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Abstract. Silicon is produced from quartz rock in electrode-heated furnaces by using carbon
as a reduction agent. We perform an asymptotic analysis of a heat and mass transfer model of an
experimental pilot furnace in order to determine the dominant chemical and thermal behavior of
the system. First, by prescribing a steady-state temperature profile in the furnace we explore the
leading order reactions in different spatial regions, as well as early time behavior. We are able to
obtain asymptotic solutions which compare well with numerical simulations. Utilizing the dominant
balances found when the temperature is prescribed, we next reduce the full model to two coupled
partial differential equations for the time-variable temperature profile within the furnace and the
concentration of solid quartz. These equations account for diffusion, an endothermic reaction, and
the external heating input to the system. A moving boundary is found and the behavior on either side
of this boundary explored in the asymptotic limit of small diffusion. We note how the simplifications
derived may be useful for future models and industrial furnace operation and comment on insights
from the model about furnace crust formation.
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multiple scales, moving boundary problems
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1. Introduction. Silicon is an important material, being used in crystal form
for semiconductors in solar panels and computers, as polysilicon in such things as
paint and textiles, and as part of metallic alloys [17]. It is produced from the raw
material quartz (SiO2), using carbon as a reduction agent, in large furnaces which
are heated by electrodes [2, 11, 17, 21]. In the furnaces numerous chemical reactions
occur, as well as different types of interactions between solid, liquid, and gaseous
phases. The high temperatures found (around 2000 K) are influenced by the chemical
reactions and the electrical heating. Mathematical modeling is crucial to understand
the interdependence between the physical and chemical effects taking place. In furnace
operation a crust emerges, comprising solid and viscous liquid substances, preventing
raw material from reaching the hotter, lower part of the furnace and hence inhibiting
the necessary reactions from taking place. To counter this the furnace is “stoked” on
an hourly basis, whereby the crust is manually broken up. This is a tedious operation,
and thus it is of particular interest to see if this crust formation can be understood
better. In [20] we produced a continuum model of a silicon furnace, simplifying the
geometry to replicate a pilot furnace experiment. Here we build on this work by
examining asymptotic limits of this model, in order to capture and better understand
the underlying behavior.

There is a wealth of mathematical literature on problems of coupled chemical and
thermal effects. In [4, 13, 15] the authors consider catalytic converters and combustion.
Here an exothermic reaction heats the system, causing an initial light-off behavior [15]
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and the mechanisms by which the reaction switches off [4] are studied by asymptotic
means. A separate, but linked, body of work examines competing exothermic and
endothermic reactions [7, 16, 19, 23]. If there is just a single exothermic reaction, or
two exothermic reactions, traveling wave solutions exist. However, the presence of the
endothermic reaction, removing heat from the system, means these traveling waves
can exist only for certain regions of the parameter space. In [3] premixed flames are
considered and in [1] a model of coupled heat transfer and an endothermic reaction
is analyzed. Useful analogues of the behavior in the model of Sloman et al. [20] can
be found in work set in different physical contexts. In [5] the authors find a moving
drying front in the roasting of a coffee bean, which separates a dry region from a
preheating region. The behavior of this narrow transition region is analyzed using
asymptotic methods. The processing of glass in a furnace is considered in [6], where a
melted upper region and an unmelted lower batch region are separated by a downward
moving traveling front. In the context of tumor cells the authors of [12] find new
discontinuous traveling waves for different hyperbolic PDE models. Although many
chemical processes contain numerous reactions, it is possible to reduce the number
of equations in mathematical models describing these processes by making certain
simplifications. One of these is the quasi-steady-state assumption [18] or pseudo-
steady-state hypothesis. There is a separation of timescales, so that after the initial
fast timescale some of the variables can be assumed to be in steady state, reducing
the number of equations to be solved to find the other variables, which vary over a
longer timescale.

In section 2 we present a summary of the model for a silicon furnace developed in
[20], listing equations in dimensional variables and giving brief descriptions of what
these represent physically. We nondimensionalize this model in such a way as to
ensure all dimensionless variables are order one in size, while parameters are also
order one, except for two which are small. In section 3 we examine this model with
the simplification of a prescribed steady-state temperature profile in the limit of these
small parameters going to zero. This corresponds physically to the reaction between
liquid quartz and carbon being instantaneous when compared to the melting of solid
quartz and gas advection being instantaneous when compared to both these effects.
Using a prescribed temperature profile makes the leading order system of equations
easier to solve and allows us to capture the behavior of the dominant chemical effects.
We find that two spatial regions emerge: a lower, hot region where gas is produced
from the solid carbon and quartz, and a cold, upper region where SiO gas reacts with
carbon particles and also condenses. We also find two timescales, with an initial fast
transience followed by a slower outer timescale. In section 4 we consider asymptotics
of the full problem, where the varying temperature is coupled with chemistry and gas
transport. We find that the leading order problem comprises an endothermic chemical
reaction acting as a sink in the heat equation, which has an external source. This
differs from much of the literature discussed, which largely deals with exothermic
reactions (e.g., [4, 13, 15]). We find spatial regions similar to those which arise in
section 3 with a prescribed temperature profile, with the difference that the spatial
interface rises in the furnace with a traveling wave type behavior. We are particularly
interested in both crust formation and the interface between the charge and the gas
cavity, given in this model by the isotherm where quartz begins to melt. There is
discussion of the melting isotherm throughout sections 3 and 4, and in section 5 we
give insights into crust formation. Concluding remarks are given in section 6.

2. The model. We take the model for a silicon furnace from [20]. This is a
continuum model for the dynamics of chemical concentrations, gas partial pressures,
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1176 B. M. SLOMAN, C. P. PLEASE, AND R. A. VAN GORDER

material transport, and temperature within a vertical section of a furnace. The model
is applied to pilot furnace experiments, discussed in [20], and so electrical effects are
not considered. Heat transfers due to gas advection, conduction, radiation, exothermic
and endothermic reaction heat release or absorption, and an external energy source.
Diffusion of gases is neglected due to the high Péclet number (around 103), and for
simplicity solids and liquids move in a constant bulk flow. We give a summary of the
model here, but further details are found in [20].

The model assumes that at any point in the furnace there is a mixture of one
of seven chemical species. These are three solid species: carbon (C), silicon carbide
(SiC), and quartz (SiO2(s)); two liquid species: “sticky” quartz (SiO2(l)) and silicon
(Si); and two gaseous species: carbon monoxide (CO) and silicon monoxide (SiO). The

model considers the effective concentration of these chemicals, denoted CX [mol/m
3
]

for each species X. This gives the number of moles of X per unit volume of the
mixture of all species in the furnace. All the solids, liquids, and gases are considered
to be locally at the same varying temperature T [K], and there are assumed to be no
voids in the furnace, so that any arbitrary volume is filled with a combination of the
chemical species modeled. The total gas pressure PTOT is assumed to be constant,
at 1 bar, created by the partial pressure of silicon monoxide, denoted P , and carbon
monoxide. Both gases are allowed to move at the same varying velocity Vg = Ugk.
Advection of gases dominates over diffusion, so gas diffusion is not included in the
model. The imposition of constant total pressure and a no-voids condition means that
gas moves in order to equilibrate pressure. If gas is produced through reactions in one
part of the furnace, then it will move away from that region to keep the total pressure
steady. Thus the gas velocity is not explicitly stated but is determined implicitly as
part of the model. The solids and liquids are assumed to move at a constant velocity
Vs = −Usk. We apply our model to the pilot furnace experiments, described in
[20], and so take Us to be zero since material is not fed in to the furnace top during
the experiments. As can be seen in Figure 1, the prevailing structure in the pilot
furnace is unidimensional. We are interested in the location of crust formation, and
this can be captured using a single spatial coordinate z, representing height in the
furnace. Although the gas cavity and the crater are distinct regions in experimental
and industrial furnaces, since we have a mixture of solids, liquids, and gases at all
heights these regions are combined in our model, with the joint region referred to as
the base of the furnace.

The following chemical reactions are considered to take place in the furnace, with
bracketed notation (s) denoting a solid, (l) a liquid, and (g) a gas:

Fig. 1. The red box in the left-hand image shows a typical vertical section in the pilot furnace.
The horizontal variations are smoothed out in the right-hand image to illustrate the approximation
of the furnace geometry with a one-dimensional model. Reproduced from [20].
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SiO(g) + 2C(s)
R1−−→ SiC(s) + CO(g),(1)

2SiO(g)
R2



R−2

SiO2(l) + Si(l),(2)

SiO2(s)
R3−−→ SiO2(l),(3)

SiO(g) + SiC(s)
R4−−→ 2Si(l) + CO(g),(4)

SiO2(l) + C(s)
R5−−→ SiO(g) + CO(g).(5)

Using the relations CCO + CSiO = Cg, CCO = Cg(PTOT − P ), and CSiO = CgP ,
the dimensional model equations are

∂

∂t



CC

CSiC

CSiO2(s)

CSiO2(l)

CSi

Cg(PTOT − P )
CgP


+

∂

∂z



−UsCC

−UsCSiC

−UsCSiO2(s)

−UsCSiO2(l)

−UsCSi

UgCg(PTOT − P )
UgCgP



=



−2 0 0 0 0 −1
1 0 0 0 −1 0
0 0 0 −1 0 0
0 1 −1 1 0 −1
0 1 −1 0 2 0
1 0 0 0 1 1
−1 −2 2 0 −1 1




R1

R2

R−2
R3

R4

R5

 ,(6)

(7)
RTCg
PTOT

+
∑

solids and liquids i

Ci
Mi

ρi
= 1,

(8)

∂

∂t
(T (Af (σs + σg) +Agrσgr)) +

∂

∂z
(TAf (−Usσs + Ugσg))

=
∂

∂z

(
(Afkf +Agrkgr)

∂T

∂z
+AfβT

3 ∂T

∂z

)
+Af

∑
j

dHjRj + (Af +Agr)F,

where

(9)


R1

R2

R−2
R3

R4

R5

 =


k1rCCC(P − P1(T ))+

k2(P − P2(T ))+

k−2CSiO2(l)CSi

k3CSiO2(s)(T − TM )+

k4CSiC(P − P4(T ))+

k5CSiO2(l)CC

 .

