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Numerical Linear Algebra

1. (a) [16 marks] State the pseudo-code to compute both the unitary matrix Q and the
unitary similar upper Hessenberg matrix H of a general matrix A such that A =
QHQ∗. Determine the number of flops, to leading order, required to compute both
Q and H.

(b) [9 marks] Show that, for any matrix A ∈ Rm×n, there exist unitary matrices U
and V such that A = UBV T , where B is nonzero for all entries except Bii for
i = 1, . . . ,min(m,n) and Bi+1,i for i = 1, . . . ,min(m,n)− 1.
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2. (a) [11 marks] Consider an algorithm of the form x(k+1) = x(k) + αkA(b − Ax(k))
to compute an approximate solution of Ax = b for A hermitian, A∗ = A. Let
e(k) = x−x(k) denote the error at iteration k. How should αk be defined such that
it minimizes ‖e(k+1)‖2? Provide a bound on the error of the form

‖e(k+1)‖2 6 δ‖e(k)‖2,

where δ is a function of the condition number of A.

(b) [5 marks] The kth iterate of GMRES, with x(0) = 0, minimizes ‖r(k)‖2 over the
Kyrlov subpace b+ span(Ab,A2b, · · · , Ak−1b) = b+Kk(b, A), namely,

x(k) = argminz‖b−Az‖, subject to z ∈ Kk(b, A).

By computing Ajb for j = 0, ..., k − 1 explain why GMRES does not compute the
Krylov subspace directly.

(c) [9 marks] The kth iterate of GMRES uses an orthogonal basis, say Qk, of

b+ span(Ab,A2b, · · · , Ak−1b) = b+Kk(b, A).

Explain a computationally efficient method by which Qk+1 can be computed for
the next iteration of GMRES.
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Continuous Optimisation

3. Consider the following unconstrained optimization problem

min
x∈Rn

f(x), (1)

where f : Rn → R is continuously differentiable and bounded below.

(a) [3 marks] Describe the Generic Linesearch Method (GLM) applied to (1).

(b) [6 marks] On each iteration of the GLM, consider using the Armijo condition to
calculate a stepsize αk > 0 such that

f(xk + αks
k) 6 f(xk) + βαk∇f(xk)T sk, (2)

where β ∈ (0, 1), xk is the current iterate and sk is the step. Show that there exists
αk > 0 such that (2) is satisfied for all α ∈ [0, αk].

(c) [5 marks] Describe the backtracking technique that can be used on the kth iter-
ation of the GLM to calculate a stepsize αk > 0 satisfying the Armijo condition
given in (2).

Prove an upper bound on the number of backtracking iterations that are needed
to satisfy the Armijo condition in (2).

(d) [4 marks] Assume that the gradient ∇f(·) of f is Lipschitz continuous on Rn.
Show that, for any x ∈ Rn and s ∈ Rn,

f(x+ d) 6 f(x) + dT∇f(x) + c · L · ‖d‖2, (3)

where L is the Lipschitz constant of the gradient ∇f , c > 0 is a constant you
should specify, and ‖ · ‖ denotes the Euclidean norm.

(e) [7 marks] Apply the steepest descent method with exact linesearch to problem (1).
Using (3) for suitable choices of x and d, or otherwise, show that this method is
globally convergent, namely, that the gradient at the iterates converges to zero as
the number of iterations increase.
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4. Consider the unconstrained optimization problem

min
x∈Rn

f(x), (1)

where f : Rn → R is twice continuously differentiable. Let ∇f(·) and ∇2f(·) denote
the gradient and the matrix of second-derivatives (ie, the Hessian) of f , respectively.

(a) [5 marks] Let x∗ be a stationary point of f . Apply Newton’s method for opti-
mization to (1), without linesearch. State the conditions required on f and its
derivatives, as well as on some Newton iterate, such that Newton’s method con-
verges, with quadratic rate, to x∗.

(b) [6 marks] Consider the following function

f(x) = xm1 + 2xp2 + 3xq3, (2)

where x = (x1, x2, x3)
T ∈ R3, and m > 2, p > 2 and q > 2 are natural numbers.

