Minicourse on BV functions

University of Oxford Panu Lahti

June 16, 2016

University of Oxford Panu Lahti Minicourse on BV functions

- L. Ambrosio, N. Fusco, and D. Pallara, Functions of bounded variation and free discontinuity problems, Oxford Mathematical Monographs. The Clarendon Press, Oxford University Press, New York, 2000.
- L. C. Evans and R. F. Gariepy, *Measure theory and fine* properties of functions, Studies in Advanced Mathematics. CRC Press, Boca Raton, FL, 1992. viii+268 pp.
- L. Simon, Lectures on geometric measure theory, Proceedings of the Centre for Mathematical Analysis, Australian National University, 3. Australian National University, Centre for Mathematical Analysis, Canberra, 1983. vii+272 pp.

σ -algebras and positive measures

Let X be a topological space.

- A collection *E* of subsets of *X* is a *σ*-algebra if Ø ∈ *E*,
 X \ *E* ∈ *E* whenever *E* ∈ *E*, and for any sequence (*E_h*) ⊂ *E*, we have ⋃_{*h*∈ℕ} *E_h* ∈ *E*.
- We say that µ : E → [0,∞] is a positive measure if µ(Ø) = 0 and for any sequence (E_h) of pairwise disjoint elements of E,

$$\mu\left(\bigcup_{h\in\mathbb{N}}E_h\right)=\sum_{h\in\mathbb{N}}\mu(E_h).$$

We say that M ⊂ X is µ-negligible if there exists E ∈ E such that M ⊂ E and µ(E) = 0. The expression "almost everywhere", or "a.e.", means outside a negligible set. The measure µ extends to the collection of µ-measurable sets, i.e. those that can be presented as E ∪ M with E ∈ E and M µ-negligible.

Vector measures

Let N ∈ N. We say that μ: E → R^N is a vector measure if μ(Ø) = 0 and for any sequence (E_h) of pairwise disjoint elements of E

$$\mu\left(\bigcup_{h\in\mathbb{N}}E_h\right)=\sum_{h\in\mathbb{N}}\mu(E_h).$$

If µ is a vector measure on (X, E), for any given E ∈ E we define the *total variation measure* |µ|(E) as

$$\sup\Bigg\{\sum_{h\in\mathbb{N}}|\mu(E_h)|:\ E_h\in\mathcal{E}\ \text{pairwise disjoint},\ E=\bigcup_{h\in\mathbb{N}}E_h\Bigg\}.$$

We can show that $|\mu|$ is then a finite positive measure on (X, \mathcal{E}) , that is, $|\mu|(X) < \infty$.

Borel and Radon measures

- We denote by B(X) the σ-algebra of Borel subsets of X, i.e. the smallest σ-algebra containing the open subsets of X.
- A positive measure on (X, B(X)) is called a Borel measure. If it is finite on compact sets, it is called a positive Radon measure.
- A vector Radon measure is an ℝ^N-valued set function that is a vector measure on (K, B(K)) for every compact set K ⊂ X. We say that it is a finite Radon measure if it is a vector measure on (X, B(X)).

Lebesgue and Hausdorff measures

We will denote by \mathcal{L}^n the *n*-dimensional Lebesgue measure in \mathbb{R}^n . Sometimes we write |A| instead of $\mathcal{L}^n(A)$ for $A \subset \mathbb{R}^n$.

We denote by ω_k the volume of the unit ball in \mathbb{R}^k .

Definition

Let $k \in [0, \infty)$ and let $A \subset \mathbb{R}^n$. The k-dimensional Hausdorff measure of A is given by

$$\mathcal{H}^k(A) := \lim_{\delta \to 0} \mathcal{H}^k_{\delta}(A),$$

where for any 0 $<\delta\leq\infty$,

$$\mathcal{H}^k_\delta(A) := rac{\omega_k}{2^k} \inf \left\{ \sum_{i \in \mathbb{N}} [\operatorname{diam}(E_i)]^k : \operatorname{diam}(E_i) < \delta, \ A \subset igcup_{i \in \mathbb{N}} E_i
ight\}$$

with the convention diam(\emptyset) = 0.

