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Numerical Solution of Partial Differential Equations

and Numerical Linear Algebra
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This exam paper contains two sections. You may attempt as many questions as you
like but you must answer at least one question in each section. Your best answer in
each section will count, along with your next best two answers, making a total of

four answers.

Candidates may bring a summary sheet into this exam consisting of (both sides of)
one sheet of A4 paper containing material prepared in advance in accordance with

the guidance given by the Mathematical Institute.

Please start the answer to each question in a new booklet.

Do not turn this page until you are told that you may do so
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Numerical Linear Algebra

1. Let A ∈ Rm×n (m > n) and let A = UΣV T be its SVD (singular value decomposition), where
U has orthonormal columns (so that UTU = In), V is orthogonal, and Σ = diag(σ1, . . . , σn),
with σ1 > σ2 > · · · > σn > 0. Let ‖A‖2 = σ1 denote the spectral norm.

(a) [13 marks] Suppose that the SVD, A = UΣV T , is given.

(i) Find the SVD of AATA.

(ii) Show that ‖AATAx‖2 > (σn(A))3‖x‖2 for any x ∈ Rn.

(iii) Find the matrix B such that AB = UΣ2V T .

(iv) Let σ1u1v
T
1 be a best rank-1 approximation to A in the spectral norm, where ‖u1‖2 =

‖v1‖2 = 1. Find a best rank-1 approximation to AAT .

(b) [12 marks] Let A =

1 1
1 0
0 1

[1
10−10

] [
1 1 0
1 0 1

]=

1 1
1 0
0 1

[1
10−10

]1 1
1 0
0 1

T
.

(i) Prove that A is positive semidefinite, e.g. by showing that xTAx > 0 for any x ∈ R3.

(ii) Find a rank-1 matrix A1 such that ‖A−A1‖2 6 2× 10−10.
[The matrix A1 can be found without lengthy calculations.]

(iii) Prove that there exists a rank-1 matrix Ã1 such that ‖A− Ã1‖2 < 2× 10−10.

[You may use the fact that in the QR factorisation

1 1
1 0
0 1

 = QR, R =

[√
2
√

1
2

0
√

3
2

]
. ]
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2. (a) [13 marks] Consider the LU factorisation A = LU ∈ Rn×n.

(i) Suppose that a pivoted LU factorisation PA = LU is known, where P is a permutation
matrix. Describe an algorithm that can be used to solve the linear system Ax = b.

(ii) What is the computational complexity of the algorithm in (i)? Answer in the big-O
notation, e.g. O(n3), O(n log n), and justify your answer.

(iii) Give an example of a 2× 2 matrix, A, that does not have an LU factorisation.

(iv) Show that A ∈ Rn×n has a pivoted LU factorisation PA = LU if A is nonsingular.

(b) [12 marks] Recall that a Householder reflector is a matrix of the form H = I − 2vvT ∈
Rn×n where v ∈ Rn is a vector of unit norm ‖v‖2 = 1.

(i) Let a, b ∈ Rn be vectors such that a 6= b and ‖a‖2 = ‖b‖2. Find a Householder
reflector H such that Ha = b.

(ii) Using Householder reflectors, show that any A ∈ Rm×n has a QR factorisation
A = QR, where Q has orthonormal columns and R is upper triangular. (Discuss
both cases m > n, and m < n.)

(iii) Show that any orthogonal matrix Q ∈ Rn×n can be written as a product of House-
holder reflectors, Q = H1H2 · · ·H`, where ` 6 n.
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Numerical Solution of Partial Differential Equations

3. Let f ∈ C([0, 1]) and suppose that u ∈ C2([0, 1]) is the unique solution of the boundary-value
problem

−u′′(x) + a(x)u′(x) + c(x)u(x) = f(x), x ∈ (0, 1), u(0) = 0, u(1) = 0, (1)

where a ∈ C1([0, 1]) is a monotonically non-increasing function and c ∈ C([0, 1]), with c(x) > 1
for all x ∈ [0, 1].

(a) [7 marks] Show that∫ 1

0
(u′(x))2 dx− 1

2

∫ 1

0
a′(x)(u(x))2 dx+

∫ 1

0
c(x)(u(x))2 dx =

∫ 1

0
f(x)u(x) dx.

