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Numerical Linear Algebra

1. (a) [14 marks] Let A ∈ Rn×n, and let p be a polynomial p(z) =
∑k

i=0 ciz
i. Consider p(A) =∑k

i=0 ciA
i.

(i) Let {λi}ni=1 denote the eigenvalues of A ∈ Rn×n. Find the eigenvalues of A2, and
those of p(A).

(ii) Suppose that A is normal, and q is another polynomial such that |p(z)− q(z)| ⩽ ϵ for
all z ∈ {λ1, . . . , λn}. Prove that

∥p(A)− q(A)∥2 ⩽ ϵ.

[Recall that a normal matrix A has an eigenvalue decomposition A = QΛQ∗, where
Λ = diag(λi) and Q is unitary.]

(iii) Drop the assumption that A is normal in (ii), but suppose A is diagonalisable,
A = XΛX−1. Give an upper bound for ∥p(A) − q(A)∥2 involving ϵ and κ2(X) =
∥X∥2∥X−1∥2.

(iv) Suppose that A is normal, and the eigenvalues of A lie in a disk of radius 1, centered
at 2. Prove that there exists a polynomial p of degree k such that p(0) = 1 and

∥p(A)∥2 ⩽ 2−k. (1)

(b) [11 marks] Consider the GMRES algorithm for solving a linear system Ax = b where
b ∈ Rn. Recall that after k iterations, GMRES finds the solution xk in the Krylov
subspace Span[b, Ab, . . . , Ak−1b] that minimises the residual ∥Axk − b∥2.
(i) Suppose that one obtains the Arnoldi decomposition AQk = Qk+1H̃k where Qk =

[q1, . . . , qk], Qk+1 = [q1, . . . , qk+1] are orthonormal with q1 = b/∥b∥2, and H̃k ∈
R(k+1)×k is upper Hessenberg with nonzero subdiagonal entries (H̃k)i+1,i ̸= 0 for
all i. Prove that Span[q1, . . . , qℓ] = Span[b, Ab, . . . , Aℓ−1b], for ℓ = 1, 2, . . . , k.

(ii) Express Hk ∈ Rk×k, the upper k × k part of H̃k, using Qk and A.

(iii) In the setting of (a)-(iv), show that the GMRES solution xk after k steps satisfies
∥Axk − b∥2 ⩽ 2−k∥b∥2.
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2. Consider the least-squares problem

min
x

∥Ax− b∥2, (1)

where A ∈ Rm×n, b ∈ Rm with m ≫ n. Also let S ∈ Rs×m (s > n) and consider

min
y

∥SAy − Sb∥2. (2)

Assume that rank(A) = rank(SA) = n. Let x∗ denote the solution for (1), and y∗ the solution
for (2).

(a) [8 marks] (i) Express x∗ and y∗ in terms of A, b, and S.

(ii) Given A,SA, b, and Sb, find the computational complexity of solving (1) and (2)
using a classical QR-based method in the big-O notation, e.g. O(sn), O(m2ns).

(b) [17 marks] Let [A, b] = QR be a QR factorisation, where Q ∈ Rm×(n+1) and R ∈
R(n+1)×(n+1).

(i) Show that for any vector v ∈ Rn+1, we have

σn+1(SQ)∥Rv∥2 ⩽ ∥S[A, b]v∥2 ⩽ σ1(SQ)∥Rv∥2,

where σi(SQ) denotes the ith largest singular value of SQ.
[You may use the fact σn+1(B) ⩽ ∥Bx∥2/∥x∥2 ⩽ σ1(B) for any B ∈ Rs×(n+1), and
any vector x (this is a special case of the Courant-Fischer theorem).]

(ii) By choosing a particular v in (i), prove that

∥S(Ax∗ − b)∥2 ⩽ σ1(SQ)∥Ax∗ − b∥2.

Similarly, prove that

∥S(Ay∗ − b)∥2 ⩾ σn+1(SQ)∥Ay∗ − b∥2.

(iii) Using the above results, or otherwise, prove that

∥Ax∗ − b∥2 ⩽ ∥Ay∗ − b∥2 ⩽ κ2(SQ)∥Ax∗ − b∥2.
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Continuous Optimisation

3. Consider the unconstrained optimisation problem

minimise
x∈Rn

f(x), (1)

where f : Rn → R is continuously differentiable with gradient∇f , which is Lipschitz continuous
so that ∥∇f(x)−∇f(y)∥ ⩽ L∥x− y∥ for all x, y ∈ Rn. Assume f is bounded from below. To
solve (1) we consider using a Generic Linesearch Method (GLM) with initial guess x0 ∈ Rn.
Let sk be the search direction, and αk the stepsize, so that the iterates are xk+1 = xk + αksk.

