
DEGREE OF MASTER OF SCIENCE

MATHEMATICAL MODELLING AND SCIENTIFIC COMPUTING

B1 Numerical Linear Algebra and Numerical Solution

of Differential Equations

HILARY TERM 2019

FRIDAY, 11 JANUARY 2019, 9.30am to 12.00pm

You may attempt as many questions as you like but you must answer at least one question in
each section. Your best answer in each section will count, along with your next best answer(s),

making a total of four answers.

Please start the answer to each question in a new booklet.
All questions will carry equal marks.

Do not turn this page until you are told that you may do so
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Section A: Numerical Solution of Differential Equations

1. (a) [6 marks] Write the definition of a one-step method and of a consistent one-step method.

(b) [6 marks] Write the definition of consistency error and consistency order of a one-step
method. Is it true that, if a one-step method is consistent and sufficiently smooth, then
its consistency order is at least 1?

(c) [7 marks] Consider the Runge-Kutta method with Butcher table

2/3 2/3

1
. (1)

Use Taylor expansion to determine the consistency order of this Runge-Kutta method.

(d) [6 marks] Let f(t,x) = f(x), and let Ψ(t,x, h, f) = x + hk denote one step of the Runge-
Kutta method with Butcher table (1). The stage k can be equivalently rewritten as f(g),
where g satisfies

g = x +
2h

3
f(g) .

Let g̃ be an approximation of g obtained using two steps of the fixed-point iteration
algorithm with initial value g̃(0) = x, and let k̃ := f(g̃). Write the Butcher table of the
Runge-Kutta method Ψ̃(t,x, h, f) := x + hk̃.
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2. (a) [5 marks] Linear multi-step methods can be derived using the shift operator E, the dif-
ference operator ∆, the identity operator I, and the differential operator D. Give the
definitions of these four operators. Use the symbol h to denote the step size.

(b) [10 marks] By formal computations, it is possible to show that

hD =

(
∆ +

1

2
∆2 +

1

3
∆3 + . . .

)
. (2)

Write the formula of the linear 3-step method that arises from truncating (2) and show
that this linear 3-step method has consistency order 3.

(c) [10 marks] The linear 2-step method associated to (2) reads

3

2
yn − 2yn−1 +

1

2
yn−2 = hf(tn,yn) . (3)

(i) Give the definition of the stability polynomial and of the stability domain of a linear
multi-step method.

(ii) Specify the stability polynomial of (3).

(iii) It is known that (3) is A-stable. Show directly (without using the definition of A-
stability) that the negative real line R− := {z : Re z 6 0 and Im z = 0} is included
in the stability domain of (3).
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3. (a) [5 marks] Give the definition of a linear k-step method.

(b) [5 marks] Determine the consistency order of the linear multi-step method

y2 − y1 = h

(
− 1

12
f(t0,y0) +

2

3
f(t1,y1) +

5

12
f(t2,y2)

)
. (4)

(c) [9 marks] Let the initial values y0 and y1 be given, and let the function f be sufficiently
smooth. Use the Banach fixed-point theorem to show that, if h > 0 is sufficiently small,
the linear multi-step formula (4) has a unique solution y2. In your proof, specify the
upper bound on h.

(d) [6 marks] Let

h = 0.1 , y0 =

(
2

2.7

)
, y1 =

(
2

1.1

)
, and f(t,y) =

(
0 0
0 −10

)
y .

Let {yn}n>0 be the sequence defined by (4). Compute limn→∞ ‖yn‖.
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4. Consider the following initial boundary value problem:

ut(t, x)− uxx(t, x) = 0 for (t, x) ∈ R+ × (0, 1) , (5a)

ux(t, 0) = 0 , u(t, 1) = e−(2π)
2t, u(0, x) = cos(2πx) . (5b)

(a) [5 marks] Show that u(t, x) = e−(2π)
2t cos(2πx) is a solution to (5).

(b) [7 marks] Let N ∈ N and ∆x := 1/N . Derive a linear system of ODEs and its initial
condition by semi-discretizing (5) in space with the finite difference approximations

uxx(x) ≈ u(x+ ∆x)− 2u(x) + u(x−∆x)

∆x2

and

ux(x) ≈ −3u(x) + 4u(x+ ∆x)− u(x+ 2∆x)

2∆x
.

