
1. (a) 2+2+5+2+3 marks for standard but unseen questions, similar to questions on prob-
lem sheets.

(i)
∫∞
x f(x, y)dy =

∫∞
0 cxze−x−zdz = cxe−x recognising the integral for the mean

of a standard exponential distribution. Similarly, integrating over x ∈ (0,∞),
we obtain integral c, so we need c = 1.

(ii) X and Y are not independent since the probability density function does not
factorise into a function of x and a function of y.

(iii) From (i), fX(x) =
∫∞
x f(x, y)dy = xe−x, x > 0. So, X ∼ Gamma(2, 1).

Similarly, fY (x) =
∫ y
0 x(y − x)e−ydy = e−y[12x

2y − 1
3x

3]y0 = 1
6y

3e−y, y > 0, so
Y is Gamma(4, 1). Hence, as sums of independent exponential variables with
mean and variance 1, we have E(X) = Var(X) = 2, E(Y ) = Var(Y ) = 4, by
independence.

(iv) fX|Y=y(x) = f(x, y)/fY (y) = 6x(y − x)/y3, x ∈ (0, y).

(v) E(XY ) =
∫∞
0

∫ y
0 x

2y(y − x)e−ydxdy =
∫∞
0 (13y

5 − 1
4y

5)e−ydy = 10 integral
of Gamma(6, 1) density, noting that Γ(6) = 5! = 120. Hence Cov(X,Y ) =
E(XY ) − E(X)E(Y ) = 2. Students may also represent Y = X + X ′ for X ′ ∼
Gamma(2, 1) independent of X and use this to calculate Cov(X,Y ).

(b) (i) 3 marks for bookwork, (ii) 4 marks for standard application, (iii) 4 marks for
something new.

(i) Let (Xj , j ≥ 1) be a sequence of independent identically distributed random
variables with mean µ and variance σ2 ∈ (0,∞). Let Sn = X1 + · · · + Xn,
n ≥ 1. Then

P
(
Sn − nµ√

nσ2
≤ x

)
→
∫ x

−∞

1√
2π
e−z

2/2dz = P(Z ≤ x).

(ii) The Central Limit Theorem applies since X and Y have positive finite variance,
by (a)(iii). By symmetry P(Z ≤ 0) = 1/2. Hence

P(Sn ≤ 2n) = P

(
Sn − nE(X)√
nVar(X)

≤ 0

)
→ 1

2

P(Tn ≤ 4n) = P

(
Tn − nE(Y )√
nVar(Y )

≤ 0

)
→ 1

2
.

(iii) Sn and Tn are not independent, but writing Tn = Sn + S′n for independent Sn
and S′n, we have that (Sn−2n)/

√
2n and (S′n−2n)/

√
2n converge in distribution

to independent normals Z and Z ′, say, and hence

P(Sn ≤ 2n, Tn ≤ 4n) = P
(
Sn − 2n√

2n
≤ 0,

Sn − 2n√
2n

+
S′n − 2n√

2n
≤ 0

)
→ P(Z < 0, Z + Z ′ < 0) = P

(
Θ ∈

(
π,

7

4
π

))
= 3/8,

by spherical symmetry of the standard bivariate normal distribution, which
makes the angular part Θ ∼ Unif(0, 2π).
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2. (a) 3 marks for bookwork.

Let (Xj , j ≥ 1) be a sequence of independent identically distributed random vari-
ables with finite mean µ and Sn = X1 + · · ·+Xn, n ≥ 1. Then P(Sn/n→ µ) = 1.

(b) 2+3+5 marks for a seen example, (i)-(ii) in lectures, (iii) on problem sheet.

(i) For p ∈ [1/2, 1), the only communicating class is Z, while for p = 1, all {n},
n ∈ Z are singleton classes.

(ii) We can write Sn = a + X1 + · · · + Xn for P(Xj = 1) = 1 − P(Xj = −1) = p,
with E(Xj) = 2p − 1. For p > 1/2, SLLN yields (Sn − a)/n → p > 1/2 hence
Sn →∞ a.s. For p = 1/2 the SLLN does not determine the limiting behaviour.

(iii) By translation invariance we may assume a = 0. Let

hm = Pm(Sn = 0 for some n ≥ 0), m ∈ Z.

Then (hm,m ∈ Z) is the minimal solution of h0 = 1, hm = phm+1+(1−p)hm−1.
Let p = 1/2. Then, h1 < 1 would imply h−1 > 1, which is absurd, so h1 = 1.
Inductively, hm = 1 for all m ∈ Z.
Let p > 1/2. Then, hm = 1 for all m < 0 by (ii). For m > 0, try hm = βm.
Then β = pβ2+(1−p), factorising β2−β/p+(1−p)/p = (β−1)(β−(1−p)/p),
we see that β = (1−p)/p yields the minimal solution hm = ((1−p)/p)m, m ≥ 0.
Conditioning on the first step and applying the Markov property, we find

h = ph1 + (1− p)h−1 = 1− p+ 1− p = 2− 2p.

(c) 7 marks for a more challenging unseen application.

