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(a) 2+42+45+2+8 marks for standard but unseen questions, similar to questions on prob-
lem sheets.

i) fxoo flz,y)dy = fooo cxze T *dz = cre”® recognising the integral for the mean

of a standard exponential distribution. Similarly, integrating over z € (0, c0),
we obtain integral ¢, so we need ¢ = 1.

X and Y are not independent since the probability density function does not
factorise into a function of z and a function of y.

From (i), fX = [ f T y)dy = ze™* x > 0. So, X ~ Gamma(2,1).
Similarly, fy (z fo —z)e Vdy = e Y[ty — 3] = Lyle™V, y > 0, s0

Y is Gamma(4 1). Hence as sums of independent exponential variables with
mean and variance 1, we have E(X) = Var(X) = 2, E(Y) = Var(Y) = 4, by
independence.

fX\Y y( r) = (w y)/fy( ) =6x(y —2)/y° x € (0 y)

fo 0 Ya2y(y — x)e Ydxdy = fo — 1y%)e Ydy = 10 integral
of Gamma(6 1) density, noting that I'(6) = 5' = 120 Hence Cov(X,Y) =
E(XY) — E(X)E(Y) = 2. Students may also represent ¥ = X + X’ for X' ~
Gamma(2,1) independent of X and use this to calculate Cov(X,Y).

(b) (i) 8 marks for bookwork, (ii) 4 marks for standard application, (iii) 4 marks for
something new.

(i)

(iii)

Let (Xj,7 > 1) be a sequence of independent identically distributed random
variables with mean g and variance 02 € (0,00). Let S, = X1 + --- + X,
n > 1. Then

Sp — ni /x 1 _
Pl — <z — e ?2dy =P(Z < 2).
(\/n02 o > 0o V2 (Z =)

The Central Limit Theorem applies since X and Y have positive finite variance,
by (a)(iii). By symmetry P(Z < 0) =1/2. Hence

P(Snggn)_p(‘sﬂmg()) _>1
nVar(X) 2
P(Tn§4n):p<]HE(Y) §0> _>1

nVar(Y) 2

Sy, and T,, are not independent, but writing T,, = S,, + S}, for independent S,
and S),, we have that (S, —2n)/v/2n and (S}, —2n)/v/2n converge in distribution
to independent normals Z and Z’, say, and hence
J— — / J—
Sh QHSO,SH 2n+Sn 2n§0>
V2n V2n V2n

—>P(Z<0,Z+Z’<O):P<@e <7r,77r>) = 3/8,

P(S, <2n,T, <4n) =P <

4

by spherical symmetry of the standard bivariate normal distribution, which
makes the angular part © ~ Unif(0, 27).



2. (a)

(b)

(c)
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3 marks for bookwork.

Let (Xj,7 > 1) be a sequence of independent identically distributed random vari-
ables with finite mean p and S, = Xi +--- + X, n > 1. Then P(S,,/n — u) = 1.

24345 marks for a seen example, (i)-(ii) in lectures, (iii) on problem sheet.

(i) For p € [1/2,1), the only communicating class is Z, while for p = 1, all {n},
n € 7Z are singleton classes.

(ii) We can write S, =a+ X1 +---+ X, for P(X; =1) =1 -P(X; = —1) = p,
with E(X;) = 2p — 1. For p > 1/2, SLLN yields (S, —a)/n — p > 1/2 hence
Sp — o0 a.s. For p =1/2 the SLLN does not determine the limiting behaviour.

(iii) By translation invariance we may assume a = 0. Let
hm = P (S, = 0 for some n > 0), m € 7.

Then (hy,, m € Z) is the minimal solution of hg = 1, hy, = phyyp1+(1—p) him—1.
Let p = 1/2. Then, h; < 1 would imply h_; > 1, which is absurd, so h; = 1.
Inductively, h,, = 1 for all m € Z.

Let p > 1/2. Then, hy, =1 for all m < 0 by (ii). For m > 0, try h,, = ™.
Then 3 = pB* +(1—p), factorising 5° — 8/p+(1—-p)/p = (B-1)(8—(1—p)/p),
we see that 8 = (1—p)/p yields the minimal solution h,, = ((1—p)/p)™, m > 0.
Conditioning on the first step and applying the Markov property, we find

h=phi+(1—ph_1=1—-p+1—p=2-2p.

7 marks for a more challenging unseen application.