Hence deduce that ∫ 1

0
(u′(x))2 dx+

∫ 1

0
(u(x))2 dx 6

∫ 1

0
(f(x))2 dx.

(b) [7 marks] Suppose, in addition, that a(x) > 0 for all x ∈ [0, 1]. On a finite difference
mesh Ωh := {xi := ih : i = 0, . . . , N} of spacing h := 1/N , where N > 2, construct
a finite difference scheme for the numerical solution of the boundary-value problem (1),
where the term u′′ has been approximated by a second-order central difference and the
term u′ has been approximated by a first-order backward difference. Denoting by U the
finite difference approximation of u on the mesh Ωh, show that

‖D−x U ]|2h + a(xN )U2
N−1 + ‖U‖2h 6 ‖f‖2h,

where D−x denotes the first-order backward difference operator, and the norms ‖·]|h and

‖ · ‖h are defined by ‖V ]|h := (V, V ]
1/2
h and ‖V ‖h := (V, V )

1/2
h , respectively, with

(V,W ]h :=

N∑
i=1

hViWi and (V,W )h :=

N−1∑
i=1

hViWi.

(c) [7 marks] Still assuming that a ∈ C1([0, 1]) is monotonically non-increasing, now sup-
pose that a can be of either sign on the interval [0, 1]. Define a+(x) := max(a(x), 0)
and a−(x) := min(a(x), 0). By noting that a+(x) > 0, a−(x) 6 0 and a(x)u′(x) =
a+(x)u′(x) + a−(x)u′(x), construct a finite a difference scheme for the numerical solu-
tion of the boundary-value problem (1). In the finite difference scheme the term u′′(xi)
should be approximated by D+

xD
−
x Ui and the term a(xi)u

′(xi) should be approximated by
a+(xi)D

−
x Ui +a−(xi)D

+
x Ui. Here, D+

x denotes the first-order forward difference operator.
Show that

‖D−x U ]|2h + (−a−(x0))U
2
1 + a+(xN )U2

N−1 + ‖U‖2h 6 ‖f‖2h.

(d) [4 marks] Adopt the same assumptions as in part (c), and denote by ϕi the consistency
error of the finite difference scheme constructed in part (c) at the mesh point xi, i =
1, . . . , N − 1. Show that

‖U − u‖1,h 6 ‖ϕ‖h,

where ‖ · ‖1,h is a discrete Sobolev norm that you should carefully define.
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4. Suppose that Ω := (0, 1)2 and f ∈ C(Ω), and let u ∈ C2(Ω) denote the unique solution of the
elliptic boundary-value problem

−∆u+ u+ u3 + u5 = f in Ω,

u = 0 on ∂Ω.
(1)

(a) [6 marks] On the finite difference mesh

Ωh := {(xi, yj) : xi := ih, yj := jh, i, j = 0, . . . , N},

of spacing h := 1/N in both coordinate directions, where N > 2, construct a five-point
finite difference scheme for the numerical solution of the boundary-value problem (1).

(b) [6 marks] For a mesh-function V defined on Ωh := Ωh\∂Ω consider the discrete maximum
norm ‖ · ‖∞,h defined by

‖V ‖∞,h := max
16i,j6N−1

|Vi,j |.

Show that
‖U‖∞,h 6 ‖f‖∞,h.

(c) [6 marks] Define the consistency error ϕi,j of the finite difference scheme constructed in
part (a) at the mesh point (xi, yj), i, j = 1, . . . , N − 1.

Show that
‖u− U‖∞,h 6 ‖ϕ‖∞,h.

Suppose that u ∈ C4(Ω). Deduce that there exists a positive constant C, independent of
h, which you should specify, such that

‖u− U‖∞,h 6 Ch2.

[You may wish to note that, for any a, b ∈ R,

a3 − b3 = (a− b)(a2 + ab+ b2) and a5 − b5 = (a− b)(a4 + a3b+ a2b2 + ab3 + b4)

and that, since x 7→ x3 and x 7→ x5 are monotonically increasing functions, a2+ab+b2 > 0
and a4 + a3b+ a2b2 + ab3 + b4 > 0 for all a, b ∈ R.]

