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Abstract: These lectures will discuss applications of twistor theory to celestial hologra-

phy. We will review topological strings and branes and use them to construct holographic

duals of certain local holomorphic theories in twistor space. By the Penrose transform, local

holomorphic theories on twistor space give rise to integrable theories on spacetime. Their

celestial duals arise as 2d chiral CFTs living on D-branes. With pedagogical examples, we

will show that 2d CFT correlators reproduce scattering amplitudes in the bulk.
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1 Lecture 1

➤ Big picture: Celestial holography = twisted holography on twistor space.

Allows for a Maldacena-style derivation of simple examples of celestial holography.

➤ Goals of these lectures:

– Basics of B-model branes

– Celestial holography via twistor space

– Soft algebras + amplitudes

➤ Main references:

– arXiv: 2306.00940 (Burns space and holography)

– arXiv: 2412.02680 (Self-Dual Gauge Theory from the Top Down)

➤ σ-model on a Calabi-Yau target with complex coordinates xi, x̄ı̄ and metric giȷ̄,

S =

∫
Σ
d2z

{giȷ̄
2

(∂xi∂̄x̄ȷ̄ + ∂̄xi∂x̄ȷ̄) + giȷ̄ ψ
i∂̄ψȷ̄ + giȷ̄ ψ̃

i∂ψ̃ȷ̄ −Riȷ̄kl̄ ψ
iψȷ̄ψ̃kψ̃ l̄

}
, (1.1)

where ψi has weights (1, 0), ψ̃i has weights (0, 1), and ψı̄, ψ̃ı̄ have weights (0, 0).

➤ Perform the field redefinitions

ηı̄ = ψı̄ + ψ̃ı̄ , θi = giȷ̄ (ψ
ȷ̄ − ψ̃ȷ̄) . (1.2)

In terms of these, the σ-model has a nilpotent supersymmetry,

Qxi = 0 , Qx̄ı̄ = ηı̄ , Qηı̄ = Qθi = 0 ,

Qψi = ∂xi , Qψ̃i = ∂̄xi
(1.3)

Clearly Q2 = 0.

➤ B-model is the twisted subsector obtained by takingQ-cohomology. This is a topological

subsector because the worldsheet stress tensor becomes Q-exact, whereby correlators of

Q-closed operators O(zi, z̄i) do not depend on their insertion points (zi, z̄i).
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➤ We want to study

– Closed string spectrum: BCOV theory

– Open string spectrum: holomorphic Chern-Simons theory

– Orientifold projection (next lecture)

➤ Let us start with the closed string spectrum. There is a worldsheet-target correspon-

dence

ηı̄ ↔ dx̄ı̄ , θi ↔ ∂i . (1.4)

To every target space field

Φ = Φk···l
ı̄···ȷ̄ (x, x̄) dx̄

ı̄ ∧ · · · ∧ dx̄ȷ̄ ∂k ∧ · · · ∧ ∂l , (1.5)

we can associate a (h, h̄) = (0, 0) worldsheet primary

V [Φ] = Φk···l
ı̄···ȷ̄ (x, x̄) η

ı̄ · · · ηȷ̄ θk · · · θl . (1.6)

➤ The “BRST charge” Q = ηı̄∂ı̄ + · · · acts as a worldsheet pullback of ∂̄ = dx̄ı̄ ∂ı̄,

QV [Φ] = V [∂̄Φ] . (1.7)

So worldsheet Q-cohomology gets identified with target space Dolbeault cohomology.

➤ Physically, the most interesting closed string mode is the Beltrami differential

Φ = β = βiȷ̄ dx̄
ȷ̄ ∂i . (1.8)

This governs gravity at the level of complex structure deformations ∂̄ 7→ ∂̄ + β.

➤ Nonlinearly, it is found to obey the field equation (in absence of other fields)

∂̄β +
1

2
[β, β] = 0 (1.9)

where [−,−] denotes the Lie bracket of vector fields. It is also required to obey an

off-shell constraint of being divergence-free (which arises from level-matching on the

worldsheet):

∂(β ⌟Ω) = 0 , (1.10)

where Ω is the Calabi-Yau volume form and ∂ = dxi ∂i. Similar field equations and

constraints hold for other Φ.