(c) [6 marks] Show that, if the function v is sufficiently regular, then

vxx(x) =
v(x+ ∆x)− 2v(x) + v(x−∆x)

∆x2
+O(∆x2)

and

vx(x) =
−3v(x) + 4v(x+ ∆x)− v(x+ 2∆x)

2∆x
+O(∆x2)

(d) [7 marks] Let A ∈ RN×N be a given matrix and consider the linear system of ODEs
y′ = Ay. Let {yn}n>0 be its numerical solution computed with a linear k-step method
with a sufficiently small step size h > 0 and initial values {ym}k−1m=0. Show that {yn}n>0

satisfies

yn = (αkI− hβkA)−1

hAYn


βk−1
βk−2

...
β0

−Yn


αk−1
αk−2

...
α0


 ,

where I is the identity matrix, Yn ∈ RN×k is a matrix with columns yn−1,yn−2, . . . ,yn−k,
and {αi}ki=0 and {βi}ki=0 are the coefficients of the linear multi-step method.
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Section B: Numerical Linear Algebra

5. In this question x ∈ Rn denotes a generic vector and A ∈ Rm×n a generic matrix.

(a) [3 marks] Define ‖x‖1. Define the operator norm ‖A‖1 and the Frobenius norm ‖A‖F .

(b) [3 marks] Use the operator norm definition of ‖A‖1 to show that

‖A‖1 = max
j∈{1,...,n}

m∑
i=1

|ai,j |,

where {ai,j , i = 1, . . . ,m, j = 1, . . . , n} are the entries of A.

(c) [4 marks] Prove that
1√
m
‖A‖1 6 ‖A‖F .

(d) [4 marks] Give the definition of an orthogonal matrix. Show that if Q is an orthogonal
matrix, then ‖AQ‖F = ‖A‖F .

(e) [3 marks] Let D ∈ Rm×n be a diagonal matrix. Show that

‖D‖1 = ‖D‖2.

(f) [8 marks] For C ∈ Rn×n, what is an LU factorization with partial pivoting of C? For this
factorization, why is ‖L‖1 6 n for any C? For the matrix

C =



1 0 . . . . . . 0 1
−1 1 0 . . . 0 1
...

. . .
. . .

. . .
...

...
−1 . . . −1 1 0 1
−1 . . . . . . −1 1 1
−1 . . . . . . . . . −1 1


why would no row swaps be required even if partial pivoting was employed? Show that

‖U‖1 =
n−1∑
j=0

2j

for this matrix.
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6. (a) [4 marks] Calculate the iterate vectors x(1) and x(2) obtained by Jacobi iteration for the
system

Wx =



4 1 0 · · · 0

1 4 1
. . .

...

0
. . .

. . .
. . . 0

...
. . .

. . .
. . . 1

0 · · · 0 1 4




x1
x2
...

xn−1
xn

 =


0
0
...
0
0

 (1)

starting from x(0) = (1, 1, . . . , 1)T .

(b) [4 marks] Show that the vector v(r) ∈ Rn that has entries

vrj = sin
rjπ

n+ 1
, j = 1, 2, . . . , n

is an eigenvector of W with corresponding eigenvalue

λr = 4 + 2 cos
rπ

n+ 1

for each r = 1, 2, . . . , n.

(c) [6 marks] Let {x(k), k = 0, 1, 2, . . .} be the sequence of vectors computed by Jacobi itera-
tion for (1). By quoting (but not proving) a relevant theorem involving eigenvalues, show
that x(k) will tend to the zero vector as k →∞.

After how many iterations can you guarantee that the 2-norm of the error, ‖x(k)‖2, is
necessarily less than 10−5 if n = 104? (Note that 210 = 1024 ≈ 103).

(d) [2 marks] Consider the problem

Ax =



2 −1 0 · · · 0

−1 2 −1
. . .

...

0
. . .

. . .
. . . 0

...
. . .

. . .
. . . −1

0 · · · 0 −1 2




x1
x2
...

xn−1
xn

 =


0
0
...
0
0

 . (2)

By writing the Jacobi iteration matrix, JA, for A in term of the Jacobi iteration matrix,
JW , for W , find the largest eigenvalue in absolute value of JA. Deduce that Jacobi
iteration for (2) will define a sequence of iterates converging to the zero vector for any
starting vector.

(e) [5 marks] The matrix A can be written as A = D+L+U where D is a diagonal matrix,
L a strictly lower triangular matrix and U a strictly upper triangular matrix. Show that
the symmetric Gauss-Seidel iteration

(D + L)x(k−
1
2
) = b− Ux(k−1)

(D + U)x(k) = b− Lx(k−
1
2
)

for Ax = b can be written as

Mx(k) = Nx(k−1) + b where M = (D + L)D−1(D + U).

(f) [4 marks] Prove that the eigenvalues of M must lie in the real interval [12 ,
9
2 ] for the specific

matrix A as given above in part (d). State and prove any theorem that you use.
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