(a) [15 marks] Consider using backtracking Armijo linesearch, with backtracking parameter
τ ∈ (0, 1) and initial stepsize α(0), and finding a stepsize such that the Armijo condition

f(xk+αksk) ⩽ f(xk)+βαk∇f(xk)T sk is satisfied. Below, assume α(0) is suficiently large.

(i) Show that the stepsize αk is bounded from below by τ(1− β) |∇f(xk)T sk|
L∥sk∥2 .

(ii) Let θk be the angle between −∇f(xk) and sk, that is, cos θk = −∇f(xk)T sk

∥∇f(xk)∥∥sk∥ . Using (i),

or otherwise, show that for any ϵ > 0, there exists a k such that ∥∇f(xk)∥∥sk∥ cos θk ⩽ ϵ.

(iii) Is (ii) enough to establish global convergence of GLM to a stationary point, that is,

∥∇f(xk̃)∥ < ϵ for some k̃?

(iv) Show that when sk = −∇f(xk), GLM converges globally to a stationary point.

(b) [10 marks] Consider the use of exact linesearch in GLM.

(i) When f(x) is a quadratic function f(x) = gTx+ 1
2x

THx with H ≻ 0, find the stepsize
αk with exact linesearch that minimises f(xk + αksk), given xk and sk.

(ii) Consider taking sk to be a random vector (e.g. Gaussian vector with iid N(0, 1)
entries). In each iteration, we attempt a number of such random search directions
with exact linesearch, and adopt the one with the lowest objective function value.
Briefly discuss if this is an efficient algorithm in high-dimensional problems n ≫ 1,
referring to the results in (a).

(iii) Show that with exact linesearch we have ∇f(xk+1)T sk = 0, that is, the gradient in
the next step is orthogonal to the previous search direction.
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4. Consider the unconstrained problem minimisex f(x), where f : Rn → R is twice continuously
differentiable.

(a) [15 marks] Let A ∈ Rn×n be a nonsingular matrix and define f̄(y) = f(A−1y).

(i) Find the gradient of f̄ with respect to y, that is, ∇f̄ =
[

∂f̄
∂y1

, ∂f̄
∂y2

, . . . , ∂f̄
∂yn

]T
.

(ii) Show that ∇2f̄ = A−THA−1, where H = ∇2f .

(iii) Suppose that H is positive definite. Find a matrix A such that ∇2f̄ = I.

(iv) Suppose that f is a convex quadratic f(x) = gTx + 1
2x

THx with H ≻ 0. Find the
first iterate x1 with x0 = 0 when the steepest descent method with exact linesearch
is applied to minimisey f̄(y), with the choice of A in (iii).

(b) [10 marks] Recall that the quasi-Newton method approximates ∇2f(xk) by a symmetric
matrix Bk that satisfies the secant equation Bk+1(xk+1 − xk) = ∇f(xk+1)−∇f(xk).

(i) Suppose that Bk is positive definite. Show that−(Bk)−1∇f(xk) is a descent direction.

(ii) In most quasi-Newton methods Bk is updated with a low-rank matrix. Briefly explain
the computational advantages of doing so.
[You may want to refer to the Sherman-Morrison-Woodbury formula, but you need
not write down the precise formula.]

(iii) Consider using a rank-two update Bk+1 = Bk + αuuT + βvvT , where α, β ∈ R and
u, v ∈ Rn. Define δ = xk+1 − xk and γ = ∇f(xk+1) − ∇f(xk), so that the secant
equation can be written as Bk+1δ = γ. By choosing u = Bkδ and v = γ, derive the
update formula for Bk (i.e., find α and β) in the BFGS quasi-Newton method.
[You may assume that Bkδ and γ are linearly independent.]
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5. Consider the constrained convex optimisation problem

min
x∈Rn

f(x) subject to c(x) ⩾ 0 and Ax = b, (1)

where f : Rn → R and c = [c1, c2, . . . , cp]
T : Rn → Rp are continuously differentiable, f is

convex, each ci is concave (i.e., −ci is convex), and A ∈ Rm×n with m ⩽ n and b ∈ Rm.