➤ The associated action principle is a non-local action known as BCOV theory. Eg., on a

Calabi-Yau 3-fold, the action for β takes the form

S =

∫
CY3

Ω ∧
(
1

2
∂−1β ∂̄β +

1

3!
β3

)
⌟Ω . (1.11)

We will not use this too explicitly.
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➤ Next let’s study the open string spectrum on Dp-branes for p odd. They necessarily

wrap holomorphic submanifolds. The boundary conditions obeyed by fermions are

– (NN) ψı̄|∂Σ = ψ̃ı̄|∂Σ =⇒ θi|∂Σ = 0

– (DD) ψı̄|∂Σ = −ψ̃ı̄|∂Σ =⇒ ηı̄|∂Σ = 0

So open string vertex operators can contain xi, x̄ı̄, ηı̄ in directions parallel to the brane

and θi in directions orthogonal to the brane.

➤ Strings on space-filling branes can only contain xi, x̄ı̄, ηı̄ and no θi. The general string

field is a direct sum of (0, p)-forms,

A = c+ aı̄ dx̄
ı̄ + · · · ,

V [A] = c+ aı̄η
ı̄ + · · · .

(1.12)

The physical field here is the partial connection a = aı̄ dx̄
ı̄, which acts like a gauge field.

➤ BRST closure gives QV [A] = 0 =⇒ ∂̄A = 0. Nonlinearly, it obeys

∂̄A+A2 = 0 . (1.13)

The associated action principle is known as holomorphic-Chern-Simons theory,

S =

∫
CY

Tr

(
1

2
A ∂̄A+

1

3
A3

)
∧ Ω . (1.14)

which works on a Calabi-Yau of any dimension, in particular in complex dimension 3.

➤ We will study the B-model on a CY 3-fold obtained from twistor space, and will back-

react by a stack of N D1 branes. So let us figure out the “celestial dual” theory living

on such a stack.

➤ It suffices to work on flat space C3 with coordinates x, y, z (not to be confused with the

worldsheet coordinate z). Wrap a stack of N D1 branes along the C-plane x = y = 0.

I.e., impose Neumann boundary conditions along z and Dirichlet boundary conditions

along x, y. Then open string vertex operators can depend on z, z̄, ηz̄ ≡ dz̄ and θx ≡
∂x, θy ≡ ∂y:

A = c+X ∂x + Y ∂y + b ∂x ∧ ∂y + fields containing dz̄ (1.15)

where X,Y are bosonic and b, c are fermionic glN -valued fields on the D1 branes. The

fields with dz̄ can be set to zero as a gauge fixing condition.

➤ Their action is a generalization of the hCS action:

S =

∫
D1

Tr

(
1

2
A ∂̄A+

1

3
A3

)
⌟Ω , (1.16)

where Ω = dx ∧ dy ∧ dz in this case. The action for the Higgs fields X,Y and ghosts

b, c takes the form

S =

∫
C
Tr (X∂̄Y + b∂̄c) ∧ dz . (1.17)

This hCS construction works for all branes. This is the kind of celestial dual theories

that we will encounter in the coming lectures.
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2 Lecture 2

➤ The previous lecture dealt with branes in the B-model. Today, we will use them to

construct holographic dualities. We will work with a type I version of the B-model on

twistor space. Our spacetime signature will be Euclidean.

➤ Recall from Roland’s lectures that twistor space is PT = O(1) ⊕ O(1) → P1. We give

P1 an affine coordinate z, and the fiber coordinates are denoted vα̇ = (v0̇, v1̇). PT is

diffeomorphic (but not biholomorphic) to R4 × P1 through the map

v0̇ = u0̇ − zū1 , v1̇ = u1̇ + zū0 , (2.1)

where uα̇ are complex coordinates on R4 = C2, and ūα their complex conjugates. These

are Penrose’s incidence relations in Euclidean signature.

➤ We want to study holography for the B-model on PT, and thereby for the associated

integrable theories on R4 obtained from compactification along P1.

➤ But sadly PT is not Calabi-Yau. Coordinates on O(1) transform under z 7→ z−1 as

z 7→ z−1 =⇒ vα̇ 7→ z−1vα̇ . (2.2)

So the naive volume form dz d2v develops a fourth-order pole at z = ∞:

z 7→ z−1 =⇒ dz ∧ dv0̇ ∧ dv1̇ 7→ −z−4 dz ∧ dv0̇ ∧ dv1̇ . (2.3)

This tells us that the canonical bundle of PT is O(−4), which is not trivial.

➤ Two ways to get around this obstruction have been proposed.

– Remove the surfaces z = 0,∞ from PT to obtain a Calabi-Yau with “boundaries”.

This can be used to engineer partially gauge-fixed formulations of self-dual Yang-

Mills (sdYM) that do not have manifest Lorentz symmetry.

