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[3 marks] Prove that no integer in the sequence 11,111,1111, ... is a perfect square.

Solution. We first show that all numbers in the sequence are of the form 4k + 3 for
k € Z: clearly 11 =4 -2 4 3, and every successive number is 10" more than the previous
(for n > 2) in the sequence. Since 10™ = 0 (mod 4) for n > 2, this establishes the claim
that all numbers in the sequence are of the form 4k + 3. Now note that if a number is a
perfect square, then it cannot be written in the form 4k + 3 for k € Z: indeed, we have

(4m)> =0 (mod 4)
(4m+1)?>=1 (mod 4)
(4m+2)2=0 (mod 4)
(4m+3)2=1 (mod 4)

[S] Three marks, distributed as follows:
e 2 marks for showing that all numbers in the sequence are congruent to 3 (mod 4)
e 1 mark for showing that all squares are congruent to 0 or 1 (mod 4).

[5 marks| State and prove Fermat’s Little Theorem.

Solution. Statement: Let p be a prime and let x € Z such that p { . Then 2P~! = 1
mod p.

Proof: Let G be the group (Z/pZ)™, so that #G = p — 1. Apply Lagrange’s Theorem
from group theory, which implies that if G is a finite group and ¢ € G then ¢g#¢ = ig. In
our case we take g = x + pZ, which gives

(x+pZ)Pt=14pZ = 2P '4pZ=1+pZ = 2P"'=1 mody.

[B] This is standard material from the lecture notes:
e 1 mark for the statement of Fermat’s Little Theorem
e 4 marks for the proof

[5 marks] Let n be an odd positive integer. Prove that n|(2™ — 1).

Solution. We first show that for positive integers n, that ¢(n)|n!. Indeed, it is true for
n=1;if n > 1 and if n = p{* ---pZ’“ is the prime factorization of n, where p1 < --- < py,
then
—1 —1
p(n) =pi* -pt (o= 1) (pe — 1),
and we have (p‘lll_1 . -pzk_1)|n, while p; — 1 < pr < n, which implies that pp — 1 < n and
p1— 1 < -+ <pr — 1 are different positive integers smaller than n. Thus

((pr = 1) (pe = D)l(n = 1),
and it follows that ¢(n)|((n — 1)In) = nl.
If n is odd, then by Euler’s Theorem, n|(29(") —1)[(2" — 1), hence n|(2™ — 1), as desired.

[N] 5 marks distributed as follows:

e 3 marks for showing that ¢(n) | n!
e 2 marks for finishing the proof
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[5 marks] Find all solutions to the equation 22 — 1 =0 (mod 35).

Solution. Solving #2 — 1 =0 (mod 35) means we must find n,x € Z such that 2% — 1 =
35n. One way to do this is to consider the equation mod 5 and 7:

22-1=0 (mod5)=z==+1 (mod5)

22—1=0 (mod7)=z==+1 (mod7).
Then carrying out the Chinese Remainder Theorem on the four possible combinations
of signs gives the results. Alternatively, one can say that the first condition gives as our

candidates
x=1,4,6,9,11,14,16,19, 21,24, 26,29,31,34 (mod 35),

while the second condition gives
x=1,6,8,13,15,20,22,27,29,34 (mod 35),
so putting things together, we find

x=1,6,29,34 (mod 35).

[S] 5 marks distributed as follows:

e 1 mark for a solving strategy

e 4 marks for the solutions themselves: 1 mark for each solution

[7 marks] Prove that for any n € Z, the integer n? +n + 1 does not have any divisors of
the form 6k — 1, for k € Z.

Solution. We first reduce to the case that n? + n + 1 has no prime divisors of the form
6k — 1, by using the observation that if p, ¢ are primes not of the form 6k — 1, then neither
is their product: (6k+1)(65 +1) =1 (mod 6).

Then note that if p = 6k—1 divides n?+n+1, it divides 4(n?4+n+1) = (2n+1)2+3, so —3
must be a quadratic residue modulo p. We compute the corresponding Legendre symbol,
using some properties of the symbol developed in the course and quadratic reciprocity:

)-G)G)

p—

(-1

()7
(5)
(*5)
(5)

So —3 is not a quadratic residue mod p, and we have reached a contradiction.
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Alternate solution (provided by R. Knight). If p is a prime such that p = —1

(mod 6), then |(Z/pZ)*| =4 (mod 6), so (Z/pZ)* contains no cube roots of 1 other than
1 itself. Hence n? +n+1% 0 (mod p).

[N] 7 marks distributed as follows:
e 2 marks for reducing to the case of prime divisors

e 5 marks for a complete worked strategy showing that primes of the form 6k —1 don’t
divide n? +n + 1, such as showing —3 is a quadratic nonresidue modulo p
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