Theorem

Let μ be a positive Radon measure in an open set Ω , and let ν be an \mathbb{R}^N -valued Radon measure in Ω . Then for μ -a.e. $x \in \Omega$ the limit

$$f(x) := \lim_{r \to 0} \frac{\nu(B(x,r))}{\mu(B(x,r))}$$

exists in \mathbb{R}^N and ν can be presented by the Lebesgue-Radon-Nikodym decomposition $\nu = f \mu + \nu^s$, where $\nu^s = \nu \bot E$ for some $E \subset \Omega$ with $\mu(E) = 0$.

The symbol Ω will always denote an open set in \mathbb{R}^n .

Definition

Let $u \in L^1(\Omega)$. We say that u is a function of bounded variation in Ω if the distributional derivative of u is representable by a finite Radon measure in Ω , i.e.

$$\int_{\Omega} u \frac{\partial \psi}{\partial x_i} \, dx = - \int_{\Omega} \psi \, dD_i u \qquad \forall \psi \in C^{\infty}_c(\Omega), \quad i = 1, \dots, n$$

for some \mathbb{R}^n -valued Radon measure $Du = (D_1u, \ldots, D_nu)$ in Ω . The vector space of all functions of bounded variation is denoted by $BV(\Omega)$.

We can always write $Du = \sigma |Du|$, where |Du| is a positive Radon measure and $\sigma = (\sigma_1, \ldots, \sigma_n)$ with $|\sigma(x)| = 1$ for |Du|-a.e. $x \in \Omega$.

- $W^{1,1}(\Omega) \subset BV(\Omega)$, since for $u \in W^{1,1}(\Omega)$ we have $Du = \nabla u \mathcal{L}^n$.
- On the other hand, for the Heaviside function $\chi_{(0,\infty)} \in BV_{loc}(\mathbb{R})$ we have $Du = \delta_0$, and $u \notin W^{1,1}_{loc}(\mathbb{R})$.
- We say that $u \in BV_{loc}(\Omega)$ if $u \in BV(\Omega')$ for every $\Omega' \subseteq \Omega$, i.e. every open Ω' with $\overline{\Omega'}$ compact and contained in Ω .

Let $\rho \in C_c^{\infty}(\mathbb{R}^n)$ with $\rho(x) \ge 0$ and $\rho(-x) = \rho(x)$ for all $x \in \mathbb{R}^n$, supp $\rho \subset B(0, 1)$, and

$$\int_{\mathbb{R}^n} \rho(x) \, dx = 1.$$

Choose $\varepsilon > 0$. Let $\rho_{\varepsilon}(x) := \varepsilon^{-n} \rho(x/\varepsilon)$, and

$$\Omega_{\varepsilon} := \{x \in \Omega : \operatorname{dist}(x, \partial \Omega) > \varepsilon\}.$$

Then for any $u \in L^1(\Omega)$, we define for any $x \in \Omega_{\varepsilon}$

$$u*
ho_{\varepsilon}(x):=\int_{\Omega}u(y)
ho_{\varepsilon}(x-y)\,dy=\varepsilon^{-n}\int_{\Omega}u(y)
ho\left(rac{x-y}{\varepsilon}
ight)\,dy.$$

Mollification, part II

Similarly, for any vector Radon measure $\mu = (\mu_1, \dots, \mu_N)$ on Ω , we define

$$\mu*
ho_arepsilon(x)=\int_\Omega
ho_arepsilon(x-y)\,d\mu(y),\qquad x\in\Omega_arepsilon.$$

We can show that $\mu *
ho_arepsilon \in \mathcal{C}^\infty(\Omega_arepsilon)$ and

$$\nabla(\mu * \rho_{\varepsilon}) = \mu * \nabla \rho_{\varepsilon}.$$

If $v \in \operatorname{Lip}_{\operatorname{loc}}(\Omega)$, then $\nabla(v * \rho_{\varepsilon}) = \nabla v * \rho_{\varepsilon}$. Also, given any $v \in L^{1}(\Omega)$ and a vector Radon measure μ on Ω , from Fubini's theorem it follows easily that

$$\int_{\Omega} (\mu * \rho_{\varepsilon}) \mathsf{v} \, d\mathcal{L}^n = \int_{\Omega} \mathsf{v} * \rho_{\varepsilon} \, d\mu$$

if either μ is concentrated in Ω_{ε} or $v = 0 \mathcal{L}^{n}$ -a.e. outside Ω_{ε} .

