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1 Introduction
Multispectral imaging (MSI) is the acquisition of a scene by taking multiple images at
different frequency bands. It has numerous applications in defence; it is used, for example,
for the automated detection of targets based on the materials they are made of.Multispectral imaging

is the acquisition of a
scene by taking
multiple images at
different frequency
bands. DSTL want to
apply it for target
identification
purposes.

Cameras can capture such images using either a different sensor for each spectral band
or just one sensor for the full spectrum. In the first case, we often have to make severe
compromises on the frame rate (time resolution) in order to achieve the desired spectral
resolution. In the second case, we can achieve higher frame rates at moderate spatial and
low spectral resolutions, which is ideal for certain applications of interest for the Defence
Science and Technology Laboratory (DSTL), such as identifying targets.

In order to get the full scene in one exposure, the sensor is covered with a multispectral
filter array (MSFA), which allows only one frequency band to be measured at each pixel.
Usually, anMSFA consists of a repeated pattern of pixels - whichwe call amoxel - arranged
in a checkerboard. Hence, the scene is undersampled according to the location of the
MSFA’s pixels, and the image needs to be recovered. This process is known as demosaicing
and is similar in principle to the estimation of RGB components in single-sensor colour
cameras fitted with a Bayer colour filter array (CFA). However, whereas CFA demosaicing
is a well-studied problem [1], MSFA demosaicing is still in its primitive stages, as it seems
that simply extending CFA demosaicing methods does not always give the best results.

Our aim is to find a good MSFA demosaicing algorithm that can be used by DSTL as the
main image reconstruction procedure underlying their target identification routines.

Glossary of terms
� multispectral image: a 3D cube, each slide corresponding to a different frequency

band.

� channel: a 2D slide of amultispectral image that corresponds to one frequency band.

� demosaicing: the process of reconstructing a multispectral image from partial
information obtained fitting a camera with an MSFA.

� wavelet: a wave-like oscillation that can be used to extract information from data.

� sparsifying transform: an operator that transforms a multispectral image into an
array with few non-zero entries.

� rank: an integer number describing how much redundant information is contained
in a matrix; the lower the rank is, the higher the redundancy is.

2 Conventional methods
The majority of the most widely used demosaicing methods proposed in the literature
are inspired from popular reconstruction techniques for colour images. Being heuristic
in nature, they are highly intuitive, but they do not allow much flexibility in their design.
The main demosaicing methods are:

Weighted bilinear interpolation (WB), in which every channel is interpolated
independently, taking into account only the spatial correlation, so as to estimate the
missing values at each pixel thanks to a 2D interpolation of the neighbouring values. A
3D cube is obtained, which is our estimated multispectral image of the scene.

Although highly
intuitive, most
demosaicing methods
are heuristics that do
not allow much
flexibility in their
design.

Spectral difference (SD), which relies on WB but takes into account the spectral
correlation, based on the assumption that all frequency bands are correlated at every
pixel.

Intensity difference (ID), in which we define the intensity at each pixel as the average
value over all the frequency bands. We then use a procedure similar to SD to obtain the
multispectral image.

Discrete wavelet transform (DWT), which is an approach that uses similar Fourier-based
ideas to the CFA demosaicing. We start by using WB to get an initial estimate of the
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multispectral image, which we then transform via DWT using some wavelet basis in a
cube containing the walevet coefficients relative to certain spatial frequency sub-bands.
Next, we follow the widely used replace rule by assuming that the wavelet coefficients in
the high frequency sub-bands are the same for every band, and thus assign the same
high frequency coefficients to each band. Finally, we use these coefficients to get our final
multispectral image.

Binary tree-based edge-sensing (BTES), in which we determine the missing values
iteratively using both known and previously estimated values, interpolating each
channel independently like in WB, but using a tree-like structure to exploit the different
amount of information, that is the probability of assignment (POA), contained in the
different channels.

It is important to note that not all the MSFAs are compatible with BTES, strongly limiting
the applicability of this method.

3 Compressed sensing
MSFA demosaicing belongs to the more general category of techniques known as signal
processing, in which we try to infer quantities of interest from measured information. In
particular, we want to reconstruct a signal x from a vector of measured data y via Ax � y,
where A models the linear measurement (information) process.

When the length of the signal is larger than the amount of data we have, classical linear
algebra tells us that the system is undetermined and that there are infinitelymany solutions
(provided that at least one exists). In other words, it is impossible to recover x from
y without additional information. This fact relates to the Nyquist-Shannon sampling
theorem [2], which states that the sampling rate of a continuous-time signal must be twice
its highest frequency in order to ensure reconstruction.

However, under the assumption that the signal is sparse, i.e. most of its components are
zeros, the reconstruction is possible. The research area associated to this phenomenon is
known as compressed sensing [3]. We aim to employ compressed sensing techniques to
tackle demosaicing.

Demosaicing can be
obtained via
compressed sensing
by transforming the
image in some sparse
basis. This is
equivalent to
reconstructing the
image using a few
strokes of a brush.