(i) By irreducibility, we only need to check that 0 is recurrent. By symmetry,
(b)(iii) for p ∈ (0, 1/2], yields hm = 1 for all m ≥ 1. Here, conditioning on the
first step and applying the Markov property, we find that the return probability
to 0 is h′ = h1 = 1, so 0 is recurrent.

(ii) ξQ = ξ is equivalent to ξm = ξm−1p + ξm+1(1 − p). Try ξm = Aγm, then, as
above γ ∈ {p/(1 − p), 1}. Only hm = A(p/(1 − p))m can be normalised, and
only for p < 1/2, to satisfy

∑
m≥0 ξm = 1, and A = 1 − p/(1 − p) yields a

geometric distribution with parameter A = (1− 2p)/(1− p). For p = 1/2 there
is no solution satisfying

∑
m≥0 ξm = 1, so there is no stationary distribution.

(d) 5 marks for something new.

In (c)(ii), the mean return time to 0 is 1/ξ0 = (1− p)/(1− 2p). For (d), denote the
stationary distribution by η. Conditioning on the first step, the mean return time
to 0 here is m0 = 1 + 1

2(a+ +a−) where a+ = (1−p+)/(1−2p+)−1 = p+/(1−2p+)
and a− = p−/(2p− − 1)− 1 = (1− p−)/(2p− − 1), and η0 = 1/m0. By the Ergodic
Theorem, this is also the long-term proportion of time spent in 0. Of the time not
spent at 0, a proportion a+/(a+ + a−) is spent positive since each return from 1
takes a+ on average, each return from −1 takes a−. By (c)(ii), these proportions
further split into proportions ξm/(1− ξ0) spent in m. Hence

ηm = (1− η0)
a+

a+ + a−
1− 2p+

1− p+

(
p+

1− p+

)m−1
=

1

2 + a+ + a−

(
p+

1− p+

)m
for m ≥ 1, and by symmetry, ηm = (1/(2 + a+ + a−))((1− p−)/p−)|m| for m ≤ −1.
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3. (a) 8=4+4 marks for a standard question, seen before.

(i) M(t) =

∫ ∞
0

etxf(x)dx =

∫ ∞
0

1

Γ(r)
λrxr−1e−(λ−t)xdx =

(
λ

λ− t

)r
, for t < λ, as

the Gamma(r, λ− t) density integrates to 1.

(ii) Exp(λ) = Gamma(1, λ). By independence, for all t < λ,

E(et(E1+···+En)) = E(etE1) · · ·E(etEn) =

(
λ

λ− t

)n
.

By the uniqueness theorem for moment generating functions, E1 + · · ·+ En ∼
Gamma(n, λ).

(b) 7=3+4 marks for bookwork.

(i) N0 = 0,
increments Ntj −Ntj−1 , 1≤j≤n, are independent for all 0 = t0 < t1 < · · · < tn,
and Ns+t −Ns ∼ Poisson(λt) for all s, t ≥ 0.

(ii) By definition, for s = 0, we have Nt = N0+t −N0 ∼ Poisson(λt).

P(Tn > t) = P(Nt ≤ n− 1) =

n−1∑
k=0

(λt)k

k!
e−λt. Hence, differentiation yields

fTn(t) = − d

dt
P(Tn > t) =

n−1∑
k=0

(
λk+1tk

k!
− kλktk−1

k!

)
e−λt =

1

Γ(n)
λntn−1e−λt,

for all t > 0. Hence, Tn ∼ Gamma(n, λ).

(c) 3 marks for bookwork.

Let (Mt, t ≥ 0) and (Nt, t ≥ 0) be two independent Poisson processes of rates µ and
λ. Then Kt = Mt +Nt, t ≥ 0, is a Poisson process of rate µ+ λ.

(d) 8=2+4+2 marks for something new.

(i) P(T1 > t) = P(Lt − L0 = 0) = exp(−αtm).
Hence fT1(t) = αmtm−1 exp(−αtm), t > 0.

(ii) First note that Nu−Nt ∼ Poisson(α(um−tm)), by independence of increments.

P(S1 ≤ t, S2 > u) = P(Lt = 1, Lu − Lt = 0) = αtme−αt
m
e−α(u

m−tm)

= αtme−αu
m
,

for 0 < t < u.
By differentiation, fS1,S2(t, u) = αmtm−1αmum−1e−αu

m
, 0 < t < u.

By the transformation formula, fS1,S2−S1(t, s) = α2m2tm−1(s+ t)m−1e−α(s+t)
m

,
t > 0, s > 0.
As m > 1, this does not factorise, so S1 and S2 − S1 are not independent, in
contrast to the case m = 1 of a (homogeneous) Poisson process.

(iii) Jt = Lt + Nt, t ≥ 0, is an inhomogeneous Poisson process with rate function
αmtm−1 + λ. This is because independent increments are preserved as for the
standard superposition theorem. Clearly J0 = 0, and the rate function, which
is the derivative of the parameter of the Poisson distribution of Jt is identified
from Jt = Lt +Nt ∼ Poisson(αtm + λt).
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