– Consider higher-dimensional Calabi-Yau’s fibering over PT with local descriptions

like O(−1)⊕O(−3) → PT or O(−1)4 → PT. These can be used to engineer twistor

actions for N = 1 sdYM or N = 4 sdYM respectively on D5 branes wrapping PT.
A further orientifold of the former produces non-supersymmetric examples.

This turns the subject of celestial holography into a systematic model-building exercise!

➤ We will focus on the first approach which is more pedagogical.

➤ On PT− {z = 0,∞} ≃ C×
z × C2

vα̇
, we choose to work with the volume form

Ω =
dz ∧ dv0̇ ∧ dv1̇

z2
(2.4)

which symmetrically has a second-order pole at both z = 0 and z = ∞. We will have

to prescribe boundary conditions at the removed divisors z = 0,∞ that keep the target

space actions non-singular.
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➤ Precise setup: type I B-model on PT − {z = 0,∞}. This necessarily comes with 8 D5

branes to cancel the charge of the O5 orientifold plane.

➤ After orientifolding, the physical fields of the remaining spectrum are the Beltrami β in

the closed string sector and an SO(8) partial connection a in the open string sector on

the 8 D5 branes. There are also ghosts and antifields that we suppress.

➤ The open string action is

S[a] =

∫
PT

dz d2v

z2
Tr

(
1

2
a ∂̄a+

1

3!
a3
)
. (2.5)

To ensure that the integral converges, we assume the boundary conditions that a have

a first-order zero at z = 0,∞. A similar analysis of the BCOV action shows that

the Beltrami β obeys the boundary condition of having a second-order zero at z =

0,∞. Equivalently, the quantity β ⌟Ω must be regular at z = 0,∞. These boundary

conditions break Lorentz covariance.

➤ Next, celestial holography motivates studying holography for D1 branes. So, wrap a

stack of 2N D1 branes along the C×
z direction (they have to be even in number due to

the orientifold projection). We will study their worldvolume theory in the next lecture.

For now, let us construct a large N duality obtained by sending N → ∞.

➤ The D1 branes add a source for β to the closed string action,

2N

∫
D1
∂−1(β ⌟Ω) . (2.6)

So, as N → ∞, the branes backreact. The backreacted geometry must solve the sourced

equation of motion

∂̄β +
1

2
[β, β] = 2N δ̄2(v) z2∂z . (2.7)

The factor of z2 comes from the factor of z−2 present in Ω.

➤ This equation is solved by the Bochner-Martinelli kernel

β =
2N

(2πi)2
Dv̄

∥v∥4
z2∂z , (2.8)

where Dv̄ = εαβ v̄
αdv̄β and ∥v∥2 = |v0̇|2+ |v1̇|2. Its only singularity is at the brane locus

vα̇ = 0. Note also that no near-horizon limits are necessary in the B-model.

➤ It turns out that PT−{vα̇ = 0} equipped with the complex structure defined by ∂̄+β is

again a (subset of a) twistor space. It is the twistor space of Burns space. I will not go

into the proof in these lectures, but the interested reader should consult the references.

It also has the structure of AdS3 × S3 which leads to a nice holographic interpretation

that I will also suppress.
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➤ The brane backreaction on twistor space deforms flat space C2 into Burns space. This is

a scalar-flat Kähler 4-manifold which is topologically C̃2: the blow-up of C2 at the origin.

This says that the origin is replaced by a P1 describing the “direction of approach”. But

crucially, the region at infinity is still flat C2.

➤ These properties are best seen from the Burns metric,

g = ∥du∥2 + N

r4
|Du|2 , (2.9)

where r = ∥u∥ and Du = εα̇β̇u
α̇duβ̇. As N → 0, the backreaction turns off and we

recover flat space. For N > 0, we find gµν ∼ δµν +O(r−2) as r → ∞. So the asymptotic

geometry remains flat, exactly as desired. Furthermore, R = 0, which confirms that

this geometry has no cosmological constant. Unfortunately, Rµν ̸= 0, so this geometry

is not a solution of Einstein gravity.

➤ The backreacted twistor space has the structure of C̃2×P1, and compactifying the type

I B-model on P1 generates a 4d theory on Burns space.

S4d = SMabuchi + SWZW4 (2.10)

– Closed string sector: Mabuchi gravity = Kähler subsector of sd conformal gravity

– D5-D5 open string sector: 4d WZW model based on the group SO(8)

The D1 branes have of course been replaced by the deformed geometry.

