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Section A: Further Numerical Linear Algebra

1. Let Πk be the set of real polynomials of degree at most k.

(a) [8 marks] What is the Krylov subspace Kk(B, r) generated by a matrix B ∈ Rn×n and a
vector r ∈ Rn? If B is nonsingular, rk = b− Bxk, k = 0, 1, . . . and xk − x0 ∈ Kk(B, r0), show
that

ek = pk(B)e0

where ek = B−1b− xk and pk ∈ Πk satisfies pk(0) = 1. What is a Krylov subspace method for
the solution of the linear system of equations Bx = b?

(b) [9 marks] A Krylov subspace method is used which has the defining property that ‖ek‖2BTB
:=

eTkB
TBek is minimal for each k. What is the resulting method called? Prove that, for this

method, we must have

‖ek‖BTB 6 ‖X‖‖X−1‖ min
p∈Πk,p(0)=1

max
j
|p(λj)| ‖e0‖BTB

where B = XΛX−1 is a diagonalisation of B with Λ being the diagonal matrix of the eigen-
values {λj : j = 1, 2, . . . , n} of B and X ∈ Rn×n is nonsingular. You should prove all results
that you need.

(c) [8 marks] If B = BT , prove that

‖ek‖B2 6 min
p∈Πk,p(0)=1

max
j
|p(λj)| ‖e0‖B2 .

What is the Krylov subspace method called that would be employed in this situation? How is
it usually implemented? In the case that n = 2m is even, would you expect faster convergence
with this method if the eigenvalues are

−m,−m+ 1, . . . ,−1, 1, 2, . . . ,m

or
−1, 1, 2, . . . , 2m− 1?
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2. Throughout this question, A ∈ Rn×n is a symmetric, positive definite matrix and b ∈ Rn.

(a) [6 marks] For x ∈ Rn, define

Φ(x) :=
1

2
xTAx− xT b.

Given xk, pk ∈ Rn with pk 6= 0, define the residual rk and show that

α =
pTk rk

pTkApk

minimizes Φ(xk + αpk).

(b) [11 marks] The conjugate gradient method is given by

choose x0 , r0 = b−Ax0 = p0 and for k = 0, 1, 2, . . .

αk = pTk rk/p
T
kApk

if αk = 0 stop, else

xk+1 = xk + αkpk

rk+1 = b−Axk+1

βk = −pTkArk+1/p
T
kApk

pk+1 = rk+1 + βkpk

It is known that, for each ` = 0, 1, . . . , k,

span{p0, p1, . . . , p`} = span{r0, r1, . . . , r`}.

Assuming
rTk rj = 0 and pTkApj = 0 for all j < k,

show that
rTk+1rj = 0 and pTk+1Apj = 0 for all j < k + 1.

(c) [8 marks] From a starting guess x0 = 0, apply two iterations of the conjugate gradient
method to the problem Ax = b, where

A =

 2 −1 0
−1 2 −1
0 −1 2

 and b =

 1
1
1

 ,
to obtain x2. State all relevant variables. Calculate the residual for x2 and comment on
your answer.
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Section B: Continuous Optimization

3. Consider the unconstrained optimization problem

min
x∈Rn

f(x), (1)

where f : Rn → R is continuously differentiable with gradient ∇f . We apply a Generic
Linesearch Method (GLM) with Armijo linesearch to (1), starting from a point x0 ∈ Rn.

(a) [2 marks] State the Armijo linesearch condition that the stepsize αk is required to satisfy.

(b) [12 marks] For each k > 0, let xk be the iterate and sk the search direction generated by
the GLM. Assuming that the stepsize αk satisfies

1 > αk > C
−∇f(xk)T sk

‖sk‖2
,

for some constant C ∈ (0, 1) independent of k, show that either there exists an iteration
l > 0 such that ∇f(xl) = 0 or

lim
k→∞

‖∇f(xk)‖ cos θk = 0, (2)

where θk is the angle between −∇f(xk) and sk; state all the assumptions on f that are
needed.

Derive a suitable assumption on the GLM such that it is a globally convergent method,
namely, limk→∞ ‖∇f(xk)‖ = 0.

(c) [11 marks] In (1), let

f(x) =
1

2

(
ax2

1 + x2
2 + x2

3

)
, (3)

where a is a positive constant.

Assume that the starting point x0 in GLM applied to (3) has x0
i 6= 0 for all i ∈ {1, 2, 3}.

