
1. (a) [3 marks] Prove that no integer in the sequence 11, 111, 1111, . . . is a perfect square.

Solution. We first show that all numbers in the sequence are of the form 4k + 3 for
k ∈ Z: clearly 11 = 4 · 2 + 3, and every successive number is 10n more than the previous
(for n > 2) in the sequence. Since 10n ≡ 0 (mod 4) for n > 2, this establishes the claim
that all numbers in the sequence are of the form 4k + 3. Now note that if a number is a
perfect square, then it cannot be written in the form 4k + 3 for k ∈ Z: indeed, we have

(4m)2 ≡ 0 (mod 4)

(4m+ 1)2 ≡ 1 (mod 4)

(4m+ 2)2 ≡ 0 (mod 4)

(4m+ 3)2 ≡ 1 (mod 4).

[S] Three marks, distributed as follows:

• 2 marks for showing that all numbers in the sequence are congruent to 3 (mod 4)

• 1 mark for showing that all squares are congruent to 0 or 1 (mod 4).

(b) [5 marks] State and prove Fermat’s Little Theorem.

Solution. Statement: Let p be a prime and let x ∈ Z such that p ∤ x. Then xp−1 ≡ 1
mod p.
Proof: Let G be the group (Z/pZ)×, so that #G = p − 1. Apply Lagrange’s Theorem
from group theory, which implies that if G is a finite group and g ∈ G then g#G = iG. In
our case we take g = x+ pZ, which gives

(x+ pZ)p−1 = 1 + pZ =⇒ xp−1 + pZ = 1 + pZ =⇒ xp−1 ≡ 1 mod p.

[B] This is standard material from the lecture notes:

• 1 mark for the statement of Fermat’s Little Theorem

• 4 marks for the proof

(c) [5 marks] Let n be an odd positive integer. Prove that n|(2n! − 1).

Solution. We first show that for positive integers n, that φ(n)|n!. Indeed, it is true for
n = 1; if n > 1 and if n = pa11 · · · pakk is the prime factorization of n, where p1 < · · · < pk,
then

φ(n) = pa1−1
1 · · · pak−1

k (p1 − 1) · · · (pk − 1),

and we have (pa1−1
1 · · · pak−1

k )|n, while p1− 1 < pk 6 n, which implies that pk − 1 < n and
p1 − 1 < · · · < pk − 1 are different positive integers smaller than n. Thus

((p1 − 1) · · · (pk − 1))|(n− 1)!,

and it follows that φ(n)|((n− 1)!n) = n!.

If n is odd, then by Euler’s Theorem, n|(2φ(n) − 1)|(2n! − 1), hence n|(2n! − 1), as desired.

[N] 5 marks distributed as follows:

• 3 marks for showing that φ(n) | n!

• 2 marks for finishing the proof
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(d) [5 marks] Find all solutions to the equation x2 − 1 ≡ 0 (mod 35).

Solution. Solving x2 − 1 ≡ 0 (mod 35) means we must find n, x ∈ Z such that x2 − 1 =
35n. One way to do this is to consider the equation mod 5 and 7:

x2 − 1 ≡ 0 (mod 5) ⇒ x ≡ ±1 (mod 5)

x2 − 1 ≡ 0 (mod 7) ⇒ x ≡ ±1 (mod 7).

Then carrying out the Chinese Remainder Theorem on the four possible combinations
of signs gives the results. Alternatively, one can say that the first condition gives as our
candidates

x ≡ 1, 4, 6, 9, 11, 14, 16, 19, 21, 24, 26, 29, 31, 34 (mod 35),

while the second condition gives

x ≡ 1, 6, 8, 13, 15, 20, 22, 27, 29, 34 (mod 35),

so putting things together, we find

x ≡ 1, 6, 29, 34 (mod 35).

[S] 5 marks distributed as follows:

• 1 mark for a solving strategy

• 4 marks for the solutions themselves: 1 mark for each solution

(e) [7 marks] Prove that for any n ∈ Z, the integer n2 + n+ 1 does not have any divisors of
the form 6k − 1, for k ∈ Z.

Solution. We first reduce to the case that n2 + n+ 1 has no prime divisors of the form
6k−1, by using the observation that if p, q are primes not of the form 6k−1, then neither
is their product: (6k + 1)(6j + 1) ≡ 1 (mod 6).

Then note that if p = 6k−1 divides n2+n+1, it divides 4(n2+n+1) = (2n+1)2+3, so −3
must be a quadratic residue modulo p. We compute the corresponding Legendre symbol,
using some properties of the symbol developed in the course and quadratic reciprocity:
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So −3 is not a quadratic residue mod p, and we have reached a contradiction.
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Alternate solution (provided by R. Knight). If p is a prime such that p ≡ −1
(mod 6), then |(Z/pZ)×| ≡ 4 (mod 6), so (Z/pZ)× contains no cube roots of 1 other than
1 itself. Hence n2 + n+ 1 6≡ 0 (mod p).

[N] 7 marks distributed as follows:

• 2 marks for reducing to the case of prime divisors

• 5 marks for a complete worked strategy showing that primes of the form 6k− 1 don’t
divide n2 + n+ 1, such as showing −3 is a quadratic nonresidue modulo p
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