➤ The Burns metric is Kähler with Kähler potential

K0 = r2 +N log r2 . (2.11)

The zero mode of the Beltrami gives rise to a spacetime scalar ρ that describes pertur-

bations of the Kähler potential K0 7→ K = K0 + ρ. The gravitational action is

SMabuchi =
1

2

∫
Ric(K) ∧ ∂K ∧ ∂̄K (2.12)

whose equation of motion says that the Kähler metric obtained from the deformed

potential K continues to be scalar-flat: R(K) = 0.

➤ More interesting is the open string sector. The zero mode of the field a gives rise to an

so(8)-valued scalar ϕ with action

SWZW4 = i

∫
∂∂̄K ∧ Tr

(
1

2
∂ϕ ∧ ∂̄ϕ+

1

3!
∂ϕ ∧ [ϕ, ∂̄ϕ] +

1

4!
∂ϕ ∧ [ϕ, [ϕ, ∂̄ϕ]] +O(ϕ5)

)
,

(2.13)

where ∂ = duα̇∂uα̇ and ∂̄ = dūα∂ūα . We can use ϕ to define a gauge field on spacetime,

A = −∂̄g g−1 , g = eϕ , (2.14)

The field equation of ϕ tells us that A is self-dual on Burns space: FA = ∗FA.
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3 Lecture 3

➤ In this lecture, we will study the celestial holographic dual and its associated holographic

dictionary.

➤ The volume form we used on PT − {z = 0,∞} was Ω = dz d2v/z2 = −dw d2v. So in

what follows it will be convenient to change coordinates to w = z−1, so that we are

essentially working with the B-model and branes in flat space C×
w × C2

vα̇
.

➤ The 2N D1 branes engineer an Sp(N) gauge theory with gauge-fixed spectrum:

– D1-D1 strings: A = c+ µα̇∂α̇ + b ∂0̇ ∧ ∂1̇
b, c ∈ S2C2N (fermionic), µα̇ ∈ ∧2C2N (bosonic)

– D1-D5 strings: I ∈ C2N ⊗ C8 (bosonic)

where C2N and C8 denote the fundamental reps of Sp(N) and SO(8) respectively. Our

gauge choice has again been to drop the D1-D1 fields containing dz̄.

➤ Let a, b = 1, . . . , 2N and i, j = 1, · · · , 8 be the Chan-Paton indices of the C2N and C8

reps respectively. The index structure on the D1-D1 strings is cab = cba, bab = bba and

µα̇ab = −µα̇ba, and that on the D1-D5 strings is Iai. The Sp(N) indices can be raised

or lowered using the Sp(N) invariant symplectic form εab, the SO(8) indices using the

Kronecker delta δij , and the spinor index α̇ using the 2d Levi-Civita symbol εα̇β̇.

➤ In what follows, whenever we invoke c, µα̇, b, we will mean the Sp(N) endomorphisms

ca
b, ba

b and (µα̇)a
b which can be multiplied like ordinary matrices. For example, prod-

ucts like µ0̇µ1̇ will mean (µ0̇µ1̇)a
b = (µ0̇)a

c(µ1̇)c
b in components, and µα̇I will mean

(µα̇I)ai = (µα̇)a
bIbi.

➤ Using the general principles discussed in the first lecture, their action is found to be

S2d =

∫
P1

dw ∧
(
1

2
Trµα̇∂̄µ

α̇ +Tr b∂̄c+
1

2
Iai∂̄Iai

)
, (3.1)

where Tr denotes a trace on staggered Sp(N) indices, eg., Tr b∂̄c = ba
b∂̄cb

a. The various

fields obey free-field OPEs like

µα̇ab(w)µ
β̇
cd(0) ∼

εα̇β̇εa[c|εb|d]

w
, Iai(w) Ibj(0) ∼

εabδij
w

. (3.2)

With our gauge choice, this chiral CFT comes equipped with a BRST charge,

QBc = c2 , QBµ
α̇ = [c, µα̇] ,

QBb = [c, b] + [µ0̇, µ1̇] +
1

2
IiIi , QBI = cI ,

(3.3)

which implements the Sp(N) gauging. The SO(8) symmetry remains a flavor symmetry.

➤ The large N BRST cohomology is spanned by three towers of “single trace” states:
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– Open string states:

Jij [k, l] = ε(Ii, µ
(k

0̇
µ
l)

1̇
Ij) ≡ εabIai(µ

(k

0̇
µ
l)

1̇
I)bj (3.4)

– Closed string states:

E[k, l] = Trµ
(k

0̇
µ
l)

1̇
,

F [k, l] = Trµα̇∂µ
α̇µ

(k

0̇
µ
l)

1̇
+ ghost corrections ,

(3.5)

where µ
(k

0̇
µ
l)

1̇
denotes the symmetrized product of k µ0̇ matrices and l µ1̇ matrices.