Here we have denoted R = 8.314 J/molK as the gas constant, Mi the molar mass
of each species, and ρi the corresponding species density, assumed to be constant for
solids and liquids. Af and Agr are the cross-sectional surface areas of the pilot furnace
and graphite crucible, respectively, σs, σg, and σgr are the heat capacities in the solid
and liquid material, the gas, and the graphite crucible, kf and kgr are the effective
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thermal conductivity of material inside the pilot furnace and the graphite crucible,
with β a radiative constant associated with radiation between furnace particles, esti-
mated assuming black body radiation and a typical distance between solid particles of
1 mm. dHj is the rate of heat release for reaction j (and is negative for endothermic
reactions). F (z) is a function representing external heating into the graphite crucible
from the induction heater. For simplicity, in the model analysis in [20] this function
was taken to be F (z) = QH(hT − z), where Q is a scalar representing the heating
strength per unit volume, H is the Heaviside function, and the pilot furnace is being
heated up to some fixed height hT . In section 4.1 we will use this function to ease
the analysis of the resulting series solution. However, a different functional form of
F (z) could readily be used, and in particular in sections 4.2 and 4.3 our asymptotic
solutions require an invertible F (z). When a specific heating profile is needed in these
sections we will use the smooth function F (z) = Q

2 (1 + tanh(µ(hT − z))), which tends
to a multiple of the Heaviside function as µ → ∞. The kj in (9) are reaction con-
stants, and the Pj(T ) are partial pressure functions of temperature, which limit the
appropriate reactions. Note that rC represents the reactivity of carbon, which could
vary with different raw materials used and also during furnace operation. For sim-
plicity, in this model rC is taken to be a constant between zero and one. Similarly, for
simplicity, the contact surface is not considered in reactions R−2, R4, or R5, which are
between two liquids, a gas and a solid, and a liquid and a solid, respectively. Finally,
TM = 1996 K is the dimensional melting temperature of quartz [2]. Several of the
reaction rates in (9) are not smooth. As can be seen in Figure 7 of paper [20], for
such reactions the spatial domain is divided into regions where the reaction occurs
and where it does not occur. This is exploited in section 3 of this paper.

From now on we take Us = 0, since we consider behavior within the pilot furnace
experiment where material is not fed in to the top of the furnace. Our model has the
initial conditions

CC = c0, CSiC = 0, CSiO2(s) = c0α, CSiO2(l) = 0, CSi = 0, P =
PTOT

2
,

Ug = 0, T = 300, Cg =
PTOT

300R

(
1− c0

(
MC

ρC
+
MSiO2(s)

ρSiO2(s)
α

))
,(10)

at t = 0, where c0 = 38000 mol/m3 and α = 0.454 are measured from the experiment.
We also have the boundary conditions

Ug(0, t) = 0,
∂T (0, t)

∂z
= 0,

∂T (1, t)

∂z
= 0.(11)

Note there is no boundary condition for Ug(1, t) because gas is free to leave the top
of the furnace.

In [20] we performed numerical simulations of this model to replicate behavior in
the pilot furnace and conducted parameter sweeps to see the influence of various input
parameters on output metrics of the silicon yield, the SiO losses, and solid buildup.
As in [20], all numerical simulations in this paper are found using first order finite
difference schemes, with upwinding for convective fluxes and the timestep chosen to
obey the Courant–Friedrichs–Lewy condition. There is, however, much to be learned
by exploiting the relative sizes of the various parameters that are found in the model
to determine the asymptotic behavior. Many of the parameters in the model are not
known accurately but have been calibrated with industrial furnaces to give sensible
results from previous models (see the dynamic model [8] and SiMod [22]). Thus
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finding the general qualitative behavior when certain parameters are small or large
helps to understand the interplay of the chemical, thermal, and transport effects.

We choose to write the dimensionless model in terms of the timescale of the
melting reaction R3, τ = (k3T0)−1, where T0 = 1000 K is the typical temperature
difference between the top and bottom of the furnace. In the numerical simulations
shown in [20] we find that the concentrations of SiC, SiO2(l), and Si remain around
30 times smaller than the concentrations of C and SiO2(s). Also, the concentration
of gas is around 104 times smaller than the concentrations of C and SiO2(s). We thus
seek parameters ε and δ such that the concentrations of SiC, SiO2(l), and Si are O(ε),
and the concentration of gas is O(δ). A scale for ε emerges by considering a balance
between reactions R3 and R5. Liquid quartz is formed through R3 and then reacts
with C through R5 to form CO and SiO. We let ε be the ratio of the rate of R3 to R5

or ratio of the timescale of R5 to R3. We let δ be the ratio of time taken for the gas
to convect the height of the furnace to the timescale for R3. We thus have

ε =
k3T0
k5c0

=
1/k5c0
1/k3T0

, δ =
h/V

1/k3T0
,(12)

where h is the height of the furnace and V is a typical value of the magnitude of the
gas velocity. We have 0 < δ � ε � 1 and will consider the joint limits ε → 0 and
δ → 0, with δ/ε → 0. The limit ε → 0 corresponds to the reaction between carbon
and SiO2(l) being instantaneous when compared to the melting of SiO2(l), so that
as soon as quartz melts to liquid quartz it reacts with any available carbon. The
limit δ → 0 corresponds to instantaneous gas flow when compared with the melting of
quartz, but as δ/ε→ 0, this gas flow is also faster than the chemical timescale for R5.

We thus utilize the dimensionless scalings

CC = c0C̄C, CSiO2(s) = c0C̄SiO2(s), CSiC = εc0C̄SiC, CSiO2(l) = εc0C̄SiO2(l),

CSi = εc0C̄Si, Cg = δc0C̄g, T = (Tbottom − Ttop)T̄ + Ttop, t = τ t̄, z = hz̄,

Ug = V Ūg, P = PTOTP̄ , Pj = PTOTP̄j , σs = c0Cp,C σ̄s,

σg = δc0Cp,C σ̄g, F (z) = QF̄ (z̄),(13)

where Tbottom = 2400 K and Ttop = 1400 K are typical temperatures found at the
bottom and the top of the furnace, and Cp,C is the specific heat of carbon. Dropping
the overbar notation we have the dimensionless equations

∂

∂t



CC

εCSiC

CSiO2(s)

εCSiO2(l)

εCSi

δCg(1− P )
δCgP


+

∂

∂z



0
0
0
0
0

UgCg(1− P )
UgCgP



=



−2 0 0 0 0 −1
1 0 0 0 −1 0
0 0 0 −1 0 0
0 1 −1 1 0 −1
0 1 −1 0 2 0
1 0 0 0 1 1
−1 −2 2 0 −1 1




εr1
εr2
εr−2
r3
εr4
r5

 ,(14)
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g0

(
T +

Ttop
T0

)
Cg +mCCC + εmSiCCSiC +mSiO2(s)CSiO2(s) + εmSiO2(l)

+ CSiO2(l) + εmSiCSi = 1,(15)

∂

∂t

((
T +

Ttop
T0

)(
σs + δσg + σ∗gr

))
+

∂

∂z

((
T +

Ttop
T0

)
Ugσg

)(16)

= a
∂2T

∂z
+β∗

∂

∂z

((
Ttop
T0

+T

)3
∂T

∂z

)
+ε (γ1r1+γ2r2+γ−2r−2+γ4r4) +γ5r5+qF,

where 
r1
r2
r−2
r3
r4
r5

 =


χ1CC(P − P1(T ))+

χ2(P − P2(T ))+

χ−2CSiO2(l)CSi

CSiO2(s)(T − Tm)+

χ4CSiC(P − P4(T ))+

CSiO2(l)CC

 ,(17)

σs = CC+εCSiCCP,SiC/C+CSiO2(s)CP,SiO2(s)/C+εCSiO2(l)CP,SiO2(l)/C+εCSiCP,Si/C,
(18)

σg = Cg
(
(1− P )CP,CO/C + PCP,SiO/C

)
, g0 = δ

RT0c0
PTOT

, mX = c0
MX

ρX
.(19)

We have scaled the kinetic rates χj such that each is an order one constant, taking
a typical value rC = 0.2 [20] when choosing the appropriate scale for r1. Each variable
and parameter listed in the equations above is order one. g0 is an order one constant,
since RT0c0/PTOT is O(δ−1) with T0 := Tbottom−Ttop, as are the mX. We have used
the shorthand notation CP,X/C := CP,X/CP,C in the heat capacities σs and σg. Tm is
the dimensionless melting temperature of quartz. There is no heat release associated
with r3 in the model, so there is no γ3.

We have the dimensionless initial conditions (for 0 ≤ z ≤ 1)

CC = 1, CSiC = 0, CSiO2(s) = α, CSiO2(l) = 0, CSi = 0, P =
1

2
,

Ug = 0, T = −1.1, Cg =
PTOT

300R

(
1

c0
−
(
MC

ρC
+
MSiO2(s)

ρSiO2(s)
α

))
,(20)

at t = 0, with the dimensionless boundary conditions remaining the same as the
dimensional boundary conditions given in (11).

To understand the behavior of solutions to our model (14)–(20) we begin by con-
straining the temperature to be fixed, with a prescribed steady-state temperature
T (z) considered in section 3, and we neglect the energy equation (16). Although nei-
ther pilot or industrial furnaces operate with a steady-state temperature, this allows
us to focus on the chemical and gas transport dynamics and makes the analysis more
tractable. In section 4 we will return to the problem with time-variable temperature.
Although less analytical progress can then be made, the simplifications developed
allow for a reduced model to be identified.

3. Prescribed temperature asymptotics. We analyze the dimensionless
equations (14)–(15), but with a prescribed temperature profile T (z) instead of the
energy equation (16). Initial conditions (20) and boundary conditions (11) are used

D
ow

nl
oa

de
d 

04
/1

9/
18

 to
 1

29
.6

7.
18

5.
19

3.
 R

ed
is

tr
ib

ut
io

n 
su

bj
ec

t t
o 

SI
A

M
 li

ce
ns

e 
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.s

ia
m

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

ASYMPTOTIC ANALYSIS OF A SILICON FURNACE MODEL 1181

Fig. 2. Schematic of asymptotic regimes. Hashed regions correspond to early time and solid
regions to larger time. The blue region, where the temperature is below the melting point of quartz,
corresponds to the furnace charge. The red region, where melting of quartz occurs, corresponds to
the mixed cavity and crater region in the model.

for concentrations, partial pressure, and gas velocity. Where possible we will work
in terms of a general T (z), but any time a specific profile is used we will utilize the
piecewise linear profile T (z) = min(1, 1−z

1−h∗
T

). With this function the furnace is at

constant unitary temperature up to a dimensionless height h∗T = 0.544 and above
this height linearly decays to zero at the top of the furnace. This is to replicate the
experimental behavior, where the induction furnace creates a temperature gradient
by inputting more heat into the bottom of the furnace (see [20]).

