For Tutors Only - Not for Distribution

gl ey

(a) [ 5 marks | Let G be the graph with V(G) = {v1, va,v3,v4,vs}
and E(G) = {v1v3,v104, VoUs, Va4, Va5, U3Vs, V3Us }. Define a cost func-
tion ¢ : E(G) — R by c(vivs) = 3, c(vivs) = 2, c(vavs) = 2, c(vevy) = 1,
c(vaus) = 1, c(vavs) = 1, c(vgvs) = 0. Draw all minimum cost spanning
trees in G and prove that your list is complete.

3 [B]

As |[V(G)| = b, any spanning tree contains 4 edges. The minimum sum
achieved by 4 edges of G is 0+ 1+ 1+ 1 = 3; however, these edges do not
form a tree. The next smallest sum is 0+ 1+ 14 2 = 4. The is a unique
way to choose the 0-edge and three ways to choose the two 1-edges. There
is then a unique way to choose the 2-edge so that the resulting graph is a
tree. Therefore 77, Ts and T3 are the minimum cost spanning trees of G. 2 [S]

Another valid proof that the list is complete is to consider all possible
runnings of an algorithm for finding a minimum cost spanning tree and show
that it must terminate with one of Ty, Ts or T3.
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(b) [ 10 marks | Let G be a connected finite graph and define

F={ACE(G):(V(G),A) is a forest},
T={ACE(G):(V(G),A) is a tree}.

(i) Prove that if AC B €7 then A € F, and that for every A € F
there is B with ACBe 7.

Suppose first that A C B € 7. Then (V(G), B) is a tree, so is acyclic.
As A C B, clearly A is also acyclic, so by definition (V(G), A) is a forest.

Now suppose A € F. Consider B of maximum size subject to A C B
and (V(G), B) being acyclic. Suppose for a contradiction that (V(G), B)
is not a tree. Then (V(G), B) is not connected. Fix z and y in different
components of (V(G), B). As G is connected, there is a path P in G from z
to y. As P does not remain within a single component of (V(G), B), we can
fix some edge e of P with endpoints in different components of (V(G), B).
Then (V(G), BU{e}) is acyclic, contradicting maximality of B, so B € 7.

(ii) Suppose A € T, B € F and e € E(G) with B\ A = {e}.
Prove that there is C € 7 and f € A such that B C C and C =

(ANA{7r}) u{e}

Suppose that e = zy. As (V(G), A) is connected, it contains a path
P from z to y. Adding e to P completes a cycle. This cycle cannot be
contained in B, as B is acyclic, so we can fix f € (PU{e})\ B. Ase € B,
we have f € P C A. Let C = (A\ {f})U{e}. Then B C C.

As |C] = |A], to show that C is a tree it suffices to show that C is
connected, i.e. that for any vertices s and ¢ we can find a walk in C from s
to t. To see this, consider any walk W in A from s to ¢, which exists because
A is connected. By replacing any use of f in W by the path (PU{e}) \ {f}
we obtain a walk in C from s to ¢.
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(c) [ 10 marks | Let X be a finite set. Suppose that F and
T are sets of subsets of X satisfying properties (i) and (ii) of (b).
Let ¢ : X — R be a non-negative cost function. For A C X write
c(A) = > e c(z). Consider the following algorithm:

1. Let 4g=0 and i =0.
2. Let Vi ={z e X\ 4;: A U{z} e F}.

3. If V; # 0 then choose z;11 € Y; such that ¢(z;41) = mingey; e(z),
let A;11 = A; U{zi41}, increase ¢ by 1, and return to step 2.

4. If Y; = 0 then output A = A;.

Prove that the output A of the algorithm satisfies ¢(4) = mingey ¢(B).

We first claim that A € 7. To see this we note by (b)(i) that 4o = 0 € F,
and if 4; € F for some ¢ with A; # A then A;q € F, so by induction 4 € F.
Now by (b)(i) there is B with A C B € T. If we have B # A = A; then for
any e € B\ A we have e € Y}, as 4; U{e} € F by (b)(i). However, in this
case the algorithm would not have terminated, so in fact B=A € 7.

Now let m = mingey ¢(B) and M = {B € T : ¢(B) = m}. We prove by
induction on % that there is B with A; C B € M. Note that when applied
to A; = A this will prove our required statement, as then ¢(4) < ¢(B) = m,
30 ¢(A) = m by minimality of m, as A€ T.

For the base case of the induction we have A; = 0, so we can fix any
B € M. For the induction step, suppose we have A; C B € M and A; # A.
If Aip1 = AjU{zi41} C B then then induction step is complete. Otherwise,
we note that B € 7, A;41 € F and A1 \ B = {241}, so by (b)(ii) there
isC € T and f € B with Aj41 € C and C = (B\ {f}) U {zir1}. As
A;U{f} C B we have A;U{f} by (b)(Q), so f € Y;. Then c(z;y1) < c(f) by
minimality in the algorithm, so ¢(C) = ¢(B) — ¢(f) + ¢(zi+1) < e(B) = m,
so C € M by minimality of m. This completes the induction, and so proves
the required statement.
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