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Introduction

Newman was one of the pioneers in uncovering connections between complex
geometry and gravitation,

especially when considering asymptotically flat spaces,
via the heavenly construction.

Usually these connections involve self-dual gravity, particularly from the twistor
perspective. But here we will focus on the strictly non-self-dual case. New
connections between asymptotic flatness and complex structures seem to emerge,
via a Witten-like identity.

This will be the main message of this talk. But the motivation is a recent
counterexample to Euclidean Black Hole Uniqueness, i.e. a new AF gravitational
instanton different from Kerr. We will be interested in integrable deformations of
these spaces.
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Gravitational Instantons

Gravitational instanton (M, g): 4-dim, complete, non-singular, Ricci-flat
Riemannian manifold, either compact or “asymptotically flat”

Name Infinity Examples

Compact — T 4, K3
AE E4 only E4

ALE E4/Γ Eguchi-Hanson T ∗CP1

AF S1 × S2 Schw., Kerr R2 × S2

ALF S1 bundle over S2 Taub-NUT R4, Taub-bolt CP2\pt

(also ALG, ALH, ALG∗, ALH∗, Kasner,...)

Some conjectures

• Besse (1987): “All compact instantons are hyperkähler” open

• Nakajima (1990): “All ALE instantons are hyperkähler” open

• BH Uniqueness (1980): “All AF instantons are in the Kerr family” false!
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The Chen-Teo instanton

• 2-parameter family

• Non-self-dual

• M = CP2 \ S1

• Toric

Remarks

• Given mass & ang. momentum, can’t distinguish Kerr from Chen-Teo

• Constructed with Belinski-Zakharov method w/3 solitons

• BZ method generates toric solutions with arbitrary number of solitons

⇒ there might be ∞ family of unknown AF instantons! open

(cf. [Kunduri-Lucietti 2021])

• Need to have better understanding of Moduli Spaces



The Chen-Teo instanton

• 2-parameter family

• Non-self-dual

• M = CP2 \ S1

• Toric

Remarks

• Given mass & ang. momentum, can’t distinguish Kerr from Chen-Teo

• Constructed with Belinski-Zakharov method w/3 solitons

• BZ method generates toric solutions with arbitrary number of solitons

⇒ there might be ∞ family of unknown AF instantons! open

(cf. [Kunduri-Lucietti 2021])

• Need to have better understanding of Moduli Spaces



The Chen-Teo instanton

• 2-parameter family

• Non-self-dual

• M = CP2 \ S1

• Toric

Remarks

• Given mass & ang. momentum, can’t distinguish Kerr from Chen-Teo

• Constructed with Belinski-Zakharov method w/3 solitons

• BZ method generates toric solutions with arbitrary number of solitons

⇒ there might be ∞ family of unknown AF instantons! open

(cf. [Kunduri-Lucietti 2021])

• Need to have better understanding of Moduli Spaces



The Chen-Teo instanton

• 2-parameter family

• Non-self-dual

• M = CP2 \ S1

• Toric

Remarks

• Given mass & ang. momentum, can’t distinguish Kerr from Chen-Teo

• Constructed with Belinski-Zakharov method w/3 solitons

• BZ method generates toric solutions with arbitrary number of solitons

⇒ there might be ∞ family of unknown AF instantons! open

(cf. [Kunduri-Lucietti 2021])

• Need to have better understanding of Moduli Spaces



The Chen-Teo instanton

• 2-parameter family

• Non-self-dual

• M = CP2 \ S1

• Toric

Remarks

• Given mass & ang. momentum, can’t distinguish Kerr from Chen-Teo

• Constructed with Belinski-Zakharov method w/3 solitons

• BZ method generates toric solutions with arbitrary number of solitons

⇒ there might be ∞ family of unknown AF instantons!

open

(cf. [Kunduri-Lucietti 2021])

• Need to have better understanding of Moduli Spaces



The Chen-Teo instanton

• 2-parameter family

• Non-self-dual

• M = CP2 \ S1

• Toric

Remarks

• Given mass & ang. momentum, can’t distinguish Kerr from Chen-Teo

• Constructed with Belinski-Zakharov method w/3 solitons

• BZ method generates toric solutions with arbitrary number of solitons

⇒ there might be ∞ family of unknown AF instantons! open

(cf. [Kunduri-Lucietti 2021])

• Need to have better understanding of Moduli Spaces



The Chen-Teo instanton

• 2-parameter family

• Non-self-dual

• M = CP2 \ S1

• Toric

Remarks

• Given mass & ang. momentum, can’t distinguish Kerr from Chen-Teo

• Constructed with Belinski-Zakharov method w/3 solitons

• BZ method generates toric solutions with arbitrary number of solitons

⇒ there might be ∞ family of unknown AF instantons! open

(cf. [Kunduri-Lucietti 2021])

• Need to have better understanding of Moduli Spaces



Moduli Spaces

E (M) = {Einstein metrics on M}/Diff(M)

More is known if M compact – T 4,K3, del Pezzos, ... (cf. [LeBrun])

Example: M = R2 × S2

• M admits the Schwarzschild instanton gm. Are there others?