Natural images are not usually sparse in the canonical pixel basis. However, they often
consist of smooth areas, except for curve-like discontinuities that appear over the edges
in the picture. So, instead of using pixels, one could describe such images in terms of
"strokes of a brush" [4] and paint them using a few strokes. In other words, natural images
are often sparse after a suitable transformation.

We represent a multispectral image as a vector, say z, built by stacking together all the
columns of each channel. In this way we can write x � Ψz, where Ψ is the sparsifying
transform and x the corresponding sparse vector of coefficients. Additionally, we define
a subsampling operator PΩ that selects only those pixels and bands of the full image for
which we have information. Since both the sparsifying transform and the subsampling
operator we choose are linear, we can rewrite the measurement matrix as AΨ � PΩ, and
y � PΩz.

Hence, we try to find that vector of coefficients x with the fewest possible number of
non-zero entries such that Ax � y is satisfied. Unfortunately, this problem is hard to
solve in general. Nonetheless, research on compressed sensing has been conducted
extensively. The most popular reconstruction methods are usually divided into three
categories [3]: convex optimisation methods solving a relaxation of the problem, greedy
methods such as orthogonal matching pursuit, and thresholding-based methods like
iterative hard thresholding.

Moreover, we need to make sure that the reconstruction error stays under control when
the vectors are not exactly sparse and when the measurements y are slightly inaccurate.
To this aim, we solve our compressed sensing problem using a recovery procedure called
normalised iterative hard thresholding (NIHT) [5]. In every iteration, we update the
solution using two alternating steps: (i) a line search that minimises the goal function but
may depart from a sparse vector x and (ii) a hard-thresholding projection onto a set of
sparse vectors.
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4 Matrix completion
In matrix completion,
we aim to reconstruct
an image by
assuming it has a
low-rank structure.

Rather than recovering a sparse vector x, another possibility is to recover a matrix X from
its known elements. This is called matrix completion, in which sparsity is replaced by the
assumption that X has low rank. Indeed, the small complexity of the set of matrices with
given low rank compared to the set of all matrices makes the recovery of such matrices
plausible.

For a subsampling operator PΩ that selects only those elements of X for which we actually
have some measurements, suppose that we are given a measurement vector y � PΩ(X) of
size smaller than the total number of elements in the matrix X. The task is to reconstruct
X from y. To stand a chance of success, we assume that X has a rankmuch smaller than its
number of elements, and try to find that matrix X with low rank that satisfies y � PΩ(X).
Again, this problem is really hard to solve in general.

Similar to the case of iterative hard thresholding algorithms for compressed sensing,
we alternate between the minimisation of the goal function and the projection of the
matrix onto the space of low-rank matrices. However, note that we wish to reconstruct
multispectral images, which are 3D cubes. Hence, our task is more complicated than just
directly applying a matrix completion algorithm, which can deal only with 2D matrices:
contrary to the matrix case, the notion of low-rank 3D cube is ambiguous, especially
because a decomposition like the singular value decomposition does not exist. Also, the
higher dimensionality is an issue.

Therefore, in order to simplify our problem, we vectorise every channel and concatenate
the resulting vectors horizontally, so as to represent every multispectral image by a 2D
matrix X. Our aim is then to obtain X, whichwe call the spectral unfolding of amultispectral
image. The main drawback of this formulation is that we lose some of the intra-channel
correlations, but at least we can apply matrix completion.

The dominant computational cost of iterative thresholding algorithms for matrix
completion comes from the need to compute the singular value decomposition in every
iteration. However, this can be avoided if we ensure that the optimisation stays on the
space of low-rank matrices. One way to do this is to consider those low-rank matrices of
the form X � WZ. Solving our matrix completion problem in terms of W and Z is a least
squares problem, which we solve employing the alternating steepest descent (ASD)
method proposed in [6].

5 Numerical experiments
In this section, we present and explain the numerical results we obtained using the
methods described in Sections 2-4. All the algorithms are implemented in a Python
package.

Data
The data were collected in a trial of the utility of airborne hyperspectral imaging for target
detection that was conducted at DSTL Porton Down in August 2014. From these, we select
140 radiance images, each with 3752×1600 pixels and 44 bands in the VNIR range (400 nm
to 1000 nm).

Here, we focus on a single image onwhichwe implement an IMEC snapshotmosaic sensor
which contains a 4 × 4 MSFA with moxel

4 5 12 13
3 6 11 14
2 7 10 15
1 8 9 16

. (1)

It detects 16 spectral bands using Fabry-Perot filters [7] with sensitivity ranging from
470 nm to 630 nm and a spectral bandwidth (FWHM) of approximately 15 nm for each
band. The active area of the sensor is composed of 2048 × 1088 pixels of 5.5 µm across
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corresponding to 512× 256 moxels. Results for this case are consistent with the remaining
images in our dataset of 140 VNIR images.

Correlation coefficients
Most MSFA demosaicing schemes make some assumptions on the correlation in and
between bands. To assess the spatial correlation within a channel, we use the Pearson
correlation coefficient [8] between the channel value of every pixel and that of its right
neighbour at some distance, for every channel. Similarly, we measure the spectral
correlation between two channels using the Pearson coefficient.