There are different spatial regions in the problem, due to the behavior of the
melting reaction r3 = CSiO2(s)(T − Tm)+. In the lower, hotter part of the furnace
T > Tm and hence r3 = O(1). In the upper, colder region of the furnace T < Tm
and hence r3 = 0. These regions are separated by the interface given by the isotherm
T = Tm. With a prescribed temperature profile we do not consider any temperature
transient as it heats from cold, but start the process from the prescribed hot profile.
Hence the chemistry has a rapid transient period before getting near typical operating
conditions. There are thus four main regimes of behavior of the chemistry in height-
time space, which are shown in Figure 2.

There is a separation between the blue region, where the temperature is too cold
for solid quartz to melt, and the red region, where quartz melts. There is also a
separation between the early time regions (shown as hashed), where the pilot furnace
moves away from the initial conditions to dynamics more likely to be seen in the
industrial furnace, and the O(1) time regions (shown as solid). Since in all practical
situations Ug ≥ 0, and we have assumed no solid or liquid motion, we have that
information propagates upward in Figure 2 (so from Region II to Region I) as well
as rightward (from Region a to Region b). We now give details of the behavior in
each region found through expanding each variable in terms of the small parameter
ε. That is, for a variable Y we have Y = Y 0 + εY 1 +O(ε2). We begin by considering
Region II, since the gas produced in this region influences the dynamics in Region
I. We find analytic solutions in Regions IIa and IIb and, where appropriate, give
composite solutions that replicate both the inner and outer time behavior. We then
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1182 B. M. SLOMAN, C. P. PLEASE, AND R. A. VAN GORDER

examine the upper part of the furnace, which is Region I. In Region Ia we list the
leading order equations but find that the solid and liquid concentrations are solved
by the initial conditions. Hence the corresponding leading order equations arising in
Region Ib can be solved with these initial conditions, and analytic solutions are found
for all of Region I. Matching occurs between Regions I and II in terms of continuity of
the gas flux across the interface T = Tm. We give a summary of the main asymptotic
behavior in each region but do not include all the details. A summary of leading and
first order solutions is given in the appendix.

3.1. Region IIa—early time cavity and crater. We find that the appropri-
ate timescale is t = εt̂, where t̂ is an order one variable. With this rescaling we find
that the leading order equations from the matrix system (14) are at O(ε−1) and are
given by

1

ε

∂C0
C

∂t̂
= O(1),

1

ε

∂C0
SiO2(s)

∂t̂
= O(1),(21)

which have solutions C0
C = 1 and C0

SiO2(s) = α. We use these when finding the leading
order terms for the other variables. For the concentrations of SiC, SiO2(l), and Si we
have

∂C0
SiC

∂t̂
= O(ε),

∂C0
SiO2(l)

∂t̂
= α(T − Tm)− C0

SiO2(l) +O(ε),
∂C0

SiC

∂t̂
= O(ε).(22)

With the zero initial conditions we have C0
SiC = 0, C0

Si = 0, and

C0
SiO2(l) = α (T (z)− Tm)

(
1− e−t̂

)
= α (T (z)− Tm)

(
1− e−t/ε

)
.(23)

We can find the leading order gas flux U0
gC0

g and pressure P 0 from the equations

(24)
∂

∂z

(
U0
gC0

g(1− P 0)
)

= C0
SiO2(l) +O(ε),

∂

∂z

(
U0
gC0

gP
0
)

= C0
SiO2(l) +O(ε).

Utilising the no-flux boundary condition Ug(0, t̂) = 0, we can add the above equations
and integrate to find

(25) U0
gC0

g = 2α
(

1− e−t/ε
)∫ y=z

y=0

(T (y)− Tm) dy,

and hence P 0 = 1
2 . We can find C0

g from the reduced, leading order no-voids condition

(26) g0

(
T +

Ttop
T0

)
C0
g +mC +mSiO2(s)α+O(ε) = 1,

so that for prescribed T (z)

(27) C0
g =

1−mC −mSiO2(s)α

g0

(
T (z) +

Ttop

T0

) .

Thus the concentration of gas increases as the temperature decreases higher up in the
furnace. The leading order gas velocity U0

g can then be found using (25) and (27).
Note that on an even smaller O(δ) timescale different behavior would be found, with
the time derivative of C0

g(1 − P 0) and C0
gP

0 balancing with the convective flux and
reaction r05. However, the resulting wave-like behavior only describes the very fast
transient behavior of the gas flux and pressure and so is not discussed for the sake of
brevity.
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3.2. Region IIb—order one time crater and cavity. We next examine
behavior in the outer-in-time crater and cavity region. Here we have the order one
timescale t. The order one equations are found to be

∂C0
C

∂t
= −r05,

∂C0
SiO2(s)

∂t
= −r03,

0 = r03 − r05,
∂

∂z

(
U0
gC0

g(1− P 0)
)

= r05,
∂

∂z

(
U0
gC0

gP
0
)

= r05,(28)

which all have O(ε) corrections, and the no-voids equation is

(29) g0

(
T +

Ttop
T0

)
C0
g +mCC0

C +mSiO2(s)C
0
SiO2(s) = 1 +O(ε).

From the third equation in (28) we have a leading order balance between the melting
of quartz r03 and the production of CO and SiO gas from liquid quartz and carbon, r05.
This corresponds to a quasi-steady-state assumption, since the time rate of change
of liquid quartz is an order smaller than the reaction rates r3 and r5. This reaction
balance was the motivation for choosing ε = k3T0/k5c0 and scaling the concentrations
of SiC, SiO2(s), and Si to be O(ε) in section 2. We have the reaction rate r := r03 = r05
from this balance and find it is easiest to work with

(30) r := C0
SiO2(s)(T − Tm).

As the leading order terms for the concentrations of carbon and solid quartz in Region
IIa are the initial conditions, the solutions in Region IIb can be found to be

(31) C0
C = αe−(T−Tm)t + (1− α), C0

SiO2(s) = αe−(T−Tm)t.

In Figure 3 we compare these solutions with the numerical results for a simulation
with a fixed temperature profile, showing a good fit. We can find C0

SiO2(l) from the

balance between r03 and r05 to give

C0
SiO2(l) =

C0
SiO2(s)(T − Tm)

C0
C

=
(T − Tm)αe−(T−Tm)t

αe−(T−Tm)t + (1− α)
.(32)

0 1 2 3 4
0

0.2

0.4

0.6

0.8

1

Fig. 3. Dimensionless concentration of carbon, in blue, and solid quartz, in red, at height
z = 0.3. We compare numerical solutions of the full system with T (z) in solid lines to asymptotic
solution in dashed lines, with parameter values ε = 0.16, δ = 3.2× 10−4, and α = 0.45.
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1184 B. M. SLOMAN, C. P. PLEASE, AND R. A. VAN GORDER

Although this tends to zero as t increases, it does not satisfy the initial condition of
CSiO2(l) = 0. This is accounted for in section 3.1, where the early time behavior was
examined.

To find the gas flux we add the last two equations in (28) and integrate spatially,
applying the no-flux boundary condition U0

g (0, t) = 0, to give

U0
g (z, t)C0

g(z, t) = 2α

∫ y=z

y=0

e−(T (y)−Tm)t (T (y)− Tm) dy

= −2α
∂

∂t

∫ y=z

y=0

e−(T (y)−Tm)tdy.(33)

We can find the leading order pressure by integrating the last equation in (28) and
noting

U0
gC0

gP
0 =

1

2
U0
gC

0
g + g(t).(34)

The arbitrary function of time g(t) is zero from the no-flux boundary condition for
velocity, and since U0

gC0
g 6= 0 in general, we again have P 0 = 1

2 .
We can find the concentration of gas through (29), giving

C0
g =

1

g0

(
T +

Ttop

T0

) (1− (mC +mSiO2(s))αe
−(T−Tm)t −mC(1− α)

)
.(35)

Notice that although this is not a separable solution, we can decompose it as C0
g(z, t) =

X(z)Y (t, z) for

X(z) :=
1

g0

(
T +

Ttop

T0

) , Y (t, z) := 1− (mC +mSiO2(s))αe
−(T−Tm)t −mC(1− α).

(36)

Thus Y (0, z) = 1 −mSiO2(s)α −mC and Y (t, z) → 1 −mC(1 − α) as t → ∞. This
means that there is a saturation level for the gas concentration, which happens as the
concentrations of carbon and solid quartz tend toward their long time behavior.

If required, we could calculate the velocity from the solutions for the gas flux and
the gas concentration. For example, using our specific example temperature profile
T (z) = min(1, 1−z

1−h∗
T

), in the region 0 ≤ z ≤ h∗T where T (z) ≡ 1, we have

U0
g (z, t) = 2α

(1− Tm)e−(1−Tm)tz

C0
g(z, t)

.(37)

We can find composite asymptotic solutions valid for all time by combining our
inner-in-time and outer-in-time solutions. Letting yI denote an inner solution, yO an
outer solution, and yoverlap the overlap, we have that the composite solution yc is
given by yc = yI + yO − yoverlap. The composite solution for the concentration of
SiO2(l) is thus

C0
SiO2(l) = α(T − Tm)

[
e−(T−Tm)t

αe−(T−Tm)t + (1− α)
− e− tε

]
.(38)

Similarly for the gas flux we have

U0
g (z, t)C0

g(z, t) = 2α

∫ y=z

y=0

(T (y)− Tm)
(
e−(T (y)−Tm)t − e− tε

)
dy.(39)
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0 1 2 3 4
0

0.05

0.1

0.15

0.2

0 1 2 3 4
0

0.5

1

1.5

2

2.5

3

3.5
10 -5

Fig. 4. Comparison of early time, late time, and composite asymptotics, with numerics of the
full system with prescribed temperature profile at height z = 0.3. On the left is the concentration
of liquid quartz and on the right is the gas flux (both dimensionless). Parameter values used are
ε = 0.16, δ = 3.2× 10−4, α = 0.45, χ1 = 0.15, and χ2 = 0.25.