• gm has ALF infinitesimal deformations (soln to linearised Einstein). These
integrate to a curve gm(s),a(s) ∈ E (M) ; Kerr instanton

For general M :

• Open problem: determine whether infinitesimal deformations are integrable

• E (M) may be a non-smooth variety

• E (M) is integrable at g0 if any infinitesimal deformation integrates to a
curve of Einstein metrics in E (M)
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Integrability

Examples

• Calabi-Yau (cf. Besse 1987); self-dual Yang-Mills (Atiyah, Hitchin, Singer 1978);
twistor theory & deformations of complex structures (Penrose, Kodaira) ✓

• CP1 × CP2n has infinitesimal deformations, but they are not tangent to
curves in E (M) (Koiso 1982) ×

• If g0 = vacuum space-time with compact Cauchy surface and Killing field
⇒ E (M) is a quadratic variety near g0 (Fischer, Marsden, Moncrief 1980) ×

This talk

• Integrability of E (M) is open for general Einstein manifolds

• Is the Moduli Space of ALF instantons integrable?

• We will be able to answer this using complex structures
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Complex structures and black holes

Special geometry of black holes

• Newman & Janis (1965): Kerr is a “complex translation” of Schwarzschild

• Flaherty (1974, 1976): Kerr has Lorentzian Hermitian structure

• Walker & Penrose (1970): Kerr has non-degenerate valence-2 Killing spinor

Riemannian versions

• Non-degenerate valence-2 Killing spinor ⇔ conformally Kähler
[Dunajski & Tod 2009; Pontecorvo 1992]

• Conformally Kähler ⇒ Hermitian

• Ricci-flat + algebraically special ⇒ conformally Kähler



Complex structures and black holes

Special geometry of black holes

• Newman & Janis (1965): Kerr is a “complex translation” of Schwarzschild

• Flaherty (1974, 1976): Kerr has Lorentzian Hermitian structure

• Walker & Penrose (1970): Kerr has non-degenerate valence-2 Killing spinor

Riemannian versions

• Non-degenerate valence-2 Killing spinor ⇔ conformally Kähler
[Dunajski & Tod 2009; Pontecorvo 1992]

• Conformally Kähler ⇒ Hermitian

• Ricci-flat + algebraically special ⇒ conformally Kähler



Complex structures and black holes

Special geometry of black holes

• Newman & Janis (1965): Kerr is a “complex translation” of Schwarzschild

• Flaherty (1974, 1976): Kerr has Lorentzian Hermitian structure

• Walker & Penrose (1970): Kerr has non-degenerate valence-2 Killing spinor

Riemannian versions

• Non-degenerate valence-2 Killing spinor ⇔ conformally Kähler
[Dunajski & Tod 2009; Pontecorvo 1992]

• Conformally Kähler ⇒ Hermitian

• Ricci-flat + algebraically special ⇒ conformally Kähler



Complex structures and black holes

Special geometry of black holes

• Newman & Janis (1965): Kerr is a “complex translation” of Schwarzschild

• Flaherty (1974, 1976): Kerr has Lorentzian Hermitian structure

• Walker & Penrose (1970): Kerr has non-degenerate valence-2 Killing spinor

Riemannian versions

• Non-degenerate valence-2 Killing spinor ⇔ conformally Kähler
[Dunajski & Tod 2009; Pontecorvo 1992]

• Conformally Kähler ⇒ Hermitian

• Ricci-flat + algebraically special ⇒ conformally Kähler



Complex structures and black holes

Special geometry of black holes

• Newman & Janis (1965): Kerr is a “complex translation” of Schwarzschild

• Flaherty (1974, 1976): Kerr has Lorentzian Hermitian structure

• Walker & Penrose (1970): Kerr has non-degenerate valence-2 Killing spinor

Riemannian versions

• Non-degenerate valence-2 Killing spinor ⇔ conformally Kähler
[Dunajski & Tod 2009; Pontecorvo 1992]

• Conformally Kähler ⇒ Hermitian

• Ricci-flat + algebraically special ⇒ conformally Kähler



Complex structures and black holes

Special geometry of black holes

• Newman & Janis (1965): Kerr is a “complex translation” of Schwarzschild

• Flaherty (1974, 1976): Kerr has Lorentzian Hermitian structure

• Walker & Penrose (1970): Kerr has non-degenerate valence-2 Killing spinor

Riemannian versions

• Non-degenerate valence-2 Killing spinor ⇔ conformally Kähler
[Dunajski & Tod 2009; Pontecorvo 1992]

• Conformally Kähler ⇒ Hermitian

• Ricci-flat + algebraically special ⇒ conformally Kähler



Complex structures and instantons
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and g is another Ricci-flat metric on M sufficiently C3
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also ALF Hermitian.
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Main results

To look for further solutions, we want to see if the instantons can be smoothly
deformed, and if these deformations are integrable.

