graph Theory

(a) [ 5 marks ] Let G be the graph with  $V(G) = \{v_1, v_2, v_3, v_4, v_5\}$  and  $E(G) = \{v_1v_3, v_1v_4, v_2v_3, v_2v_4, v_2v_5, v_3v_4, v_3v_5\}$ . Define a cost function  $c: E(G) \to \mathbb{R}$  by  $c(v_1v_3) = 3$ ,  $c(v_1v_4) = 2$ ,  $c(v_2v_3) = 2$ ,  $c(v_2v_4) = 1$ ,  $c(v_2v_5) = 1$ ,  $c(v_3v_4) = 1$ ,  $c(v_3v_5) = 0$ . Draw all minimum cost spanning trees in G and prove that your list is complete.



3 [B]

As |V(G)|=5, any spanning tree contains 4 edges. The minimum sum achieved by 4 edges of G is 0+1+1+1=3; however, these edges do not form a tree. The next smallest sum is 0+1+1+2=4. The is a unique way to choose the 0-edge and three ways to choose the two 1-edges. There is then a unique way to choose the 2-edge so that the resulting graph is a tree. Therefore  $T_1$ ,  $T_2$  and  $T_3$  are the minimum cost spanning trees of G.

2 [S]

Another valid proof that the list is complete is to consider all possible runnings of an algorithm for finding a minimum cost spanning tree and show that it must terminate with one of  $T_1$ ,  $T_2$  or  $T_3$ .

(b) [ 10 marks ] Let G be a connected finite graph and define

$$\mathcal{F} = \{ A \subseteq E(G) : (V(G), A) \text{ is a forest} \},$$

$$\mathcal{T} = \{ A \subseteq E(G) : (V(G), A) \text{ is a tree} \}.$$

(i) Prove that if  $A \subseteq B \in \mathcal{T}$  then  $A \in \mathcal{F}$ , and that for every  $A \in \mathcal{F}$  there is B with  $A \subseteq B \in \mathcal{T}$ .

Suppose first that  $A \subseteq B \in \mathcal{T}$ . Then (V(G), B) is a tree, so is acyclic. As  $A \subseteq B$ , clearly A is also acyclic, so by definition (V(G), A) is a forest. 1 [B]

Now suppose  $A \in \mathcal{F}$ . Consider B of maximum size subject to  $A \subseteq B$  and (V(G), B) being acyclic. Suppose for a contradiction that (V(G), B) is not a tree. Then (V(G), B) is not connected. Fix x and y in different components of (V(G), B). As G is connected, there is a path P in G from x to y. As P does not remain within a single component of (V(G), B), we can fix some edge e of P with endpoints in different components of (V(G), B). Then  $(V(G), B \cup \{e\})$  is acyclic, contradicting maximality of B, so  $B \in \mathcal{T}$ .

(ii) Suppose  $A \in \mathcal{T}$ ,  $B \in \mathcal{F}$  and  $e \in E(G)$  with  $B \setminus A = \{e\}$ . Prove that there is  $C \in \mathcal{T}$  and  $f \in A$  such that  $B \subseteq C$  and  $C = (A \setminus \{f\}) \cup \{e\}$ .

Suppose that e = xy. As (V(G), A) is connected, it contains a path P from x to y. Adding e to P completes a cycle. This cycle cannot be contained in B, as B is acyclic, so we can fix  $f \in (P \cup \{e\}) \setminus B$ . As  $e \in B$ , we have  $f \in P \subseteq A$ . Let  $C = (A \setminus \{f\}) \cup \{e\}$ . Then  $B \subseteq C$ .

As |C| = |A|, to show that C is a tree it suffices to show that C is connected, i.e. that for any vertices s and t we can find a walk in C from s to t. To see this, consider any walk W in A from s to t, which exists because A is connected. By replacing any use of f in W by the path  $(P \cup \{e\}) \setminus \{f\}$  we obtain a walk in C from s to t.

- (c) [ 10 marks ] Let X be a finite set. Suppose that  $\mathcal{F}$  and  $\mathcal{T}$  are sets of subsets of X satisfying properties (i) and (ii) of (b). Let  $c: X \to \mathbb{R}$  be a non-negative cost function. For  $A \subseteq X$  write  $c(A) = \sum_{x \in A} c(x)$ . Consider the following algorithm:
  - 1. Let  $A_0 = \emptyset$  and i = 0.
  - **2.** Let  $Y_i = \{x \in X \setminus A_i : A_i \cup \{x\} \in \mathcal{F}\}$ .
  - 3. If  $Y_i \neq \emptyset$  then choose  $x_{i+1} \in Y_i$  such that  $c(x_{i+1}) = \min_{x \in Y_i} c(x)$ , let  $A_{i+1} = A_i \cup \{x_{i+1}\}$ , increase i by 1, and return to step 2.
  - 4. If  $Y_i = \emptyset$  then output  $A = A_i$ .

Prove that the output A of the algorithm satisfies  $c(A) = \min_{B \in \mathcal{T}} c(B)$ .

We first claim that  $A \in \mathcal{T}$ . To see this we note by (b)(i) that  $A_0 = \emptyset \in \mathcal{F}$ , and if  $A_i \in \mathcal{F}$  for some i with  $A_i \neq A$  then  $A_{i+1} \in \mathcal{F}$ , so by induction  $A \in \mathcal{F}$ . Now by (b)(i) there is B with  $A \subseteq B \in \mathcal{T}$ . If we have  $B \neq A = A_i$  then for any  $e \in B \setminus A$  we have  $e \in Y_i$ , as  $A_i \cup \{e\} \in \mathcal{F}$  by (b)(i). However, in this case the algorithm would not have terminated, so in fact  $B = A \in \mathcal{T}$ .

4 [S/N]

Now let  $m = \min_{B \in \mathcal{T}} c(B)$  and  $\mathcal{M} = \{B \in \mathcal{T} : c(B) = m\}$ . We prove by induction on i that there is B with  $A_i \subseteq B \in \mathcal{M}$ . Note that when applied to  $A_i = A$  this will prove our required statement, as then  $c(A) \leq c(B) = m$ , so c(A) = m by minimality of m, as  $A \in \mathcal{T}$ .

2 [S]

For the base case of the induction we have  $A_i = \emptyset$ , so we can fix any  $B \in \mathcal{M}$ . For the induction step, suppose we have  $A_i \subseteq B \in \mathcal{M}$  and  $A_i \neq A$ . If  $A_{i+1} = A_i \cup \{x_{i+1}\} \subseteq B$  then then induction step is complete. Otherwise, we note that  $B \in \mathcal{T}$ ,  $A_{i+1} \in \mathcal{F}$  and  $A_{i+1} \setminus B = \{x_{i+1}\}$ , so by (b)(ii) there is  $C \in \mathcal{T}$  and  $f \in B$  with  $A_{i+1} \subseteq C$  and  $C = (B \setminus \{f\}) \cup \{x_{i+1}\}$ . As  $A_i \cup \{f\} \subseteq B$  we have  $A_i \cup \{f\}$  by (b)(i), so  $f \in Y_i$ . Then  $c(x_{i+1}) \leq c(f)$  by minimality in the algorithm, so  $c(C) = c(B) - c(f) + c(x_{i+1}) \leq c(B) = m$ , so  $C \in \mathcal{M}$  by minimality of m. This completes the induction, and so proves the required statement.

4 [S/N]