In Figure 4 we compare the early time, late time, and composite asymptotics with
numerics for the full system, for the concentration of liquid quartz and the gas flux.
The numerical and composite asymptotic curves match in long time, as the variables
go to zero. The difference between the curves is due to reactions r2 and r−2, which
do not appear in the leading order asymptotics.

The equations for the leading order concentrations of SiC and Si are

ε
∂C0

SiC

∂t
=εχ1

(
αe−(T−Tm)t+(1− α)

)(1

2
− P1

)+

−εχ4C0
SiC

(
1

2
− P4

)+

+O(ε2),(40)

ε
∂C0

Si

∂t
=εχ2

(
1

2
−P2

)+

−εχ−2
(
(T − Tm)αe−(T−Tm)t

αe−(T−Tm)t+(1−α)

)
C0

Si+2εχ4C0
SiC

(
1

2
−P4

)+

+O(ε2).

(41)

These, along with the the zero initial conditions (20), could be solved analytically
by first solving (40) and then substituting this into (41). In the typical temperature
range found in Region II we find P1 <

1
2 , but P2 and P4 can be smaller or larger than

1
2 , and so the different cases would need to be considered individually. We do not
include these cases here.

3.3. Region Ia—early time furnace charge. We now consider the upper
region in the furnace, which corresponds to the furnace charge. In this region T < Tm
so the solid quartz does not melt, and r3 ≡ 0. Hence CSiO2(s) = α for all time and we
now have seven equations for the remaining seven unknowns, being the concentrations
of C, SiC, SiO2(l), Si, and gas, the partial pressure P , and the gas flux Ug. We begin
with Region Ia, where we analyze the early time behavior. Using the same timescale as
in Region IIa, t = εt̂, we find the leading order equations for each variable are given by

1

ε

∂C0
C

∂t̂
= O(1),

∂C0
SiC

∂t̂
= O(ε),

∂C0
SiO2(l)

∂t̂
= −r05 +O(ε),

∂C0
Si

∂t̂
= O(ε),(42)

∂

∂z

(
U0
gC0

g(1− P 0)
)

= r05 +O(ε),
∂

∂z

(
U0
gC0

gP
0
)

= r05 +O(ε),(43)

g0

(
T +

Ttop
T0

)
C0
g +mCC0

C +mSiO2(s)α = 1 +O(ε).(44)
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Clearly C0
C = 1, C0

SiC = 0, and C0
Si = 0. Since r05 = C0

CC0
SiO2(l) = C0

SiO2(l) we find

the third equation in (42) leads to C0
SiO2(l) = 0, since the preexponential factor is

zero from the initial condition. Thus the leading order concentrations of the solid and
liquid species are given by their initial conditions, and they do not alter significantly
in the early time. When analyzing their dynamics in Region Ib we will use initial
conditions for the whole model (20). Similarly, since C0

C = 1 and C0
SiO2(s) = α, C0

g is

constant, given by (44). We then find that U0
gC0

g and P 0 are both functions of time
only, since r05 = 0. We can find these functions by imposing continuity of the gas
flux and pressure across the interface z = zm (which is z : T (z) = Tm) and utilizing
solutions from Region IIa below. Hence P 0 = 1

2 and

(45) U0
gC0

g = 2α
(

1− e−t/ε
)∫ y=zm

y=0

(T (y)− Tm) dy,

where we have used the gas flux at z = zm from (25).

3.4. Region Ib—order one time furnace charge. We now consider order
one time behavior in the upper furnace, where T < Tm. We find the leading order
equations for the solid and liquid concentrations are

∂C0
C

∂t
= −r05 +O(ε), ε

∂C0
SiC

∂t
= εr01 − εr04 +O(ε2), 0 = −r05 +O(ε),

ε
∂C0

Si

∂t
= εr02 − εr0−2 + εr04 +O(ε2),(46)

along with the gas flux equations (43) and the reduced no-voids equation (44) from
Region Ia. Since r05 = 0, then C0

C = 1 and the partial pressure and gas flux are again
given by imposing continuity from below, this time with Region IIb, to give P 0 = 1

2 ,
and

U0
gC0

g = 2α

∫ y=zm

y=0

e−(T (y)−Tm)t (T (y)− Tm) dy,(47)

using (33). Also, since r05 = 0 and r05 = C0
CC0

SiO2(l), then C0
SiO2(l) = 0, and hence

r0−2 = χ−2C0
SiO2(l)C

0
Si = 0. We now examine the O(ε) equations for the concentrations

of solid and liquid species,

∂C1
C

∂t
= −2r01 − r15 +O(ε),

∂C0
SiC

∂t
= r01 − r04 +O(ε), 0 = r02 − r15 +O(ε),

∂C0
Si

∂t
= r02 + 2r04 +O(ε).(48)

There is a balance between r2 and r5, so that the liquid quartz, which condenses
through r2, reacts with the available carbon through r5. Since reaction r5 is limited
by the amount of liquid quartz available, it is O(ε) in the upper furnace, which is
much smaller than the O(1) reaction in the lower furnace, in which the available
liquid quartz is provided through reaction r3, the melting of solid quartz. Indeed,
to order one no reactions take place in the furnace charge and the chemical species
remain in their initial state. To find the O(ε) changes to the chemical species we
utilize the balance r02 = r15 and solutions C0

C = 1 and P 0 = 1
2 . In addition, when

T < Tm we have that P4 >
1
2 , but P1, P2 <

1
2 (see the equilibrium partial pressure

diagram in [17]). Hence, we have that
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Fig. 5. Comparison of numerics and asymptotics at z = 0.9. On the left are plots of the di-
mensionless concentration of carbon, showing numerics in blue and asympotics in red. On the right
are plots of the dimensionless concentrations of SiC (in blue) and Si (in red), showing numerics
in solid and asympotics in dashed. There is agreement to O(ε) but noticeable O(ε2) disagreement,
which would be reduced by considering more terms. Notice that the scale for the left plot is be-
tween 0.7 and 1, so there is an approximate 5% error for CC, and the scale on the right plot is
only up to 0.1, so the absolute error for CSiC and CSi is also small, since these are order one
dimensionless variables. Parameter values used are ε = 0.16, δ = 3.2 × 10−4, χ1 = 0.15, and
χ2 = 0.25.

∂C1
C

∂t
=−2χ1

(
1

2
−P1

)
−χ2

(
1

2
−P2

)
,
∂C0

SiC

∂t
=χ1

(
1

2
− P1

)
,
∂C0

Si

∂t
=χ2

(
1

2
−P2

)
.(49)

In section 3.3 we calculated CC only to first order, but we can easily find that in
Region Ia C1

C = 0. Hence we can use the zero Dirichlet condition for C1
C in Region

Ib, as well as for C0
SiC and C0

Si, to find

C1
C=−

(
2χ1

(
1

2
−P1

)
+χ2

(
1

2
−P2

))
t, C0

SiC=χ1

(
1

2
− P1

)
t, C0

Si=χ2

(
1

2
− P2

)
t.(50)

We show comparisons of these solutions with numerics in Figure 5. We have
that carbon is being lost to gas through reaction r5 (reacting with the liquid quartz
produced through r2) and to silicon carbide through reaction r1. The production
of silicon through r2 is equal to the loss of carbon through r5, since all the avail-
able liquid quartz reacts with carbon (to leading order). The dynamics in the fur-
nace charge are driven by the behavior of convecting SiO molecules, which can con-
dense through r2, leading to silicon production, react with carbon, through r1 to
produce silicon carbide, or convect out of the furnace unreacted. The parameter
λ = χ2/χ1 determines the relative importance of reactions r1 and r2. The higher λ
is, the more silicon will be produced. The lower λ is, the more silicon carbide will
build up.

We now find the O(ε) corrections to the gas flux and the pressure. Adding the
last two rows in (14) gives an equation for the gas flux, which we treat as one variable
(so that UgCg = U0

gC0
g + εU1

gC1
g +O(ε2)). We have that U0

gC0
g = f(t), given by (47),

and find that

ε
∂

∂z

(
U1
gC1

g

)
= −2εr02 + 2εr15 +O(ε2).(51)

By the balance r02 = r15 in (48) we have that U1
gC1

g is also a function of time only,
which could be given from matching with the region below, Region IIb, if we desired.
The O(ε) equation for P 1 is
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ε
∂

∂z

(
U0
gC0

gP
1 + U1

gC1
gP

0
)

= −εr01 − 2εr02 + εr15 +O(ε2),(52)

where we have noted that r0−2 = r04 = 0. Using r15 = r02, and since U0
gC0

g = f(t) and

U1
gC1

gP
0 are both spatially independent, we have

f(t)
∂P 1

∂z
= −

(
χ1

(
1

2
− P1(T (z))

)
+ χ2

(
1

2
− P2(T (z))

))
.(53)

This implies

P 1 =
A(z)

f(t)
+ b(t),(54)

where A(z) is a decreasing function in z and b(t) is an arbitrary function of time. Since
f(t)→ 0 as t→∞ this form of P 1 breaks down after a long time. The timescale on
which P 1 = O(ε−1), thus breaking down the asymptotic expansion, is the timescale
on which f(t) = U0

gC0
g given by (47) is O(ε) (assuming A(z) = O(1)). Assuming

M/2α := max|T ′(y)| is an order one constant and letting x := T (y)− Tm, we have

|f(t)| ≤M

∣∣∣∣∣
∫ 1−Tm

x=0

xe−xtdx

∣∣∣∣∣ ≤Mt−2,(55)

and so this happens for t = O(ε−1/2). In numerical simulations we find that P → P2

in long time behavior, so that the condensation of SiO stops, but the reaction r1 with
carbon continues (as P2 > P1 [17]).

By prescribing a temperature profile T (z) we have identified two spatial regions—a
lower crater and cavity region, in which there is a balance between reactions r3 and r5,
and an upper furnace charge region, in which chemical changes occur in smaller O(ε)
quantities and there is a balance between reactions r2 and r5. By expanding variables
in terms of the small parameter ε we have found analytic solutions throughout the
furnace, with composite solutions for early time and order one time behavior in Region
II where appropriate. Information propagates upward from the crater and cavity to
the charge through the gas flux—an effect that we have quantified. In the charge
there is competition between reactions r1, producing SiC, and r2, producing Si.