Theorem A (Stability) [B.A, L. Andersson & M. Dahl, 2024]

Let (M, g) be an ALF Hermitian non-Kähler gravitational instanton. Then:

• Infinitesimal deformations satisfy the Teukolsky equation.

• There are no non-trivial ALF solutions to the Teukolsky eqn.

Theorem B (Integrability) [B.A & L. Andersson, 2025]

Let (M, g) be an ALF Hermitian non-Kähler gravitational instanton. Then:

• Infinitesimal deformations are conformally Kähler.

• The Moduli Space E (M) is integrable at g.

We will focus on Theorem B, using “Witten-like” identity (in the sense of PMT)
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Notation

Signature (+ + ++)

• Spin group SU(2)× SU(2), symplectic spin bundles (S, ϵ), (S′, ϵ′)

ϕA ∈ S, ψA′
∈ S′, ϕB = ϵABϕ

A, ψB′ = ϵA′B′ψA′

• Tangent bundle TM ∼= S⊗ S′, with metric gab = ϵABϵA′B′

• Self-dual 2-forms Λ2
+
∼= S⊙ S = span(φi

AB), with L-C connection

∇aφ
i
BC = Γa

i
jφ

j
BC , i, j = 1, 2, 3

• If |φ|2 = 1, then Ja
b =

√
2φA

Bδ
A′

B′ is almost-complex structure

• (M, g) is Kähler iff ∇aφBC = 0

• Weyl tensor

Wabcd = ΨABCDϵA′B′ϵC′D′︸ ︷︷ ︸
W+

abcd

+Ψ̃A′B′C′D′ϵABϵCD︸ ︷︷ ︸
W−

abcd

Remark: A global spin structure is not assumed.
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Eigenspinors

Consider the map (cf. Penrose & Rindler Vol.2)

ΨAB
CD : S2 → S2

• Self-adjoint ⇒ orthonormal basis of real eigenspinors

• Trace-free ⇒ λ1 + λ2 + λ3 = 0

• Can choose λ1 ≤ 0 and λ3 ≥ 0

• If ĝab = Ω2gab, then

Ψ̂AB
CD = Ω−2ΨAB

CD, λ̂i = Ω−2λi

We will work with the following objects (cf. LeBrun (2019))

• gab with L-C connection ∇a and trace-free Ricci tensor Eab

• ĝab = Ω2gab with L-C connection ∇̂a and Ω = λ̂3
• φ̂AB with Ψ̂AB

CDφ̂CD = λ̂3φ̂AB and |φ̂|2 = 1
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• If ĝab = Ω2gab, then

Ψ̂AB
CD = Ω−2ΨAB

CD, λ̂i = Ω−2λi

We will work with the following objects (cf. LeBrun (2019))

• gab with L-C connection ∇a and trace-free Ricci tensor Eab
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Key identity

Lemma

With the above definitions, let (M, ĝab) be arbitrary (λ̂3 ̸= 0), and set

ŜA′

B = ∇̂AA′
φ̂AB , V̂ a = φ̂ABŜA′

B , P̂ abcd = φ̂(ABφ̂CD)ϵ̂A
′B′
ϵ̂C

′D′

Then the following identity holds:

∇̂aV̂
a = A+ B

where

A = |Ŝ|2 + 1

6
|∇̂φ̂|2 + 1

3λ̂3

[
(λ̂1 − λ̂2)

2 − 2λ̂1|Γ̂3
1|2 − 2λ̂2|Γ̂3

2|2)
]

B = − 1
3 P̂

abcd∇̂a(λ̂
−1
3 ∇dEbc)
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Example

• We have ∇̂aV̂
a = A+ B, and

A = |Ŝ|2 + 1

6
|∇̂φ̂|2︸ ︷︷ ︸

≥0

+
1

3λ̂3︸︷︷︸
≥0

[(λ̂1 − λ̂2)
2︸ ︷︷ ︸

≥0

−2λ̂1|Γ̂3
1|2︸ ︷︷ ︸

≥0

−2λ̂2|Γ̂3
2|2︸ ︷︷ ︸

??

