Θ is uniform on [0, 2π). Then the density of R is r exp(−r2/2) on [0,∞).

We have

P(R2 ≤ u) = P(R ≤
√
u)

=

∫ √u
0

r exp(−r2/2)dr

=
[
− exp(−r2/2)

]√u
0

= 1− exp(−u/2).

So R2 has exponential distribution with parameter 1/2.

In summary, Θ is uniform on [0, 2π), and R2 has exponential distribution with

parameter 1/2, and they are independent.
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(ii) Here one wants to draw a simple diagram, to obtain that

P(Y > c|X|) = P
(

Θ ∈
(π

2
− α, π

2
+ α

))
where α = tan−1 1

c

=
2α

2π

=
tan−1 1

c

π
.

Then

P
(∣∣∣∣YX

∣∣∣∣ > c

)
= P(Y > c|X|) + P(Y < −c|X|)

= 2P(Y > c|X|) by symmetry

=
2 tan−1 1

c

π
.

So

F| YX |(c) = 1−
2 tan−1 1

c

π

=
2

π

(
π

2
− tan−1 1

c

)
=

2

π
tan−1 c

is the c.d.f. of |Y/X|.

(b) (i) Now fX,Y (x, y) = e−(x+y) for x, y > 0.

If u = x+ y and v = x+ 2y then x = 2u− v and y = v − u.

The Jacobian is given by

J =

∣∣∣∣∣∂x∂u ∂x
∂u

∂y
∂v

∂y
∂v

∣∣∣∣∣ =

∣∣∣∣∣ 2 −1

−1 1

∣∣∣∣∣ = 1.

So

fU,V (u, v) = fX,Y (x, y) = e−u

on the set where x, y > 0, which corresponds to the set u > 0 and u < v < 2u

(and 0 elsewhere).

(ii) On the range where it is non-zero, the density function is constant in v. So

given U = u, V is uniform on the interval (u, 2u).

(iii)

fV (v) =

∫ v

u=v/2
e−udu =

[
−e−u

]v
v/2

= e−v/2 − e−v.
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Question (3) [Markov chain]

Marks: (a) 2 (b)(i) 5 (ii) 3 (iii) 6 (c)(i) 4 (ii) 5 (though I would be prepared to

mark in particular part (c) flexibly to give suitable credit for partial answers.

(a) B (b) S (c)(i) N (ii) N.

The simple random walk has been seen in many different guises during the course.

The calculation of hitting probabilities in (b) was done in lectures. The questions in

part (c) have not been seen before and could be more testing, although not completely

unfamiliar – calculations like (ii) came up in the context of convergence to equilibrium

/ ergodic theorems.

Solution (3):

(a) Let Xi, i ≥ 0 be a sequence of i.i.d. random variables with mean µ. Then

P
(∑n

i=1Xi

n
→ µ as n→∞

)
= 1.

(b) (i) We can write Yn = Y0 +
∑n

i=1Xi, where Xi are i.i.d. with P(Xi = 1) = p,

P(Xi = −1) = 1− p. So EXi = p− (1− p) = 2p− 1, = µ, say.

Hence by SLLN,
∑n

i=1Xi/n→ µ with probability 1, as n→∞.

But Yn/n = k/n +
∑n

i=1Xi/n. Since k/n → 0 as n → ∞, we have Yn/n → µ

as n→∞ with probability 1, as desired.

(ii) Suppose Y0 ≤ 0 and Yn →∞ as n→∞. Then, since Y only moves up by 1

step at a time, Yn must be 0 for some n. From (i) we know Yn →∞ as n→∞
with probability 1.

So if k ≤ 0 then hk = 1.

[One could equally well do this using minimal non-negative solutions to recur-

rence relations as in (iii) below]

(iii) The hitting probabilities satisfy

hi =
∑
j

pijhj for i 6= 0

h0 = 1.

In fact, (hi) is the minimal non-negative solution to this system of equations.

In this case we have hi = phi+1 + (1− p)hi−1.

To solve this consider the auxiliary equation x = px2 + (1 − p), giving (x −
1)(px− (1− p)) = 0 and so x = 1 or x = (1− p)/p.
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So general solutions are

hi = A+B

(
1− p
p

)i
.

We want the minimal solution such that h0 = 1, i.e. such that A+B = 1. This

is given by A = 0, B = 1. So hi = βi for β = (1− p)/p, as required.

(c) (i) From 0, the probability of visiting −k is the same as from k, the probability

of visiting 0, i.e. hk.

Since the chain only moves down one step at a time, if the chain ever goes below

−k, it must visit −k at some point. So

P(W ≤ −k) = hk

=

(
1− p
p

)k
.

So

P(−W ≥ k) =

(
1− p
p

)k
.

That is, −W is geometric (starting from 0) with parameter 1− 1−p
p = 2p−1

p .

(ii) Let µ = 2p− 1.

We have Tj →∞ as j →∞.

So if it’s true that Yn/n→ µ as n→∞, then also YTj/Tj → µ as j →∞.

But YTj = j, so this means j/Tj → µ, which means Tj/j → 1/µ.

Because of (a)(i), we therefore have P(Tj/j → α) = 1 as required, where α =

1/µ = 1/(2p− 1).
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