4. Full model asymptotics. We now consider asymptotics of the full model,
comprising (14)–(16), initial conditions (20), and boundary conditions (11). We utilize
the balances developed in section 3 and extend our analysis to consider a spatially
and temporally varying temperature T (z, t). In the pilot furnace experiments we
see that the interface between the furnace charge and the cavity region rises as the
furnace heats up. We would thus expect to have regions similar to Regions I and
II as in Figure 2, except that the interface z = zm moves with time. Considering
the full model with varying temperature is thus important, because it captures this
rising interface. In this section we reduce our model to two coupled equations for
temperature and the concentration of solid quartz, which are dependent on three
parameters. This simplified coupled model captures much of the qualitative behavior
of the full model, which has 9 variables and over 30 parameters. We analyze early
time behavior, before reactions occur significantly, and consider the limit of small
diffusion. We also comment on the joint limits of small diffusion and small external
heating.

We consider leading order terms in the conservation of energy equation (16) in the
limit ε→ 0 and δ/ε→ 0. The superscript notation 0 used in section 3 is dropped, with
the assumption that all variables used to determine the simplified system are O(1).
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Although there are different equations in Regions I and II in section 3, the changes in
Region II are of higher order than in the other regions, so our leading order equations
capture these effects primarily. To O(1) no chemical changes occur in the top of the
furnace, but reactions and chemical transformations happen in the base. There is
a balance between reactions r3 and r5 in the furnace base, so we integrate the first
two equations in (28) to get the algebraic relation CC = CSiO2(s) + (1 − α). Note
that this does not hold in the top of the furnace, where carbon slowly decays but the
concentration of solid quartz remains constant. However, this is an O(ε) effect only.
Noting that to leading order P = 1

2 , we then have

σs = CSiO2(s)

(
1+CP,SiO2(s)/C

)
+(1−α)+O(ε), σg=

1

2
Cg
(
CP,CO/C+CP,SiO/C

)
+O(ε)

(56)

as leading order terms to (18) and (19). Combining these with the leading order terms
in (16), and using r = CSiO2(s)(T − Tm)+ as the functional form for r := r3 = r5, we
obtain the leading order equations, with O(ε) corrections,

∂

∂t

((
Ttop
T0

+ T

)(
σs + σ∗gr

))
+

∂

∂z

((
Ttop
T0

+ T

)
Ugσg

2

)

= a
∂T 2

∂z2
+ β∗

∂

∂z

((
Ttop
T0

+ T

)3
∂T

∂z

)
+ γ5CSiO2(s)(T − Tm)+ + qF (z),(57)

∂

∂z
(UgCg) = 2CSiO2(s)(T − Tm)+,

∂CSiO2(s)

∂t
= −CSiO2(s)(T − Tm)+,(58)

g0

(
T +

Ttop
T0

)
Cg + CSiO2(s)(mC +mSiO2(s)) + (1− α)mC = 1,(59)

along with boundary and initial conditions

∂T (0, t)

∂z
= 0 =

∂T (1, t)

∂z
, T (z, 0) = Ta = −1.1, Ug(0, t) = 0, CSiO2(s)(z, 0) = α.

(60)

We further simplify our system by neglecting radiation, since β∗(
Ttop
T0

+ T )3/a ∼ 0.27
at the base, and thermal convection from (57). Although these are both order one
effects, we seek to get the simplest model which represents the main physical and
chemical effects, thus making the analysis more tractable. We thus replace (57) with

∂

∂t

((
Ttop
T0

+ T

)(
CSiO2(s)

(
1 + CP,SiO2(s)/C

)
+ (1− α) + σ∗gr

))
= a

∂T 2

∂z2
+ γ5CSiO2(s)(T − Tm)+ + qF (z).(61)

The gas flux equation, which is the first in (58), decouples and we are left with the
system (61) and the second equation in (58) to be solved for the temperature and
concentration of solid quartz. This is still quite complex, so we make an additional
approximation. Since the model assumes a constant thermal conductivity, it is not
unreasonable to replace the varying heat capacity with a constant heat capacity. We
take this to be the average of the minimum and maximum values of the heat capacity,
that is,
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σ =
α

2

(
1 + CP,SiO2(s)/C

)
+ (1− α) + σ∗gr.(62)

We note that γ5 is negative [20], so for clarity we use the notation γ := −γ5. This
give the system

σ
∂T

∂t
= a

∂T 2

∂z2
− γCSiO2(s)(T − Tm)+ + qF (z),

∂CSiO2(s)

∂t
= −CSiO2(s)(T − Tm)+,

(63)

∂T (0, t)

∂z
= 0 =

∂T (1, t)

∂z
, T (z, 0) = Ta = −1.1, CSiO2(s)(z, 0) = α.(64)

We have the furnace heating up from cold due to a wall source term F (z), up to a
time when the temperature reaches the melting point of quartz, Tm, in the base of the
furnace. Then solid quartz melts to form liquid quartz, at a rate r3 = CSiO2(s)(T −
Tm)+. This melting does not release any heat in our full model, but we have a
reaction balance between the reactions r3 and r5, in which carbon reacts with the
newly formed liquid quartz to produce gaseous CO and SiO. This pair of reactions
is highly endothermic, taking in heat from the surroundings. Thus, energy needs to
be input from the walls in order for the carbon and quartz to react, but since this
reaction is endothermic it slows down the rate of temperature increase.

In order to write this system in a cleaner mathematical form, we choose to rescale
time to balance with the endothermic heat of reaction, so we introduce the scalings

T = Tm + T̂ (Tm − Ta), CSiO2(s) = αĈ, t =
σ

γα
t̂.(65)

Dropping the hat notation we have the system

∂T

∂t
= K

∂2T

∂z2
− CT+ + ωF (z),(66)

∂C

∂t
= −bCT+,(67)

with initial and boundary conditions

T (z, 0) = −1, C(z, 0) = 1,
∂T (0, t)

∂z
= 0 =

∂T (1, t)

∂z
.(68)

The three dimensionless parameters are written in terms of previous dimensionless
parameters as

K =
a

γα
, b =

(T ∗m − Ta)σ

γα
, ω =

q

(T ∗m − Ta)γα
.(69)

Typical parameter sizes are K = 0.01, b = 0.3, and ω = 0.15. We will use
these values throughout this section unless otherwise stated. In Figure 6 we show
plots comparing the numerical solutions of this simplified system with the full system
presented in section 1. In the full system heat equation (16) the heat capacity can
vary, so for a fair comparison we restrict the heat capacity in the time derivative of
the full numerics to be the constant σ from (62). We could alternatively have kept a
varying heat capacity in the simplified system, but this would make the asymptotic
analysis more difficult. The heat capacity of the gas in the spatial derivative of
(16) is still allowed to vary, since this is not included in the simplified model. The
temperatures of the two systems match well for the first 40 min in the base of the
furnace, but the simplified numerics become hotter in the base after this. This is
because thermal convection and radiation, which transfer heat from the base to the
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Fig. 6. Comparison of numerics of the full system (11), (14)–(20) (with a constant heat capac-
ity) in solid lines and numerics for the simplified system (66)–(68) in dotted lines. On the left are
plots of temperature and on the rights are plots of CSiO2(s) (both dimensional). Parameter values

used are ε = 0.16, δ = 3.2× 10−4, and α = 0.45.

top of the furnace, are present in the full model but not in the simplified model. The
effect of this is to produce more SiO2(s) in the base in the simplified model. Also,
the exothermic heat sources from reactions r1 and r2 are present in the full model
only, adding to the discrepancy of the temperature in the upper furnace. However,
despite these differences, the overall qualitative behavior is similar between the two
models. We have the base of the furnace heating up faster than the top and, upon
reaching a critical temperature, solid quartz melting then reacting to form gas. It is
thus instructive to consider this simplified model to develop understanding as to the
qualitative effects in the pilot furnace.

4.1. Early time. For early time the temperature is not hot enough for the
reaction to take place, meaning no energy is consumed by the reaction. Taking the
heat source from the wall to be the step function F (z) = H(h∗T − z) in this case, for
ease of analysis, we have

∂T

∂t
= K

∂2T

∂z2
+ ωH(h∗T − z),(70)

with initial condition and boundary conditions

T (z, 0) = −1,
∂T (0, t)

∂z
=
∂T (1, t)

∂z
= 0.(71)

We can find a series solution to this problem as

T (z, t) = Ta + ωh∗T t+
2ω

K

∞∑
n=1

sin(nπh∗T )

n3π3

(
1− exp(−Kn2π2t)

)
cos(nπz).(72)

In Figure 7 we compare this solution to numerics of the system (66)–(68). There
is good agreement in the early time preheating region, then the solutions diverge when
T > 0, where the endothermic reaction occurs.

4.2. Small diffusion limit. In Figure 8 we show contour plots for T and C
for the cases K = 0.01 and K = 0, with b = 0.3 and ω = 0.15 in each case. When
there is no diffusion, so K = 0, we see a sharp interface between a preheating region
in the upper left of the (z, t)-plane and a reaction zone in the lower right of the
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Fig. 7. Comparison of analytical solution (72) with numerics. On the left is the dimensionless
temperature for fixed height z = 0.3 and on the right are spatial profiles at different times, with the
analytic solution in dotted lines and numerics in solid lines.
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Fig. 8. Contour plots for dimensionless T (left) and C (right), in the cases K = 0.01 (top)
and K = 0 (bottom), with b = 0.3 and ω = 0.15 in all cases.

plane. Throughout this section and section 4.3 we use the smooth heating function
F (z) = 1

2 (1 + tanh(10(h∗T − z))), with h∗T = 0.544, in numerical simulations and
asymptotic solutions shown in figures.

A schematic of the two regions is given in Figure 9. Region A is the preheating
region, where the temperature is too cold for the reaction to take place. In Region
B the temperature is positive, so the chemical reacts. Let z = s(t) be defined as the
interface between these regions. We plot numerical solutions for a fixed height z = 0.3
in Figure 10, indicating where these regions occur. A third region, Region C, occurs
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Fig. 9. Schematic of the different regions in the variable temperature problem. In Region A the
temperature is too cold for the reaction to take place, while in Region B the chemical reacts. These
regions are separated by the interface z = s(t), given by the isotherm T = 0.