The Pearson correlation metric can be interpreted in several ways: from a statistical point
of view, it is the covariance of the two variables divided by the product of their standard
deviations; from a geometric perspective, it is the cosine of the angle between the two
observed quantities in multidimensional space. For a large sample size, the Pearson
correlation coefficient is (approximately) unbiased, and thus it provides an accurate
estimate of the correlation. Moreover, it is closely related to the inverse of the
Mahalanobis distance [9], a quantity that plays a major role in the design and evaluation
of target detection algorithms.

The dataset images
have a low spatial
correlation and a high
spectral correlation.

Figure 1 – Spatial (left) and spectral (right) correlation coefficients.

We compute these coefficients on the image we selected and show the results in Figure 1.
We see that the spatial correlation between neighbouring pixels decreases as their distance
increases. On the other hand, even if three blocks are clearly distinguishable, the spectral
correlation between the channels is extremely high overall (in fact, bigger than 0.96). This
confirms the reliability of the assumptions of the conventionalmethods that we previously
described. Furthermore, the results in Figure 1 suggest that the spectral unfolding is likely
to be extremely low rank, thus making the matrix completion approach potentially very
well-suited.

Measure of the quality of a reconstruction
The most common measure of the quality of an image estimated by demosaicing is the
peak signal-to-noise ratio (PSNR), an engineering term for the ratio between the maximum
possible power of (the channel of) an image and the power of corrupting noise that affects
the fidelity of its representation, computed in terms of the average squared difference
between the pixel intensities of the reference image and its reconstruction.

Results
We show our results in Figure 2, in which we compare the various methods. We see that
DWT performs the worst, possibly because the replace rule is just too simplistic. Better
results are achieved by WB and BTES, which rank very similarly: this happens because
the moxel (1) associates the same POA to every pixels, and thus the tree structure of BTES
does not provide any advantage in the interpolation procedure. ID and SD perform even
better: this was expected, since both techniques take into account the spectral correlation
between the channels. However, SD is the best performing method: the high spectral
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correlation between all the frequency bands shown in Figure 1 implies that SD should be
extremely accurate in this instance, since SD is based on the assumption that all channels
are correlated at every pixel.

Hence, we use the output of SD as the initial guess for both NIHT and ASD. We can see
that the former does not improve much over SD - up to 4% on average. The improvement
is not large: the high redundancy of the measurement matrix A and the regularity of the
mosaic pattern do not let us explore the full structure of the multispectral image. In other
words, we need as many points as possible to converge to an accurate reconstruction.

Using the output of
the best conventional
method, the matrix
completion approach
seems to be the best
demosaicing
algorithm here.

On the other hand, the results we show in Figure 2 suggest that ASD is an efficient
reconstruction method when employed in combination with SD. Despite the spectral
unfolding, images of fields are better represented with low-rank matrices as they possess
less directional features, and thus ASD applies well to our image. In particular, we find
that rank � 3 seems to give the best reconstruction. This is consistent with Figure 1, as
the high correlation between the channels suggests a low-rank structure of our spectral
unfolding, as well as with the fact that 95.27% of the full radiance information is contained
in the first 3 singular values of the spectral unfolding.

Figure 2 – PSNR of each channel given its band centre.

6 Discussion, conclusions & recommendations
We have described several state-of-the-art methods for demosaicing. We introduced
compressed sensing and matrix completion techniques in the multispectral imaging
context, and analysed the reconstructions of the subsampled images using different
values of the parameters involved. We showed that there is a relevant multidimensional
structure that can be used to reconstruct the image from far less observations than one
would initially assume to be needed based on the ambient dimensionality of the image
tensor. The successful results of matrix completion on the spectral unfolding of the test
images give us hope that techniques like ASD can be employed by DSTL to achieve very
good reconstruction, which would not otherwise be possible by using conventional
methods. Finally, we implemented all the algorithms in a Python package which can be
easily used by DSTL for further testing.

Future work should include further improvements of the methods we have studied. In
particular, in the compressed sensing case, we need to consider less redundant transforms,
e.g. wavelets. For the matrix completion case, a key action is to improve ASD.

Nevertheless, we note that the performance of the algorithms are highly case dependent.
Therefore, it is likely that more sophisticated tensor reconstruction techniques that take
both the spatial and spectral information into account will be required, as described in [4].
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7 Potential impact
Our resultswill helpDSTL choosing ademosaicing algorithm for target identification. Our
findings suggest that ASD in combination with SD achieve good performance, showing a
competitive edge above state-of-the-art methods.

Jonathan Piper, Senior Scientist at DSTL, said: "This project is a critical step in developing
effective, low-size, weight and power spectral sensors for use in military applications. Mosaic
filter-based imagers will enable deployment of spectral sensing on a much wider range of platforms,
such as small spacecraft and solar powered aircraft, where previous sensing technologies were
impractical. This brings the benefits of spectral sensing, which can detect militarily-significant
objects that are indiscernible to the human eye, to a much wider range of applications. The results
of this project will be used in data exploitation systems for such sensors, enabling them to meet
their full potential for collecting intelligence and performing surveillance or reconnaissance, and
enabling users to have confidence in the quality of the information generated."
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