
DEGREE OF MASTER OF SCIENCE

MATHEMATICAL MODELLING AND SCIENTIFIC COMPUTING

B2 Further Numerical Linear Algebra and Continuous

Optimisation

TRINITY TERM 2019

FRIDAY, 26 April 2019, 9.30am to 12.00pm

You may attempt as many questions as you like but you must answer at least one question in
each section. Your best answer in each section will count, along with your next best answer(s),

making a total of four answers.

Please start the answer to each question in a new answer booklet.
All questions will carry equal marks.

Do not turn this page until you are told that you may do so
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Section A: Further Numerical Linear Algebra

1. Let Πk denote the set of real polynomials of degree k or less.

(a) [5 marks] Let Ax = b be a system of linear equations with A = M − N , where M is
invertible. If {xk} are iterates generated by a simple iteration

Mxk = Nxk−1 + b, k > 1,

show how a sequence {yk} can be computed from {xk} such that

x− yk = pk(M
−1N) (x− x0), pk ∈ Πk with pk(1) = 1.

(b) [4 marks] For the situation as described in part (a), if M = I,

A =

 3 1 1
1 3 1
1 1 3

 , b =

 0
0
0

 , x0 =

 1
0
0

 ,
and p1(z) = −1 + 2z, p2(z) = 2− z2, calculate y1 and y2.

(c) [6 marks] For the situation as described in part (a), what is the advantage of choosing
pk to be a suitably shifted and scaled Chebyshev polynomial when M−1N is symmetric?
You should quote but need not prove any property of the Chebyshev polynomials that
you refer to.

(d) [10 marks] The Conjugate Gradient method is an applicable method for the iterative
solution of the linear system Ax = b when A is real, symmetric and positive definite.
Describe how an incomplete Cholesky factorization can be computed for A. How can the
triangular incomplete factors be employed in a symmetric preconditioned linear system,
the solution of which can yield the solution x of the original linear problem. What is the
general purpose of employing such a preconditioner?
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2. (a) [4 marks] Suppose that B ∈ Rn×n is a general non-singular matrix. Arnoldi’s method
applied to B generates a set of orthonormal vectors {v1, v2, . . . , vk} which are the columns
of the matrix Vk satisfying

BVk = Vk+1Ĥk.

What is the structure of the matrix Ĥk? For what space does {v1, v2, . . . , vk} form an
orthonormal basis?

(b) [8 marks] What iterative method for a linear system Bx = c is based on the use of
Arnoldi’s method and computes iterates xk for which ‖c−Bxk‖2 is minimal? Give a brief
outline of the algorithm for this iterative method.

(c) [6 marks] Suppose that A ∈ Rm×m is a real symmetric matrix. How is the algorithmic
approach in (a), (b) above modified to give a more efficient algorithm for solving Ay = b
with minimal ‖rk‖2 where rk = b − Ayk with {yk} being the iterates? For this modified
algorithm prove that

‖rk‖2 6 min
p∈Πk,p(0)=1

max
j
|p(λj)| ‖r0‖2. (†)

where λj are the eigenvalues of A. If all of the eigenvalues of A are either −1 or 2, sketch
the polynomial p ∈ Π2 which will give the bound for ‖r2‖2 in (†).

(d) [2 marks] A different strategy for finding the solution of the linear system Bx = c as
in (b) above using only an iterative method for symmetric matrices is to consider the
symmetric matrix

A =

[
0 BT

B 0

]
∈ R2n×2n. (?)

How can b ∈ R2n be chosen so that the solution x ∈ Rn to Bx = c can be simply identified
from the vector y ∈ R2n that satisfies Ay = b where A is defined in (?)?

(e) [5 marks] You are given that all of the 2n eigenvalues of the matrix A in (?) are ±σi, i =
1, . . . , n where σi, i = 1, . . . , n are the singular values of B. By considering firstly the
convergence bound (†) for k = 0, 1 and generalising for larger values of k, deduce that the
reduction of ‖rk‖2 with increasing k may occur only on alternate iterations.
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Section B: Continuous Optimization

3. (a) [7 marks] Consider the unconstrained optimization problem

min
x∈Rn

f(x), (1)

where f : Rn → R is twice continuously differentiable. State and prove the second-order
necessary optimality conditions that hold at a local minimizer x∗ of f .