0 20 40 60
-1

0

1

2 Region A

Region B

Region C

Fig. 10. Numerical simulations of dimensionless T and C from the system (66)–(68), displayed
for fixed height z = 0.3. Region A is to the left of the dashed line, Region B is between the dashed
and the dot-dashed lines, and Region C is to the right of the dot-dashed line. The dashed line has
label z = s(t), because it is showing the time for which there is a transition between Regions A and
B for the given height z = 0.3. The dot-dashed line is in a possible, illustrative location. Parameter
values used are K = 0.01, ω = 0.15, and b = 0.3.

where all the chemical is nearly used up and the temperature increases linearly in
the graphite crucible due to the heat source from the wall. We are not interested in
Region C in this paper, since it corresponds to all the solid material being used up in
the furnace, and the pilot furnace experiments do not run for long enough for this to
be observed. Unlike the sharp interface between Regions A and B at z = s(t) (shown
by the dashed line), there is no sharp interface between Regions B and C; however,
we have put an interface in (shown by the dot-dashed line) to illustrate a possible
location to distinguish between the regions.

Our model has the small parameter K. We treat ω and b as order one constants

and expand in terms ofK, with 0 < K � 1, so that we write TA/B = T
A/B
0 +KT

A/B
1 +

O(K2), CA/B = C
A/B
0 +KC

A/B
1 +O(K2), and s(t) = s0(t) +Ks1(t) +O(K2), where

TA/B and CA/B refer to T and C in Regions A and B, respectively. The first order
equations correspond to the limit of zero diffusion. In this case, the spatial dependency
for the problem comes through the general heating source term F (z), which we take
to be order one and hotter at the base than at the top.
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In Region A we have the system at leading order

∂TA0
∂t

= ωF (z)+O(K),
∂CA0
∂t

=O(K), TA0 (z, 0)=− 1+O(K), CA0 (z, 0)=1+O(K),

(73)

which has the solution

TA0 (z, t) = −1 + ωF (z)t, CA0 (z, t) = 1.(74)

We find that CA ≡ 1 and that the higher order equations for temperature are given by

∂TAn
∂t

=
∂2TAn−1
∂z2

, n ≥ 1.(75)

Thus we have the following expansion in K for temperature in Region A:

TA(z, t) = −1 + ωF (z)t+ ω

∞∑
n=1

KnF (2n)(z)
tn+1

(n+ 1)!
.(76)

To find the coefficients in the expansion of s(t) we note that the curve z = s(t) is
given by

TA(s(t), t) = 0.(77)

Hence

0 = TA(s0(t) +Ks1(t) + . . . , t)

= TA(s0(t), t) + (Ks1(t) + · · · )∂T
A

∂z
(s0(t), t) + · · ·

= TA0 (s0(t), t) +K

(
TA1 (s0(t), t) + s1(t)

∂TA0
∂z

(s0(t), t)

)
+K2

(
TA2 (s0(t), t) + s1(t)

∂TA1
∂z

(s0(t), t) + s2(t)
∂TA0
∂z

(s0(t), t)

+
1

2
s1(t)2

∂2TA0
∂z2

(s0(t), t)

)
+O(K3).(78)

Looking at leading order we get

O(1) : s0(t) = F−1
(

1

ωt

)
,(79)

which requires that F be invertible. At next order we get

O(K) : s1(t) = −1

2

F ′′(s0(t))

F ′(s0(t))
t,(80)

and then looking at terms quadratic in K we find

O(K2) : s2(t) =

(
F ′′(s0(t))F ′′′(s0(t))

4(F ′(s0(t)))2
− F IV (s0(t))

6F ′(s0(t))
− (F ′′(s0(t)))3

8(F ′(s0(t)))3

)
t2.(81)

This iterative process can be continued to find the correction for s(t) to any order of
K, if desired.
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In Region B we have obtained the leading order equations,

∂TB0
∂t

= −CB0 TB0 + ωF (z) +O(K),
∂CB0
∂t

= −bCB0 TB0 +O(K),(82)

with the boundary conditions

TB0 (s0(t), t) = O(K), CB0 (s0(t), t) = 1 +O(K),(83)

which we can write as

TB0 = 0 and CB0 = 1 on t =
1

ωF (z)
.(84)

We can write the equations in (82) as

∂

∂t

(
TB0 −

1

b
CB0

)
= ωF (z),

∂CB0
∂t

= −bCB0 TB0 .(85)

Integrating the first equation we get the relation

TB0 =
1

b
(CB0 − 1)− 1 + ωF (z)t,(86)

which can be substituted into the second equation to get the ODE

∂CB0
∂t

= −(CB0 )2 + CB0 (1 + b− bωF (z)t) .(87)

Equation (87), along with the boundary condition in (84), has the solution

CB0 (z, t) =
exp

(
− 2+b

2ωF (z) + (b+ 1) t− bωF (z)
2 t2

)
1 +

√
π

2bωF (z) exp
(

1
2bωF (z)

)[
erf

(
1√

2bωF (z)

)
+ erf

(
bωF (z)t−b−1√

2bωF (z)

)] ,
(88)

and hence the temperature is given by

TB0 (z, t)

(89)

= −1−1

b
+ωF (z)t+

exp
(
− 2+b

2ωF (z) + (b+ 1) t− bωF (z)
2 t2

)
b+

√
πb

2ωF (z) exp
(

1
2bωF (z)

)[
erf

(
1√

2bωF (z)

)
+erf

(
bωF (z)t−b−1√

2bωF (z)

)] .
The O(K) equations are solvable but require tedious calculations, especially to deter-

mine the required
∂2TB0
∂z2 , so we do not include the functional form of solutions here,

but instead give solutions in integral form in the appendix.
In Figure 11 we compare the leading order asymptotic solutions with the numer-

ical results of the simplified system, at a fixed height in the bottom of the furnace. In
Figure 12 we show spatial comparisons for different fixed times. We see that the first
order asymptotics capture the main behavior of the numerics at the base but are off
by a small error, which we expect would be corrected by finding higher order terms to
account for the role of thermal diffusion. The temperature at the top of the furnace
is not captured by the leading order asymptotics, since this does not include diffusion
and the chosen heat source is close to zero here.

D
ow

nl
oa

de
d 

04
/1

9/
18

 to
 1

29
.6

7.
18

5.
19

3.
 R

ed
is

tr
ib

ut
io

n 
su

bj
ec

t t
o 

SI
A

M
 li

ce
ns

e 
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.s

ia
m

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

1196 B. M. SLOMAN, C. P. PLEASE, AND R. A. VAN GORDER
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Fig. 11. Comparison of first order asymptotics, shown in dotted lines, and numerics of the
simplified system (66)–(68), shown in solid lines, at height z = 0.3 for the dimensionless temperature,
concentration, and time taken to reach the interface between Regions A and B. Parameter values
used are K = 0.01, ω = 0.15, and b = 0.3.
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Fig. 12. Comparison of asymptotics, shown in dotted lines, and numerics of the simplified
system (66)–(68), shown in solid lines, for the dimensional temperature (left) and concentration
(right). Since the smooth heating source was used the simplified numerics are different from those
in Figure 6, which use a Heaviside function. Parameter values used are K = 0.01, ω = 0.15, and
b = 0.3.

4.3. Small heating limit. We can also consider the case where ω is also a
small parameter, with 0 < K � ω � 1. Here the heat absorbed by the endothermic
reaction between the melted quartz and the carbon is larger than the heat input from
the electrode or the induction furnace, but the heat transfer from this source term
dominates over diffusion as the main heating mechanism. Asymptotic analysis can be
performed with K = O(ω2) and considering the limit ω → 0. We will not give the
details of this analysis here but find behavior in Region A similar to that discussed
in the small diffusion limit in section 4.2. The chemical C remains unreacted and
the temperature increases due to the heat source F (z), with spatial variation again
coming in from derivatives of F (z). The interface z = s(t) can be determined using
the same method employed to find (79)–(81), and similar functional forms are found,
with the leading order location of the interface being given by the heat source F (z).
In Region B the concentration reacts away, with the O(1) changes found being larger
than the O(ω) changes in temperature. Since the temperature is small, the dominant
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balance is between the heating and the endothermic reaction. Thus the whole problem
is heat controlled and the temperature in the furnace changes to balance the energy
input. However, the leading order solution for temperature in Region B blows up in
finite time, as temperature changes increase. This issue does not occur in the small
diffusion limit in section 4.2, where ω is treated as an O(1) parameter.

By considering the full model we have reduced the number of equations to a sim-
plified system, which captures the coupled evolution of temperature and concentration
of solid quartz in the furnace. This model has two regions of interest: the preheating
Region A and the reaction zone Region B. An analytic series solution was found for
Region A and the simplified model was considered in the limit of small diffusion, and
a small heat source. When diffusion is small, the location of the interface between
Regions A and B is determined to leading order by the functional form of the heating
source. When the parameter ω is also considered to be small, then the temperature is
small in Region B, and the main balance in the problem is between the energy input
from the induction furnace and the energy absorbed by the endothermic reaction.
Numerical simulations of the simplified model compare well with the full model, so
that the simplifications discussed will be useful for future models.

5. Crust formation. We are particularly interested in furnace crust forma-
tion, since this slows down the industrials operation and requires “stoking.” General
insights into this crust can be found from the reaction pathways in (1)–(5), with addi-
tional understanding from the analysis of the dimensionless equations with prescribed
temperature profile in section 3 and the full model in section 4.