[Recall that f is convex if f(αx+ (1− α)y) ⩽ αf(x) + (1− α)f(y) for all x, y and α ∈ (0, 1).
As f is differentiable, we also have f(y)− f(x) ⩾ ∇f(x)T (y − x) for all x, y ∈ Rn. ]

(a) [15 marks] (i) Suppose that ∇f(x̃) = 0. Show that x̃ is the minimiser of the uncon-
strained problem minx∈Rn f(x).

(ii) Show that the feasible set Ω of (1) is convex.
[A set Ω is convex if for any x, y ∈ Ω and α ∈ [0, 1], αx+ (1− α)y ∈ Ω.]

(iii) Suppose that (x∗, y, λ) satisfy the KKT conditions for the convex problem (1). Prove
that for any feasible x ∈ Ω,

f(x) ⩾ f(x∗) +

p∑
i=1

λi∇ci(x
∗)T (x− x∗).

[Recall that the KKT conditions for (1) are: ∇f(x∗) = AT y+
∑p

i=1 λi∇ci(x
∗), where

λ = [λ1, λ2, . . . , λp]
T with λi ⩾ 0, λici(x

∗) = 0 for all i, and x∗ ∈ Ω.]

(iv) Using (iii), or otherwise, show that x∗ is a global minimiser of (1).

(b) [10 marks] Consider the Lagrangian L : Rn+m+p → R

L(x, y, λ) := f(x)− yT (Ax− b)−
p∑

i=1

λici(x),

and define g(y, λ) := minx L(x, y, λ).
(i) Show that for any fixed (y, λ) where λ ⩾ 0, we have g(y, λ) ⩽ f(x∗), where x∗ is the

global minimiser of (1). Is the convexity of f and ci needed for this result?

(ii) Assuming that x∗ satisfies the KKT conditions for (1), prove that

max
y,λ⩾0

g(y, λ) = f(x∗).
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6. Consider the trust-region subproblem (TRS)

minimise
s

m(s) = gT s+
1

2
sTHs, subject to ∥s∥ ⩽ ∆. (1)

Here H ∈ Rn×n is symmetric, and g ∈ Rn.

(a) [12 marks] Recall that the KKT conditions for the TRS are: there exists λ∗ ⩾ 0 such
that

(H + λ∗I)s = −g,

λ∗(∥s∥ −∆) = 0,

∥s∥ ⩽ ∆.

(2)

Recall also that the global solution for the TRS satisfies (H +λ∗I) ⪰ 0 in addition to the
KKT conditions.

(i) Briefly explain how the TRS arises in the context of a trust-region method for min-
imising f(x), where f : Rn → R is twice continuously differentiable.

(ii) Suppose the TRS solution s∗ satisfies ∥s∗∥ < ∆. Prove that H ⪰ 0, and find an
expression for s∗ when H ≻ 0.

(iii) Let ŝ(λ) = −(H + λI)−1g. By examining the function ∥ŝ(λ)∥2, or otherwise, show
that there is at most one value of λ∗ for which the KKT conditions hold together
with H + λ∗I ⪰ 0.

(b) [13 marks] Consider the equality-constrained optimization problem,

minimise
x∈Rn

f(x), subject to c(x) = 0, (3)

where f : Rn → R and c : Rn → Rm with c(x) = (c1(x), . . . , cm(x))T (m ⩽ n) are
continuously differentiable. Consider the quadratic penalty method that approximately
minimises Φσk(x) = f(x) − 1

2σk ∥c(x)∥2, for σk > 0, k ⩾ 0 at the kth iteration, where

σk → 0.

(i) Suppose that J(xk) has full rank(J(xk)) = m. Assuming ∥c(xk)∥
σk remains bounded,

show that ∇2
xxΦσ(x) has m eigenvalues that tend to ∞ as k → ∞.

[You may use the fact that ∇2
xxΦσ(x) = ∇2f(x)+ 1

σ

∑m
i=1 ci(x)∇2ci(x)+

1
σJ(x)

TJ(x).]

(ii) Comment briefly on the practical drawbacks of the quadratic penalty method as
σk → 0, along with how the augmented Lagrangian method overcomes it.
[Recall that the augmented Lagrangian method works with the function Φ̃(x, u, σ) =
Φσ(x)− uT c(x). ]

(iii) Assume that xk → x∗, a KKT point of (3). Find an estimate for the Lagrange
multiplier λ using xk, f, σk, and c. Do the same (using also u) when the augmented
Lagrangian method is used.

A14538W1 Page 7 of 7 End of Last Page