(b) [5 marks] Let f in (1) be defined as

f(x1, x2) = x4
1 − ax2

2 − x2, (2)

where a > 0 is a fixed parameter. Show there is only one stationary point of the function
(2) and establish whether it is a local minimizer, maximizer or saddle point.

(c) [6 marks] Consider adding inequality constraints to problem (1), yielding the problem

min
x∈Rn

f(x) subject to c(x) > 0, (3)

where c : Rn → Rm is twice continuously differentiable. Assuming a suitable constraint
qualification, state (without proof) the KKT conditions and the second-order necessary
optimality conditions that hold at a constrained local minimizer of (3).

(d) [7 marks] Consider problem (3) with f defined in (2) and c (with m = 1) defined as

c(x1, x2) = −x2
1 − x2

2 −
2

a
x2.

Find all the KKT points of problem (3) in this case. For each of the points, using second-
order optimality conditions, or otherwise, establish whether they are a minimizer for the
given problem.

Page 4 of 7



4. Consider the unconstrained optimization problem

min
x∈Rn

f(x), (4)

where f : Rn → R is continuously differentiable and has a Lipschitz continuous gradient ∇f
with Lipschitz constant L > 0. Apply the steepest-descent method with linesearch to (4),
starting from x0 ∈ Rn, where the stepsize is set to αk = α in each iteration k > 0, for some
α > 0 independent of k. We refer to this method as SD-c.

(a) [10 marks] Write down the expression of the new iterate xk+1 obtained from xk using the
SD-c algorithm, where k > 0.

Find the optimal value of α that guarantees the bound on the function decrease in each
SD-c iteration,

f(xk)− f(xk+1) >
1

2L
‖∇f(xk)‖2, k > 0. (5)

[Hint: you may apply (without proof) the following property of functions with Lipschitz
continuous gradient, namely,

f(x+ y) 6 f(x) +∇f(x)T y +
L

2
‖y‖2, for any x and y ∈ Rn.]

Find minimal conditions on f and α such that the SD-c method is globally convergent.

Briefly describe one advantage and one disadvantage of the SD-c method compared to the
steepest descent method with backtracking Armijo linesearch studied in the lectures.

(b) Let f in (4) be defined by

f(x) =
1

2
(ax2

1 + bx2
2), (6)

where x = (x1 x2)T ∈ R2, a and b are given, and a > b > 0. Let SD-c method be applied
to (6) starting from x0 = (1 1)T .

(i) [4 marks] Show that the iterates xk, k > 0, generated by the SD-c method satisfy

xk =
(

(1− αa)k (1− αb)k
)T

. (7)

(ii) [2 marks] Calculate an explicit expression for the optimal value of α you found in (a)
that ensures the bound (5).

(iii) [9 marks] Show that with the stepsize α you calculated in (b)(ii), {xk} converges to
the minimizer x∗ of f ; find the convergence rate and convergence factor.

Relate the factor you found to the one in the local convergence theorem for steepest
descent with exact linesearch.

Briefly mention the potential difficulty that the convergence factor may cause and a
way to overcome it.
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5. Consider
min
x∈Rn

f(x), (8)

where f : Rn → R is continuously differentiable, and let ∇f(·) denote the gradient of f . Apply
a generic trust-region method to (8), where at the kth iterate xk, the step sk is calculated by
solving (exactly or approximately) the following trust-region subproblem

min
s∈Rn

mk(s) := f(xk) + sT∇f(xk) +
1

2
sTBks subject to ‖s‖ 6 ∆k, (9)

where Bk is an n× n symmetric matrix and ∆k > 0 is the trust-region radius.