The composition of furnace crust is not well understood [17], and so as a proxy
we consider the volume fraction of solid and liquid material, from here on called the
solid volume fraction θS . This is discussed in more detail in [20]. Note that liquid
quartz is highly viscous and can clog up pores in the furnace. Although liquid silicon
is less viscous, we include it in the definition for simplicity. We can look at whether
the time rate of change of θS is positive or negative in the upper part of the furnace,
to determine if crust is building up. θS is defined as

θS =
∑

solids and liquids i

Mi

ρi
Ci(90)

for dimensional Ci, so taking a time derivative we can substitute in the reaction rates
from the matrix (6). We can make progress even if we do not define functional forms
of the reaction rates or the associated parameter values. This is helpful, since you can
still study crust formation regardless of the functional forms chosen. We thus refer to
the rates as Rj , as described in (1)–(5). Note that these are dimensional variables. In
the upper part of the furnace, where the temperature is too cold for quartz to melt,
we impose R3 = 0 to get

∂θS
∂t

=
MC

ρC
(−2R1 −R5) +

MSiC

ρSiC
(R1 −R4) +

MSiO2(l)

ρSiO2(l)
(R2 −R−2 −R5)

+
MSi

ρSi
(R2 −R−2 −R4).(91)

In the top of the furnace carbon reacts with the available SiO2(l), which is produced
from the condensation reaction R2. Since we expect quantities of Si and SiO2(l) to be
small compared to the amount of carbon, we can write R−2 � R5 and R5 = R2. If
we further assume a functional dependence of R4 on (P − P4)

+
, as done in (9), then
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R4 = 0 in the upper part of the furnace, because the partial pressure of SiO is too
low. With these assumptions, we can simplify (91) to

∂θS
∂t

=

(
MSiC

ρSiC
− 2

MC

ρC

)
R1 +

(
MSi

ρSi
− MC

ρC

)
R2.(92)

The molar masses are known constants and can be found with Outokumpu HSC
Chemistry for Windows, version 4.0. We take the density of carbon, silicon carbide,
and silicon from [10], [14, p. 1086], and [9], respectively. With this data, we have

MC

ρC
= 5.298× 10−6,

MSiC

ρSiC
= 1.249× 10−5,

MSi

ρSi
= 1.206× 10−5.(93)

This means that ∂θS
∂t > 0, and as such we will see a buildup of solid in our model. This

corresponds in turn to crust formation, regardless of the functional form of reaction
rates R1, R2, and R5, and regardless of how large the kinetic parameters are. Notice
though that the sign of MSiC

ρSiC
− 2MC

ρC
is quite sensitive to the data used in [9] and

[10]. A decrease in the value of ρC by 15% or an increase in the value of ρSiC by 18%
would change the sign, and it would not then be true that solid always builds up.

We can also incorporate the solutions from section 3, with a prescribed tempera-
ture profile T (z). With these we find

θS = mC + αmSiO2(s)

+ ε

[
χ1

(
1

2
− P1

)
(mSiC − 2mC) + χ2

(
1

2
− P2

)
(mSi −mC)

]
t+O(ε2)(94)

and so can quantify how the crust grows. Taking a spatial partial derivative and using
the chain rule, we see

∂θS
∂z

= −ε
[
χ1
dP1

dT
(mSiC − 2mC) + χ2

dP2

dT
(mSi −mC)

]
dT

dz
t+O(ε2).(95)

Since dP1

dT ,
dP2

dT > 0 (see the equilibrium partial pressures figure in [17]) and dT
dz < 0

(because of the temperature gradient in the furnace) then

∂θS
∂z

> 0.(96)

Hence, the solid volume fraction increases with height in the furnace, according to
this model, and the charge is most porous at the lower interface with the gas cavity.

In section 4 the analysis did not consider solid buildup in the upper furnace,
since this is an O(ε) effect when compared to the O(1) changes taking place in the
lower, hotter region. However, we tracked the location of the interface at the base of
the charge through the isotherm T = 0 (or T=1996 K in dimensional units). This
position is largely driven by the external heat source, since diffusion effects are small.
Since temperature remains monotone throughout, assuming a monotone heat source
F , then to leading order r1 and r2 increase with furnace height and thus the rate of
crust increase in (92) will increase as well.

6. Discussion. We have investigated asymptotic limits of the silicon furnace
model developed in [20], extending the analysis that was undertaken through numeri-
cal simulations in that paper. Natural small parameters are the ratio of the timescale
for the reaction between carbon and liquid quartz to the timescale for the melting
of quartz, and the ratio of timescale of gas advection to the timescale of the melting
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of quartz. With appropriate scalings for the concentrations we have been able to
determine the leading order chemical behavior for different spatial regions in the fur-
nace, when a prescribed temperature is imposed in the model. In Region II we find
the dominant behavior is solid quartz melting to liquid quartz which then reacts with
the available carbon particles to form gaseous CO and SiO. In Region I this SiO gas
condenses into silicon and liquid quartz and also reacts with carbon to form silicon
carbide and CO. This competition between reactions, determining how much SiC and
Si is produced, is represented in the size of the parameter λ = χ2/χ1. We have also
been able to capture early time behavior in these regions, where the variables move
from the initial conditions to typical furnace behavior.

In section 4 we considered asymptotics of the full model with temperature allowed
to vary in time. Through systematic reductions we have derived a simplified system
of two coupled equations for temperature and the concentration of solid quartz, which
depends on three parameters, 10 times fewer than the number used in the full model.
These three parameters represent the heating from the external source, the thermal
diffusion, and the rate of melting of solid quartz. Numerical simulations of the simpli-
fied system compare well the full model, showing the same qualitative behavior. We
find asymptotic solutions to the reduced system, treating the diffusivity, K, as a small
parameter. The leading order solutions, where no diffusion occurs, are representative
of the behavior in the reaction zone. This suggests that the dominant heat transfer
mechanisms are the energy input from the induction furnace into the pilot furnace,
and the heat absorption of the endothermic reaction between carbon and quartz. The
pilot furnace is most thermally conductive along the graphite walls, since conduction
between solid particles is relatively small. In an industrial furnace the subdominance
of diffusion is likely to be even more pronounced, since energy is input directly from
the electrodes.

By examining crust formation in section 5, we found crust builds up in this
model regardless of the functional forms or kinetic parameters of reaction rates R1

and R2. However, the model assumes that there is no solid or liquid motion and
that everywhere in the furnace there is a mixture of solid, liquid, and gas. In practice
liquid silicon is inviscid and so will drip to the crater when produced. This would have
an impact on crust formation, as silicon would not contribute to the solid fraction in
the upper furnace, as it does in (92). In addition, the porosity will become so low at
the bottom of the charge that solid and liquid material will fall to the furnace base.
Clearly there needs to be a failure criterion for this falling material. One possibility
is to use the melting isotherm, so that all material hotter than this will have fallen
to the base. The reduced system in section 4 will be useful when further physical
effects are incorporated in future models, such as the dripping of inviscid silicon, the
falling of material from the charge to the crater, and the two-dimensional mechanical
bridging of the crust.

Appendix: Asymptotic expansions. Here we list asymptotic solutions to
leading and first order for each subproblem considered. For simplicity in the pre-
scribed temperature asymptotics we expand the gas flux as one variable, so that
UgCg = U0

gC0
g + εU1

gC1
g + O(ε2). If instead we used individual expansions Ug =

U0
g + εU1

g + O(ε2), Cg = C0
g + εC1

g + O(ε2), then the leading order asymptotics re-
main the same, but there will be more complex relationships for the first order terms,
which include the algebraic no voids condition. For brevity we suppress the notation
T (z) and Pi(T (z)) to T and Pi, respectively, unless we are integrating over a dummy
variable.
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Prescribed temperature—Region IIa. On the early timescale t̂ = t/ε the
solid and liquid concentrations are given by

CC = 1 + εα (T − Tm)
(
t̂+ e−t̂ − 1

)
+O(ε2),(97)

CSiC = εχ1

(
1

2
− P1

)
t̂+O(ε2),(98)

CSiO2(s) = α− εα (T − Tm) t̂+O(ε2),(99)

CSiO2(l) = α (T − Tm)
(

1− e−t̂
)

+ ε

(
χ2

(
1

2
− P2

)+ (
1− e−t̂

)
− α (T − Tm)

2

×
(
t̂−1+e−t̂

)
− α2 (T−Tm)

2

(̂
t− 2+e−t̂

(
− t̂

2

2
+2t̂+ 1

)
+e−2t̂

))
+O(ε2),(100)

CSi = εχ2

(
1

2
− P2

)+

t̂+O(ε2).(101)

The gas flux and partial pressure are found to be

UgCg = 2α
(
1− e−t̂

)∫ y=z

y=0

(T (y)− Tm)dy + 2ε

∫ y=z

y=0

r15,IIa(t̂, y)− r02,IIa(t̂, y)dy +O(ε2),

(102)

P =
1

2
− ε
∫ y=z
y=0

r01,IIa(t̂, y) + r02,IIa(t̂, y)dy

U0
gC0

g

+O(ε2) for U0
gC0

g 6= 0, i.e., t̂, z > 0,

(103)

where U0
gC0

g is the leading term in (102), and

r01,IIa(t̂, z) = χ1

(
1

2
− P1

)
, r02,IIa = χ2

(
1

2
− P2

)+

,(104)

r15,IIa =α2 (T − Tm)
2
(
t̂+ e−t̂ − 1

)(
1− e−t̂

)
+

(
χ2

(
1

2
− P2

)+ (
1− e−t̂

)
− α (T − Tm)

2
(
t̂− 1 + e−t̂

)
− α2 (T − Tm)

2

(
t̂− 2 + e−t̂

(
− t̂

2

2
+ 2t̂+ 1

)
+ e−2t̂

))
.(105)

Prescribed temperature—Region IIb. Since several of the higher order terms
in this region can only be written in terms of integrals, we give the O(1) terms and
then the O(ε) terms. Note that

CSiO2(s) = αe−(T−Tm)t,(106)

and so there in no correction term needed for the concentration of solid quartz. Five
of the leading order variables are easily found as

C0
C = αe−(T−Tm)t + (1− α),(107)
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C0
SiO2(l) =

(T − Tm)αe−(T−Tm)t

αe−(T−Tm)t + (1− α)
,(108)

C0
SiO2(s) = αe−(T−Tm)t,(109)

U0
gC0

g = 2α

∫ y=z

y=0

e−(T (y)−Tm)t (T (y)− Tm) dy,(110)

P 0 =
1

2
.(111)

The solutions for C0
SiC and C0

Si are different in the temperature regions P2, P4 ≥ 1
2 ,

P2 <
1
2 ≤ P4, and P4 <

1
2 ≤ P2. Note that there is no region in T > Tm where P2

and P4 are both less than 1
2

In P2 <
1
2 ≤ P4 we have

C0
SiC = χ1

(
1

2
− P1

)(
α

T − Tm

(
1− e−(T−Tm)t

)
+ (1− α)t

)
,(112)

C0
Si = χ2

(
1

2
− P2

)(
αe−(T−Tm)t + (1− α)

)χ−2
∫ t=t̃

t̃=0

(
αe−(T−Tm)t̃ + (1− α)

)−χ−2

dt̃.