Mollification of BV functions

• If $u \in BV(\Omega)$, we have

$$\nabla(u*\rho_{\varepsilon})=Du*\rho_{\varepsilon}\qquad\text{in }\Omega_{\varepsilon}.$$

To see this, let $\psi \in C_c^{\infty}(\Omega)$ and $\varepsilon \in (0, \operatorname{dist}(\operatorname{supp} \psi, \partial \Omega))$. Then

$$\int_{\Omega} (u * \rho_{\varepsilon}) \nabla \psi \, d\mathcal{L}^{n} = \int_{\Omega} u(\rho_{\varepsilon} * \nabla \psi) \, d\mathcal{L}^{n} = \int_{\Omega} u \nabla (\rho_{\varepsilon} * \psi) \, d\mathcal{L}^{n}$$
$$= -\int_{\Omega} \rho_{\varepsilon} * \psi \, dDu = -\int_{\Omega} \psi \, Du * \rho_{\varepsilon} \, d\mathcal{L}^{n}.$$

If u ∈ BV(ℝⁿ) and Du = 0, u is constant, which we can see as follows. For any ε, u * ρ_ε ∈ C[∞](ℝⁿ) and ∇(u * ρ_ε) = Du * ρ_ε = 0. Thus u * ρ_ε is constant for every ε > 0, and since u * ρ_ε → u in L¹(ℝⁿ) as ε → 0, we must have that u is constant.

Lipschitz test functions

Let $u \in BV(\Omega)$ and $\psi \in Lip_c(\Omega)$. Then for small enough $\varepsilon > 0$ we have $\psi * \rho_{\varepsilon} \in C_c^{\infty}(\Omega)$, and thus

$$\int_{\Omega} u \frac{\partial (\psi * \rho_{\varepsilon})}{\partial x_i} \, d\mathcal{L}^n = - \int_{\Omega} \psi * \rho_{\varepsilon} \, dD_i u, \quad i = 1, \dots, n.$$

As $\varepsilon \to$ 0, we have $\psi * \rho_{\varepsilon} \to \psi$ uniformly and

$$\frac{\partial(\psi*\rho_{\varepsilon})}{\partial x_{i}} = \frac{\partial\psi}{\partial x_{i}}*\rho_{\varepsilon} \to \frac{\partial\psi}{\partial x_{i}}$$

almost everywhere, so by the Lebesgue dominated convergence theorem we get

$$\int_{\Omega} u \frac{\partial \psi}{\partial x_i} \, d\mathcal{L}^n = - \int_{\Omega} \psi \, dD_i u, \quad i = 1, \dots, n.$$

That is, we can also use Lipschitz functions as test functions in the definition of BV.

Lemma

If $\phi \in \operatorname{Lip}_{\operatorname{loc}}(\Omega)$ and $u \in \operatorname{BV}_{\operatorname{loc}}(\Omega)$, we have $u\phi \in \operatorname{BV}_{\operatorname{loc}}(\Omega)$ with $D(u\phi) = \phi Du + u\nabla\phi \mathcal{L}^n$.

Proof.

Clearly $u\phi \in L^1_{loc}(\Omega)$. We have for any $\psi \in C^{\infty}_c(\Omega)$ and i = 1, ..., n

$$\int_{\Omega} u \phi \frac{\partial \psi}{\partial x_i} \, dx = \int_{\Omega} u \frac{\partial (\phi \psi)}{\partial x_i} \, dx - \int_{\Omega} u \frac{\partial \phi}{\partial x_i} \, \psi \, dx$$
$$= -\int_{\Omega} \phi \, \psi \, dD_i u - \int_{\Omega} u \frac{\partial \phi}{\partial x_i} \, \psi \, dx$$

since $\phi \psi \in \operatorname{Lip}_{c}(\Omega)$.