➤ As a simple example, consider the current J [0, 0]:

QBJij [0, 0] = QB(IaiI
a
j ) = ca

bIbiI
a
j + Iaic

abIbj

= cab(IaiIbj − IbiIaj) = 0 ,
(3.6)

having used ca
bIaj = −cabIaj and cab = cba.

➤ For each such operator, we can locate a gluon or graviton state in the bulk. The J [k, l]

are S-algebra currents:

Jij [k, l](w) Jkl[m,n](0) ∼
fij,kl

pqJpq[k +m, l + n]

w
. (3.7)

So we expect them to be dual to soft modes of positive helicity gluons described by a

scalar profile ϕ on Burns space solving its linearized field equation △ϕ = 0.

➤ The E[k, l] get associated to positive helicity Einstein gravitons, and the F [k, l] with

positive helicity conformal gravitons, and both types of gravitons are described by scalar

linear fields ρ.

➤ Weirdly, the stress tensor is a conformal graviton!

F [0, 0] = Tr

(
1

2
µα̇∂µ

α̇ + b∂c

)
+

1

2
Iai∂Iai . (3.8)

Unclear how to relate this to the usual shadow prescription of a negative helicity Einstein

graviton. Perhaps the w-symmetry is more fundamental than BMS symmetry...

➤ In what follows, we focus on gluon states. To compute amplitudes, it is convenient to

work with hard states. This motivates introducing the exponential-type operator

J(w, λ̃) = ε(I, ei[µλ̃]I) , [µλ̃] ≡ µα̇λ̃
α̇ , (3.9)

where λ̃α̇ ∈ C2. Expanding this in λ̃α̇ gives rise to the S-algebra currents J [k, l].

➤ Define a complex null momentum pαα̇ = λαλ̃α̇, λα = (1, z) = (1, w−1). Recall the

coordinates uα̇ on Burns space, and define ûα̇ = (−ū1, ū0). Then this operator is found

to be dual to a plane-wave-like state on Burns space:

ϕ = tij

(
eip·x − Nz[uλ̃][ûλ̃]

r2
1F1(2, 3|ip · x) +O(N2)

)
(3.10)
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where the corrections (which can be found in closed form) ensure that ϕ solves △ϕ = 0

with respect to the Burns metric. Here tij = −tji is a generator of so(8), and the

associated positive helicity gluon wavefunction is given by A = −∂̄ϕ.

➤ The holographic conjecture says that correlators of such operators J(wi, λ̃i), i = 1, . . . , n,

will compute n-point amplitudes of the 4d WZW model on Burns space. At tree level,

these will coincide with all-plus gluon amplitudes on Burns space.

➤ We can study this conjecture using the 2-point amplitude which was computed by

Hawking, Page and Pope in 1980. Our bulk theory doesn’t have manifest conformal

symmetry so even this match is somewhat non-trivial.

➤ HPP compute a 2-point scalar amplitude, which can be dressed with color-factors to

produce the ++ gluon tree amplitude

A(1, 2) =
N Tr(tijtkl)

w2
12

J0

(√
4N

[12]

w12

)
(3.11)

where [12] = [λ̃1λ̃2] and w12 = w1 −w2. Let us show that this can be computed by the

JJ 2-point function.

➤ Let’s compute the 2-point correlator

〈
Jij(w1, λ̃1) Jkl(w2, λ̃2)

〉
=

∑
m,n≥0

im+n

m!n!

〈
ε(Ii, [µ1]

mIj)(w1) ε(Ik, [µ2]
nIl)(w2)

〉
. (3.12)

Since all operators need to be contracted away to produce a non-zero 2-point function,

only terms with m = n can contribute. So we get

〈
Jij(w1, λ̃1) Jkl(w2, λ̃2)

〉
=

∑
n≥0

(−1)n

(n!)2

〈
ε(Ii, [µ1]

nIj)(w1) ε(Ik, [µ2]
nIl)(w2)

〉
. (3.13)

Note that

[µa
b 1](w1) [µc

d 2](w2) ∼
εacε

bd − δdaδ
b
c

2

[12]

w12
. (3.14)

Keeping only planar double-line diagrams gives the desired tree amplitude:

〈
Jij(w1, λ̃1) Jkl(w2, λ̃2)

〉
=

∑
n≥0

(−1)n

(n!)2
Tr(tijtkl)

w2
12

Nn+1[12]n

wn
12

=
N Tr(tijtkl)

w2
12

J0

(√
4N

[12]

w12

)
.

(3.15)

Similarly, we can obtain higher point amplitudes.
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