On each iteration k > 0 of the GLM, let sk be chosen as

sk = −
(
axk1 xk2 xk3

)T
. (4)

Show that sk in (4) is a suitable choice of direction in the GLM, and that it yields a
globally convergent method.

Find another set of suitable directions {sk}, k > 0, that make the GLM globally conver-
gent.
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4. Consider the trust-region subproblem

min
s∈Rn

m(s) = f + sT g +
1

2
sTHs subject to ‖s‖ 6 ∆ (5)

where f ∈ R, g ∈ Rn and H is an n×n real symmetric matrix, where ‖·‖ denotes the Euclidean
vector norm and ∆ > 0.

(a) [9 marks] State (without proof) the necessary and sufficient optimality conditions that
hold at a global minimizer s∗ of (5).

Describe how to use these conditions to calculate s∗, identifying the two cases that may
occur.

(b) [10 marks] In (5), let n = 3, f = 0, and

H =

 a 0 0
0 b 0
0 0 c

 and g =

 a
0
d

 . (6)

Using the characterization of global minimizers in part (a) or otherwise, find the global
minimizer of (5) when

a > 0, b > 0, c 6= 0 and d 6= 0.

Briefly describe why the case c < 0 and d = 0 may be difficult.

(c) [6 marks ] Consider problem (5) for general n > 1, and assume that the optimality
conditions you stated in (a) hold at a point s∗. Prove that s∗ is an unconstrained global
minimizer of a quadratic model

M(s) = f + sT g +
1

2
sTBs,

for a certain positive semidefinite matrix B that you must identify.

Using the above, or otherwise, prove that s∗ is a global minimizer of the trust-region
subproblem (5) (this is the sufficiency part of the conditions you stated in (a)).
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5. (a) [9 marks] Consider the following function

f(x) = ax6
1 + bx6

2 + cx6
3, (7)

where x = (x1, x2, x3)T ∈ R3 and a, b and c are positive constants. Apply Newton’s
method (without linesearch or trust-region) to minimizing f , starting at x0 ∈ R3, where
x0
i 6= 0 for all i ∈ {1, 2, 3}.

Calculate the Newton iterates, and establish their convergence and rate of convergence.
Explain why this convergence rate is not quadratic.

(b) [11 marks] Consider the equality-constrained optimization problem,

min
x∈Rn

f(x) subject to c(x) = 0, (8)

where f : Rn → R and c : Rn → Rm with c(x) = (c1(x), . . . , cm(x))T are continuously
differentiable functions, and m 6 n.

Assuming a suitable constraint qualification holds (that you do not need to define), show
that any local minimizer of (8) is a KKT point of (8).

(c) [5 marks] Let A be a p×n real matrix with rows aTi , i ∈ {1, . . . , p}, and b = (b1, . . . , bp)
T ∈

Rp, where p 6 n. For the following problem

max
x∈Rn

p∏
i=1

(aTi x− bi) subject to Ax− b > 0, (9)

show that any local maximizer is also a global maximizer.
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6. (a) [10 marks] Consider the minimization problem

min
x∈R2

x2
1 + x2

2 − 4x1 − 6x2 subject to x2 − x2
1 > 0, (10)

where x = (x1 x2)T . Using direct calculations or otherwise, show that (10) has a unique
global minimizer.

(b) Consider the equality-constrained optimization problem,

min
x∈Rn

f(x) subject to c(x) = 0, (11)

where f : Rn → R and c : Rn → Rm with c(x) = (c1(x), . . . , cm(x))T are continuously
differentiable functions, and m 6 n.

(i) [3 marks] Write down the quadratic penalty function Φσ(x) associated with (11) and
describe the connection between the stationary points of Φσ(x) and a KKT solution
of problem (11).

(ii) [5 marks] State the theorem of global convergence for the quadratic penalty method.
Prove that the approximate minimizer xk of the quadratic penalty function Φσk(x)
that is calculated on each iteration k of the method is asymptotically feasible for
problem (11) as k →∞.
Hint: in your proof, you may assume that the Lagrange multiplier estimate yk gen-
erated by the penalty method converges to the optimal Lagrange multiplier of the con-
straints as k →∞.

(iii) [5 marks ] Give conditions on (11) such that the Lagrange multiplier estimate yk

grows unboundedly with k. Assuming the iterates xk of the penalty method converge
to a point x∗, establish the nature of x∗ in this case.

(iv) [2 marks] Briefly describe a difficulty that quadratic penalty method may encounter
and a way to overcome it.
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