The variation, part I

Definition

Let $u \in L^1_{loc}(\Omega)$. We define the *variation* of u in Ω by

$$V(u,\Omega):=\sup\left\{\int_{\Omega}u\operatorname{div}\psi\,d\mathcal{L}^n:\,\psi\in [\mathcal{C}^1_c(\Omega)]^n,\,|\psi|\leq 1
ight\}.$$

Theorem

Let $u \in L^1(\Omega)$. Then $u \in BV(\Omega)$ if and only if $V(u, \Omega) < \infty$. In addition, $V(u, \Omega) = |Du|(\Omega)$.

Proof. Let $u \in BV(\Omega)$. Then for any $\psi \in [C_c^1(\Omega)]^n$ with $|\psi| \leq 1$,

$$\int_{\Omega} u \operatorname{div} \psi \, d\mathcal{L}^n = -\sum_{i=1}^n \int_{\Omega} \psi_i \, dD_i u = -\sum_{i=1}^n \int_{\Omega} \psi_i \sigma_i \, d|Du|$$

with $|\sigma| = 1 |Du|$ -almost everywhere, so that $V(u, \Omega) \leq |Du|(\Omega)$.

The variation, part II

Assume then that $V(u,\Omega) < \infty$. By homogeneity we have

$$\left|\int_{\Omega} u\operatorname{div}\psi\,d\mathcal{L}^n
ight|\leq V(u,\Omega)\|\psi\|_{L^\infty(\Omega)}\qquadorall\psi\in C^1_c(\Omega).$$

Since $C_c^1(\Omega)$ is dense in $C_c(\Omega)$ and thus in $C_0(\Omega)$ (which is just the closure of $C_c(\Omega)$, in the $\|\cdot\|_{L^{\infty}(\Omega)}$ -norm) we can find a continuous linear functional L on $C_0(\Omega)$ coinciding with

$$\psi\mapsto\int_{\Omega}u\operatorname{div}\psi\,d\mathcal{L}^{r}$$

on $C_c^1(\Omega)$ and satisfying $||L|| \leq V(u, \Omega)$. Then the Riesz representation theorem says that there exists an \mathbb{R}^n -valued Radon measure $\mu = (\mu_1, \dots, \mu_n)$ with $|\mu|(\Omega) = ||L||$ and

$$L(\psi) = \sum_{i=1}^n \int_{\Omega} \psi_i \, d\mu_i \qquad \forall \psi \in [C_0(\Omega)]^n.$$

Hence we have

$$\int_{\Omega} u \operatorname{div} \psi \, d\mathcal{L}^n = \sum_{i=1}^n \int_{\Omega} \psi_i \, d\mu_i \qquad \forall \psi \in [C_c^1(\Omega)]^n,$$

so that $u \in \mathrm{BV}(\Omega)$, $Du = -\mu$, and

$$|Du|(\Omega) = |\mu|(\Omega) = ||L|| \leq V(u, \Omega).$$

Lemma

If
$$u_h \to u$$
 in $L^1_{loc}(\Omega)$, then $V(u, \Omega) \leq \liminf_{h \to \infty} V(u_h, \Omega)$.

Proof.

For any $\psi \in [C^1_c(\Omega)]^n$, we have

$$\int_{\Omega} u \operatorname{div} \psi \, d\mathcal{L}^n = \lim_{h \to \infty} \int_{\Omega} u_h \operatorname{div} \psi \, d\mathcal{L}^n \leq \liminf_{h \to \infty} V(u_h, \Omega).$$

Taking the supremum over such ψ we obtain the result.

 $\bullet~\ensuremath{\mathsf{The}}\xspace$ BV norm is defined as

$$\|u\|_{\mathrm{BV}(\Omega)} := \int_{\Omega} |u| \, d\mathcal{L}^n + |Du|(\Omega).$$

- If $u \in W^{1,1}(\Omega)$, then $|Du|(\Omega) = ||\nabla u||_{L^1(\Omega)}$, so that $||u||_{\mathrm{BV}(\Omega)} = ||u||_{W^{1,1}(\Omega)}$.
- Smooth functions are not dense in BV(Ω), since the Sobolev space W^{1,1}(Ω) ⊊ BV(Ω) is complete.