(113)

In P2, P4 ≥ 1
2 = we have that C0

SiC is given by (112) and that C0
Si = 0. In P4 <

1
2 ≤ P2

C0
SiC =


χ1

(
1
2 − P1

) [α(e−(T−Tm)t−e−χ4( 1
2
−P4)t)

χ4(
1
2−P4)−(T−Tm)

+ 1−α
χ4(

1
2−P4)

(
1− e−χ4(

1
2−P4)t

)]
,

χ4( 1
2 − P4) 6= (T − Tm),

χ1

(
1
2 − P1

) [
αt+ 1−α

χ4(
1
2−P4)

(
1− e−χ4(

1
2−P4)t

)]
,

χ4( 1
2 − P4) = (T − Tm),

(114)

C0
Si = 2χ4

(
1

2
− P4

)(
αe−(T−Tm)t + (1− α)

)χ−2
∫ t=t̃

t̃=0

C0
SiC(t̃, z)(

αe−(T−Tm)t̃ + (1− α)
)χ−2

dt̃.

(115)

To find C1
C we note that

∂C1
C

∂t
=
∂C0

SiO2(l)

∂t
− 2r01 − r02 − r0−2,(116)

which we can integrate to give

C1
C = C0

SiO2(l) − (T − Tm)α− χ2

(
1

2
− P2

)
t

+

∫ t̃=t

t̃=0

−2C0
C(t̃, z)

(
1

2
− P1

)
+ χ−2C0

SiO2(l)(t̃, z)C
0
Si(t̃, z)dt̃.(117)

The other O(ε) terms are found to be

C1
SiO2(l) =

1

C0
C

(
α(1− α)(T − Tm)2e(T−Tm)t(

α+ (1− α)e(T−Tm)t
)2

+ χ2

(
1

2
− P2

)+

− χ−2C0
SiO2(l)C

0
Si − C0

SiO2(l)C
1
C

)
,(118)
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(119)

U1
gC1

g = 2

∫ y=z

y=0

[
C1

SiO2(l)(t, y)C0
C(t, y) + C0

SiO2(l)(t, y)C1
C(t, y)− χ2

(
1

2
− P2

)+

+ χ−2C0
SiO2(l)(t, y)C0

Si(t, y)

]
dy,

(120)

P 1 =
1

U0
gC0

g

∫ y=z

y=0

[
− χ1C0

C(t, y)

(
1

2
− P1(T (y))

)
− χ2

(
1

2
− P2(T (y))

)+

+ χ−2C0
SiO2(l)(t, y)C0

Si(t, y)− χ4C0
SiC(t, y)

(
1

2
− P4(T (y))

)+ ]
dy,

(121) C1
SiC =


χ1

∫ t̃=t
t̃=0

C0
C(t̃, z)P 1(t̃, y) + C1

C(t̃, z)
(
1
2 − P1

)
dt̃, P4 ≥ 1

2 ,

e−χ4(
1
2−P4)t

∫ t̃=t
t̃=0

eχ4(
1
2−P4)t̃

(
χ1C0

C(t̃, z)P 1(t̃, y)

+χ1C1
C(t̃, z)

(
1
2 − P1

)
− χ4C0

SiCP
1
)
dt̃, P4 <

1
2 ,

(122)

C1
Si =

(
αe−(T−Tm)t + 1− α

)χ−2
∫ t̃=t

t̃=0

[(
αe−(T−Tm)t̃ + 1− α

)−χ−2
(
χ2P

1(t̃, z)1{P2≤ 1
2}
− χ−2C1

SiO2(l)(t̃, z)C
0
Si(t̃, z) + χ4C1

SiC(t̃, z)

(
1

2
− P4

)+

+ χ4C0
SiC(t̃, z)P 1(t̃, z)1{P4≤ 1

2}

)]
dt̃.

Prescribed temperature—Region Ia.

CC = 1 +O(ε2),(123)

CSiC = εχ1

(
1

2
− P1

)
t̂+O(ε2),(124)

CSiO2(s) = α,(125)

CSiO2(l) = εχ2

(
1

2
− P2

)(
1− e−t̂

)
+O(ε2),(126)

CSi = εχ2

(
1

2
− P2

)
t̂+O(ε2),(127)

UgCg = U0
g,IIaC0

g,IIa(t̂, zm)

+ ε

(
2

∫ y=z

y=zm

r15,Ia(t̂, y)− r02,Ia(t̂, y)dy + U1
g,IIaC1

g,IIa(t̂, zm)

)
+O(ε2),(128)

P =
1

2
− ε

(∫ y=z
y=zm

r01,Ia(t̂, y) + r02,Ia(t̂, y)dy

U1
g,IIaC1

g,IIa(t, zm)
− P 1

IIa(t̂, zm)

)
+O(ε2),(129)
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where the functions U0
g,IIaC0

g,IIa and U1
g,IIaC1

g,IIa are the O(1) and O(ε) terms in

(102), P 1
IIa is the O(ε) term in (103), and the reaction rates are given by

r01,Ia(t̂, z) = χ1

(
1

2
− P1

)
, r02,Ia = χ2

(
1

2
− P2

)
, r15,Ia = χ2

(
1

2
− P2

)(
1− e−t̂

)
.

(130)

Prescribed temperature—Region Ib. In this region we have solutions

CC = 1− ε
(

2χ1

(
1

2
− P1

)
+ χ2

(
1

2
− P2

))
t+O(ε2),(131)

CSiO2(s) = α,(132)

CSiO2(l) = εχ2

(
1

2
− P2

)
+O(ε2),(133)

UgCg = U0
g,IIbC

0
g,IIb(t, zm) + εU1

g,IIbC
1
g,IIb(t, zm) +O(ε2),(134)

where U0
g,IIbC

0
g,IIb and U1

g,IIbC
1
g,IIb are the functions in Region IIb, given in (110)

and (119), respectively. We also have

P =
1

2
+ ε

(
P 1
IIa(t, zm)−

∫ y=z
y=zm

χ1

(
1
2 − P1(T (y))

)
+ χ2

(
1
2 − P2(T (y))

)
dy

U0
g,IIbC

0
g,IIb(t, zm)

)
+O(ε2),

(135)

CSiC = χ1

(
1

2
− P1

)
t+ ε

(
χ1

∫ t̃=t

t̃=0

P 1(t̃, z)dt̃−

(
χ2
1

(
1

2
− P1

)2

+
χ1χ2

2

(
1

2
− P1

)(
1

2
− P2

))
t2
)

+O(ε2),(136)

where P 1 is the O(ε) term in (135). We also have

CSi = χ2

(
1

2
− P2

)
t+ ε

(∫ t̃=t

t̃=0

χ2P
1(t̃, z)dt̃− χ−2χ

2
2

2

(
1

2
− P2

)2

t2

)
+O(ε2).

(137)

Full model asymptotics—small diffusion limit. Expanding variables in terms
of K we have in Region A

(138) TA(z, t) = −1 + ωF (z)t+ ω

∞∑
n=1

KnF (2n)(z)
tn+1

(n+ 1)!
, CA(z, t) = 0,

and that the position of the interface is given by

s(t) = F−1
(

1

ωt

)
− K

2

F ′′(s0(t))

F ′(s0(t))
t

(139)

+ K2

(
F ′′(s0(t))F ′′′(s0(t))

4(F ′(s0(t)))2
− F IV (s0(t))

6F ′(s0(t))
− (F ′′(s0(t)))3

8(F ′(s0(t)))3

)
t2 +O(K3).

D
ow

nl
oa

de
d 

04
/1

9/
18

 to
 1

29
.6

7.
18

5.
19

3.
 R

ed
is

tr
ib

ut
io

n 
su

bj
ec

t t
o 

SI
A

M
 li

ce
ns

e 
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.s

ia
m

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

1204 B. M. SLOMAN, C. P. PLEASE, AND R. A. VAN GORDER

In Region B we have the leading order terms

CB0 (z, t) =
exp

(
− 2+b

2ωF (z) + (b+ 1) t− bωF (z)
2 t2

)
1 +

√
π

2bωF (z) exp
(

1
2bωF (z)

)[
erf

(
1√

2bωF (z)

)
+ erf

(
bωF (z)t−b−1√

2bωF (z)

)] ,
(140)

TB0 =
1

b
(CB0 − 1)− 1 + ωF (z)t.(141)

The first order terms satisfy equations

b
∂TB1
∂t
− ∂CB1

∂t
= b

∂2TB0
∂z2

,
∂C1

∂t
= −b(CB0 TB1 + CB1 T

B
0 )(142)

with initial conditions

TB1 + s1(t)
∂TB0
∂z

= 0, CB1 + s1(t)
∂CB0
∂z

= 0 on t =
1

ωF (z)
.(143)

We can integrate the first equation in (142) to obtain

TB1 =
1

b
CB1 +

F ′′(z)

2ωF (z)2
+

∫ t̃=t

t̃=1/ωF (z)

∂2TB0
∂z2

(z, t̃)dt̃,(144)

where the spatial function F ′′(z)/2ωF (z)2 has been determined using (143), (86), and
(80), with s0(t) = z and t = 1/ωF (z). Equation (144) can be substituted into the
second equation in (142) to find

CB1 (z, t) =
1

I(z, t)

∫ t̃=t

t̃=1/ωF (z)

I(z, t̃)

[
−bC

B
0 (z, t̃)F ′′(z)

2ωF (z)2
− bCB0 (z, t̃)

∫ u=t̃

u=1/ωF (z)

∂2TB0
∂z2

(z, u)du

]
dt̃

+
I(z, (ωF (z))−1)

I(z, t)

F ′′(z)

2ωF ′(z)F (z)

∂CB0
∂z

∣∣∣∣
t=(ωF (z))−1

,

where the integrating factor I is given by

(145) I(z, t) = exp

(∫ t̃=t

bTB0 (z, t̃) + CB0 (z, t̃)dt̃

)
.

The solution in (145) can then be substituted into (144) to determine TB1 .
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