Apply Newton’s method (without linesearch) to minimizing f , starting at x0 ∈ R3,
where x0i 6= 0 for all i ∈ {1, 2, 3}.
Calculate the Newton iterates, and establish their convergence and rate of conver-
gence.
Explain why this convergence rate is not quadratic.
Find the values of m, p and q that give the fastest convergence.

(c) Assume that the function f in (1) is a least squares, namely,

min
x∈Rn

f(x) =
1

2
‖r(x)‖2, (3)

where r : Rn → Rm is twice-continuously differentiable with m > n and ‖ · ‖
denotes the Euclidean norm.

(i) [8 marks] Write down an expression for the gradient ∇f(x) and the Hessian
matrix ∇2f(x) of f in (3) as a function of the residual r(x) and its derivatives.

Using these, and an approach using linear least squares, present two ways to
derive the expression of the Gauss-Newton search direction skGN from a point
xk for (3).

Give a condition on the Jacobian of r at xk such that skGN is a descent direc-
tion for f ; justify your answer.

(ii) [6 marks] State a theorem of global convergence for the Gauss-Newton method
with backtracking Armijo linesearch. [Hint: There is no need to state/define
the backtracking-Armijo linesearch as part of the theorem statement.]
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5. (a) [12 marks] Consider the function

h(x) = −1

2
x21 +

1

2
x1x

2
2 +

8

3
x61, (1)

where x = (x1 x2)
T ∈ R2.

(i) Find all stationary points of the function h(x) for x ∈ R2.

(ii) Investigate the nature of each of the stationary points, namely, establish
whether they are local minimizers, maximizers or saddle points.

(iii) Does h(x) have any global minima or maxima? Justify your answer.

(b) [13 marks] Consider the equality-constrained optimization problem,

min
x∈Rn

f(x) subject to c(x) = 0, (2)

where f : Rn → R and c : Rn → Rm with c(x) = (c1(x), . . . , cm(x))T are continu-
ously differentiable functions, and m 6 n.

(i) Assuming a suitable constraint qualification holds (that you do not need to
define), show that any local minimizer of (2) is a KKT point of (2).

(ii) Briefly describe the role of the constraint qualification in this proof and give
one example of a suitable constraint qualification for problem (2).
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6. (a) [7 marks] Assume that D is a diagonal and positive-definite n × n matrix. We
define the D-norm of a vector s such that ‖s‖2D = sTDs. Find necessary and
sufficient conditions for s∗ to be a global minimiser of the problem,

min
s∈Rn

m(s) = sT g +
1

2
sTHs subject to ‖s‖D 6 ∆, (1)

where ∆ > 0, g ∈ Rn and H is a real symmetric n× n matrix; and aT b represents
the Euclidean inner product of two vectors a and b in Rn.

(b) Consider the equality-constrained optimization problem,

min
x∈Rn

f(x) subject to c(x) = 0, (2)

where f : Rn → R and c : Rn → Rm with c(x) = (c1(x), . . . , cm(x))T are continu-
ously differentiable functions.

(i) [3 marks] Describe the connections between the local minimizers of problem
(2) and the local minimizers of the quadratic penalty function associated with
(2).

(ii) [6 marks] State the theorem of global convergence for the quadratic penalty
method applied to problem (2). Prove that the iterates xk of this method are
asymptotically feasible for problem (2) as k → ∞. [Hint: in your proof, you
may assume that the Lagrange multiplier estimates yk converge to the optimal
Lagrange multiplier y∗ of the constraints.]

(iii) [5 marks] Assume that on each major iteration of the quadratic penalty method,
a generic trust region method is employed to minimize the corresponding
quadratic penalty function. State (without proof) conditions under which
this (inner) minimization can be terminated successfully, irrespective of the
starting point.

(iv) [4 marks] In the conditions of part (b)(iii), assume that the (usual) trust region
constraint in the inner minimization is scaled by a matrix D as in (1) that
is allowed to change iteratively. In the context of quadratic penalty method,
describe the potential advantages of using (1), instead of the usual formulation
of the trust-region constraint, and propose a suitable choice of D in this case.
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