]

B = − 1
3 P̂

abcd∇̂a(λ̂
−1
3 ∇dEbc)

• Integrate over M , use Stokes, and add assumptions,

for example:

g Einstein ⇒ B = 0

λ̂2 < 0 ⇒ A ≥ 0
Boundary term = 0 ⇒ A = 0

• Then ∇̂φ̂ = 0, so ĝ is Kähler, i.e. g is conformally Kähler

Remark

This result was obtained by Wu (2019) and LeBrun (2019) in the case that (M, g)
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A = |Ŝ|2 + 1

6
|∇̂φ̂|2︸ ︷︷ ︸

≥0

+
1

3λ̂3︸︷︷︸
≥0

[(λ̂1 − λ̂2)
2︸ ︷︷ ︸

≥0

−2λ̂1|Γ̂3
1|2︸ ︷︷ ︸

≥0

−2λ̂2|Γ̂3
2|2︸ ︷︷ ︸

??

]

B = − 1
3 P̂

abcd∇̂a(λ̂
−1
3 ∇dEbc)

• Integrate over M , use Stokes, and add assumptions,

for example:

g Einstein ⇒ B = 0

λ̂2 < 0 ⇒ A ≥ 0
Boundary term = 0 ⇒ A = 0
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• Then ∇̂φ̂ = 0, so ĝ is Kähler, i.e. g is conformally Kähler

Remark

This result was obtained by Wu (2019) and LeBrun (2019) in the case that (M, g)
is compact, Einstein and detW+ > 0



Example

• We have ∇̂aV̂
a = A+ B, and

A = |Ŝ|2 + 1
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• Then ∇̂φ̂ = 0, so ĝ is Kähler, i.e. g is conformally Kähler

Remark

This result was obtained by Wu (2019) and LeBrun (2019) in the case that (M, g)
is compact, Einstein and detW+ > 0



ALF curves

Recall key identity ∇̂aV̂
a = A+ B.

Lemma

Let g(s) be a curve of ALF metrics on M , with g0 := g(0) Hermitian instanton
and δg := dg

ds |s=0 infinitesimal deformation. Then

∫
M

(∇̂aV̂
a)(s) = O(s3)∫

M

A(s) = O(s2)∫
M

B(s) = O(s3)

and the almost-complex structure Ja
b =

√
2 φ̂A

Bδ
A′

B′ satisfies

(∇̂J)(s) = O(s2)
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Sketch of proof

• Set Ĵab =
√
2 φ̂AB ϵ̂A′B′ , then∫

M

∇̂aV̂
a =

{∮
∂M

Ĵ ∧ ∗̂dδĴ
}
s+

{∮
∂M

Ĵ ∧ ∗̂d δ2Ĵ
}
s2

2!
+O(s3)

• Using that g0 is ALF Hermitian instanton,

A =

{
|δ(∇̂Ĵ)|2

24
+ |δŜ|2 + (δλ̂1 − δλ̂2)

2

3λ̂3
+

(|δΓ̂3
1|2 + |δΓ̂3

2|2)
3

}
s2

2!
+O(s3)

• Using that δg is infinitesimal deformation,∫
M

B =

{
−1

3

∮
∂M

(λ̂−1
3 P̂ abcd∇dδ

2Ebc)dΣa

}
s2

2!
+O(s3)

• ALF fall-off at ∞ implies that boundary terms vanish ⇒ δ2A = 0

⇒ δ(∇̂Ĵ) = 0 ⇒ ∇̂J = O(s2)
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√
2 φ̂AB ϵ̂A′B′ , then∫

M

∇̂aV̂
a =

{∮
∂M

Ĵ ∧ ∗̂dδĴ
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Integrability of E (M)

We then have an ALF curve (g(s), J(s)) on M such that

(g0, J0) = ALF Hermitian instanton

Ric[g(s)] = O(s2)

(∇̂J)(s) = O(s2)

Therefore:

• The infinitesimal deformation δg solves the ALF linearised Hermitian-Einstein
system, i.e. points in the Hermitian direction

• ALF Hermitian instantons are classified and topology is fixed, so δg must be
deformation within same family ⇒ perturbation w.r.t moduli

• Hermitian moduli spaces are smooth ⇒ δg integrates to a curve of Ricci-flat
metrics in E (M).
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Conclusions

• There is a counterexample to Euclidean BH Uniqueness; currently unknown if
there are others.

• We studied infinitesimal deformations. Connected to integrability of moduli
spaces —open for general Einstein manifolds.

• Using Witten-like identity, proved the deformations have complex structures,
moduli space is integrable, instantons cannot be smoothly deformed away.

• New connections: asymptotic flatness, complex structures, global regularity.

Some questions

• Other asymptotics? Beyond Ricci-flatness?

• Key identity ; deduce ∃ complex structures on instantons?

• Classification of toric instantons? (Twistor approach?)

• Applications to Lorentzian Relativity? (e.g. BH stability?)

Thank you!
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