(i) By irreducibility, we only need to check that O is recurrent. By symmetry,
(b)(iil) for p € (0,1/2], yields hy, = 1 for all m > 1. Here, conditioning on the
first step and applying the Markov property, we find that the return probability
to 0is A = hy = 1, so 0 is recurrent.

(ii) £€Q = & is equivalent to &, = &m-1P + Em+1(1 — p). Try &, = Ay™, then, as
above v € {p/(1 — p),1}. Ouly h,, = A(p/(1 — p))™ can be normalised, and
only for p < 1/2, to satisfy >, ~o&m = 1, and A = 1 — p/(1 — p) yields a
geometric distribution with parameter A = (1 —2p)/(1 —p). For p = 1/2 there
is no solution satisfying ) ~,&m = 1, so there is no stationary distribution.

b marks for something new.

In (c)(ii), the mean return time to 0 is 1/§p = (1 —p)/(1 — 2p). For (d), denote the
stationary distribution by n. Conditioning on the first step, the mean return time
to 0 here is mg = 1+ 3(a™ +a~) where a™ = (1—p*)/(1—2p") -1 =pF/(1—2p™)
anda” =p~/2p~ —1)—1=(1—-p7)/(2p~ — 1), and 1y = 1/mgp. By the Ergodic
Theorem, this is also the long-term proportion of time spent in 0. Of the time not
spent at 0, a proportion a®™/(at + a™) is spent positive since each return from 1
takes a™ on average, each return from —1 takes a~. By (c)(ii), these proportions
further split into proportions §,,,/(1 — &) spent in m. Hence

at 172p+ p-i- m—1 1 p-i- m
= () ()

at4+a- 1—pt \1—-pt T 2tatta 1—pt

for m > 1, and by symmetry, 7, = (1/(2+at 4+a7))((1 —p~)/p7)I™ for m < —1.
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(a) 8=4+4 marks for a standard question, seen before.
oo > 1 A\
(i) M(t) = /0 e f(z)dx = /0 mk%“le*@’mdm‘ = <H> ,for t < A, as
the Gamma(r, A — t) density integrates to 1.
(ii) Exp(\) = Gamma(1, A). By independence, for all ¢t < A,

() B B = (25

By the uniqueness theorem for moment generating functions, Fy + --- + E,, ~
Gamma(n, \).
(b) 7=3+4 marks for bookwork.
(i) No =0,
increments Ny; — Ny, _,, 1<j<n, are independent for all 0 =tp <11 < --- <1y,
and Ny — N ~ Poisson(At) for all s,¢ > 0.
(ii) By definition, for s = 0, we have N; = Ny — No ~ Poisson(At).

n—1
At)k
P(T, >t)=P(N; <n—-1)= Z (k')e)‘t. Hence, differentiation yields
k=0
n—1
d NetLgh kgt 1
)= _——"P Tn t) = _ —At _ )\ntn—l -\t
1, (t) 7 (T, > t) ;( i o >e T(n) e

for all ¢ > 0. Hence, T,, ~ Gamma(n, \).

(¢) & marks for bookwork.
Let (M, t > 0) and (IVg,t > 0) be two independent Poisson processes of rates 1 and
A. Then Ky = M; + Ny, t > 0, is a Poisson process of rate p + .

(d) 8=2+4+2 marks for something new.
(i) P(Th > t) =P(Ly — Lo = 0) = exp(—at™).
Hence fr,(t) = amt™ Lexp(—at™), t > 0.
(ii) First note that N, — Ny ~ Poisson(a(u™ —t")), by independence of increments.

P(Sy <t,8 >u) =P(L =1, L, — Ly = 0) = at™e " e7 (" —t")

O[tmefomm7
for 0 < t < u.

By differentiation, fs, g, (t,u) = amt™ tamu™ te=®" 0 <t < u.

By the transformation formula, fs, s,_s, (t,s) = a®?m?t™ = (s+t)mlema(s+)™,
t>0,s>0.

As m > 1, this does not factorise, so S7; and Sy — S7 are not independent, in
contrast to the case m = 1 of a (homogeneous) Poisson process.

(iii) Jy = Ly + Ny, t > 0, is an inhomogeneous Poisson process with rate function
amt™ 1 + X. This is because independent increments are preserved as for the
standard superposition theorem. Clearly Jy = 0, and the rate function, which
is the derivative of the parameter of the Poisson distribution of J; is identified
from J; = Ly + Ny ~ Poisson(at™ + At).