(d) [7 marks] Show that if f(xi, yj) > 0 for all i, j = 1, . . . , N − 1, then Ui,j > 0 for all
i, j = 0, . . . , N .
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5. Consider the initial-value problem

∂u

∂t
+
∂u

∂x
= a

∂2u

∂x2
, −∞ < x <∞, t > 0,

u(x, 0) = u0(x), −∞ < x <∞,
(1)

where a > 0 is a real number, and u0 is a real-valued, bounded and continuous function of
x ∈ (−∞,∞).

Let Z denote the set of all integers and consider a finite difference mesh of spacing ∆x > 0 in
the x-direction and ∆t > 0 in the positive t-direction.

(a) [4 marks] Formulate an implicit finite difference scheme for the numerical solution of
the initial-value problem (1), with Um

j denoting the finite difference approximation of

u(j∆x,m∆t) for j ∈ Z and m = 0, 1, . . ., where ∂2u
∂x2 (j∆x,m∆t) is approximated by

D+
xD
−
x U

m
j := (Um

j+1 − 2Um
j + Um

j−1)/(∆x)2,

and where ∂u
∂x(j∆x,m∆t) is approximated by the backward difference

D−x U
m
j := (Um

j − Um
j−1)/(∆x).

(b) [8 marks] Suppose further that U0
j := u0(xj), j ∈ Z, and that

‖U0‖`2 :=

∆x
∑
j∈Z
|U0

j |2
1/2

,

is finite. Show that the implicit scheme from part (a) is unconditionally practically stable
in the `2 norm.

(c) [4 marks] Formulate an explicit finite difference scheme for the numerical solution of
the initial-value problem (1), with Um

j denoting the finite difference approximation of

u(j∆x,m∆t) for j ∈ Z and m = 0, 1, . . ., where ∂2u
∂x2 (j∆x,m∆t) is approximated by

D+
xD
−
x U

m
j and where ∂u

∂x(j∆x,m∆t) is approximated by D−x U
m
j .

(d) [9 marks] Let ν := ∆t/∆x, µ := ∆t/(∆x)2 and suppose that U0
j is as in part (b). Show

that if

ν + 2aµ 6 1,

then the explicit finite difference scheme from part (c) is practically stable in the `2 norm.

[The discrete version of Parseval’s identity for the semidiscrete Fourier transform may be used
without proof.]
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6. Consider the initial-boundary-value problem

∂u

∂t
+ (1 + u2)

∂u

∂x
= 0, 0 < x <∞, t > 0,

u(x, 0) = u0(x), 0 6 x <∞,
u(0, t) = 0, 0 6 t <∞,

(1)

where u0 is a real-valued continuous function of x such that u0(0) = 0 and

lim
x→∞

|u0(x)| = 0.

Consider a finite difference mesh of spacing ∆x > 0 in the positive x-direction and ∆t > 0 in
the positive t-direction.

(a) [4 marks] With Um
j denoting the finite difference approximation of u(j∆x,m∆t) for j =

0, 1, . . . and m = 0, 1, . . ., construct an explicit finite difference scheme, involving Um+1
j ,

Um
j and Um

j−1 for j = 1, 2, . . . and m = 0, 1, . . ., for the numerical solution of the initial-
boundary-value problem (1).

(b) [7 marks] Let m > 0. Show that if supj>0 |Um
j | <∞ and

(1 + sup
j>0

(Um
j )2)∆t 6 ∆x,

then
sup
j>0
|Um+1

j | 6 sup
j>0
|Um

j |.

(c) [7 marks] Show that, under the stated assumptions on u0, A := maxx∈[0,∞) |u0(x)| <∞.
Hence deduce that if (1 +A2)∆t 6 ∆x, then

sup
j>0
|Um+1

j | 6 sup
j>0
|Um

j |, for all m = 0, 1, . . ..

(d) [7 marks] Show that if (1+A2)∆t 6 ∆x, withA defined as in part (c), then limj→∞ |Um
j | =

0 for each m > 0 and that, therefore, in each of the inequalities above supj>0 can be re-
placed by maxj>0.

Suppose that u0(x) > 0 for all x ∈ [0,∞). Show that, if (1 + A2)∆t 6 ∆x, with A as
defined in part (c), then

0 6 Um
j 6 A, for all j,m = 0, 1, . . ..
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