(a) [8 marks] State a theorem of global convergence for the generic trust-region method with
subproblem (9); all assumptions (on f , the value of the model mk(s

k) and the matrices
Bk) should be stated explicitly.
Briefly give one reason for which the theorem you stated is more general than the cor-
responding convergence result for generic linesearch methods with Newton-like search
directions involving Bk (no need to state the latter theorem).

(b) [6 marks] Prove the theorem you stated in (a); you may assume that for all k > 0,

f(xk)−mk(s
k) >

1

2
‖∇f(xk)‖min

{
∆k,
‖∇f(xk)‖
1 + ‖Bk‖

}
,

and there exists a constant κd > 0 independent of k such that ∆k > κd inf06i6k ‖∇f(xi)‖.
(c) [5 marks] Assume that the symmetric matrix Bk in (9) is updated by a quasi-Newton

formula. Namely, after calculating a successful step sk, we set

Bk+1 = Bk + βuvT ,

for some β ∈ R and u, v ∈ Rn. Using that Bk+1 must be symmetric and satisfies the
secant condition Bk+1sk = ∇f(xk+1)−∇f(xk) := γk, show that

Bk+1 = Bk +
(γk −Bksk)(γk −Bksk)T

(γk −Bksk)T sk
. (10)

(The expression of Bk+1 is the so-called symmetric rank-one formula.)

(d) [6 marks] Let f(x) = 1
2x

Tx, where x ∈ R2 in (c). If B0 = I is the 2× 2 identity matrix,
and assuming that k = 0 is a successful iteration, can B1 be defined by (10)? If B0 = αI
for some α > 0, α 6= 1 do you foresee any difficulties that may occur when using B1

defined by (10) in the second iteration of the generic trust-region method?
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6. (a) Consider the equality-constrained optimization problem,

min
x∈R2

f(x) :=
1

2
x2

1 + x2
2 − 2x2 subject to c(x) := x1 + 4x2 − 1 = 0, (11)

where x = (x1 x2)T . [Hint: you may assume (without proof) that the solution of problem

(11) is x∗ =
(
−1

3
1
3

)T
with optimal Lagrange multiplier u∗ = −1

3 .]

(i) [5 marks] Calculate the global minimizer(s) x(u, σ) of the augmented Lagrangian
function Φ(x, u, σ) associated with (11), namely, Φ(x, u, σ) := f(x)−uc(x)+ 1

2σ (c(x))2,
for u ∈ R and σ > 0.

(ii) [4 marks] Let u be fixed. Show that x(u, σ) converges to the solution x∗ of problem
(11), as σ → 0. Let ∇2

xxΦ(x(u, σ), u, σ) denote the matrix of second derivatives (i.e.,
the Hessian) of Φ(·, u, σ) at x(u, σ). Show that the condition number of the matrix
∇2
xxΦ(x(u, σ), u, σ) grows unboundedly, as σ → 0.

(iii) [5 marks] Let σ > 0 be fixed. Let u be updated by the formula

uk+1 = uk − c(x(uk, σ))

σ
, k > 0, (12)

starting from some u0, and where x(uk, σ) is, like above, the minimizer of Φ(x, uk, σ).
Show that uk → −1/3 linearly, and that x(uk, σ)→ x∗, as k →∞.

(b) Consider the equality-constrained optimization problem,

min
x∈Rn

f(x) subject to c(x) = 0, (13)

where f : Rn → R and c : Rn → Rm with c(x) = (c1(x), . . . , cm(x))T are twice continu-
ously differentiable functions and m 6 n.

(i) [3 marks] Describe the connection between the stationary points of the quadratic
penalty function associated with (13) and a KKT solution of problem (13).

(ii) [6 marks] State the theorem of global convergence for the quadratic penalty method.
Prove that the iterates xk of this method are asymptotically feasible for problem
(13) as k → ∞. [Hint: in your proof, you may assume that the Lagrange multiplier
estimates uk converge to the optimal Lagrange multiplier u∗ of the constraints.]

(iii) [2 marks] Briefly comment on the quadratic penalty method’s disadvantages in con-
nection to the advantages of the augmented Lagrangian’s method.
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