Approximation by smooth functions

While smooth functions are not dense in $\mathrm{BV}(\Omega)$, we have the following.

Theorem

Let $u \in BV(\Omega)$. Then there exists a sequence $(u_h) \subset C^{\infty}(\Omega)$ with $u_h \to u$ in $L^1(\Omega)$ and

$$\lim_{h\to\infty}\int_{\Omega}|\nabla u_h|\,d\mathcal{L}^n=|Du|(\Omega).$$

Proof. Fix $\delta > 0$. Note that by lower semicontinuity, for any sequence $(u_h) \subset C^{\infty}(\Omega)$ with $u_h \to u$ in $L^1(\Omega)$, we have

$$|Du|(\Omega) \leq \liminf_{h\to\infty} \int_{\Omega} |\nabla u_h| \, d\mathcal{L}^n.$$

Thus we need to construct a function $v_{\delta} \in C^{\infty}(\Omega)$ such that

$$\int_{\Omega} |u - v_{\delta}| \, d\mathcal{L}^n < \delta, \qquad \int_{\Omega} |\nabla v_{\delta}| \, d\mathcal{L}^n < |Du|(\Omega) + \delta.$$

Approximation by smooth functions, proof I

Define $\Omega_0 := \emptyset$ and

$$\Omega_k := \{x \in \Omega \cap B(0,k) : \operatorname{dist}(x,\partial\Omega) > 1/k\}, \quad k \in \mathbb{N}.$$

Define $V_k := \Omega_{k+1} \setminus \overline{\Omega_{k-1}}$, $k \in \mathbb{N}$. Then $\bigcup_{k \in \mathbb{N}} V_k = \Omega$.

Then pick a partition of unity $\varphi_k \in C_c^{\infty}(V_k)$, with $0 \le \varphi_k \le 1$ and $\sum_{k \in \mathbb{N}} \varphi_k \equiv 1$ in Ω . For every $k \in \mathbb{N}$ there exists $\varepsilon_k > 0$ such that $\operatorname{supp}((u\varphi_k) * \rho_{\varepsilon_k}) \subset V_k$ and

$$\int_{\Omega} \left[|(u\varphi_k) * \rho_{\varepsilon_k} - u\varphi_k| + |(u\nabla\varphi_k) * \rho_{\varepsilon_k} - u\nabla\varphi_k| \right] d\mathcal{L}^n < 2^{-k}\delta.$$

Define $v_{\delta} := \sum_{k \in \mathbb{N}} (u \varphi_k) * \rho_{\varepsilon_k}$, so that $v_{\delta} \in C^{\infty}(\Omega)$ and

$$\int_{\Omega} |v_{\delta} - u| \, d\mathcal{L}^n \leq \sum_{k \in \mathbb{N}} \int_{\Omega} |(u\varphi_k) * \rho_{\varepsilon_k} - u\varphi_k| \, d\mathcal{L}^n < \delta.$$

Approximation by smooth functions, proof II

We also have

$$\nabla v_{\delta} = \sum_{k \in \mathbb{N}} \nabla \left((u\varphi_k) * \rho_{\varepsilon_k} \right) = \sum_{k \in \mathbb{N}} \left(D(u\varphi_k) \right) * \rho_{\varepsilon_k}$$
$$= \sum_{k \in \mathbb{N}} \left(\varphi_k Du \right) * \rho_{\varepsilon_k} + \sum_{k \in \mathbb{N}} \left(u \nabla \varphi_k \right) * \rho_{\varepsilon_k}$$
$$= \sum_{k \in \mathbb{N}} \left(\varphi_k Du \right) * \rho_{\varepsilon_k} + \sum_{k \in \mathbb{N}} \left[\left(u \nabla \varphi_k \right) * \rho_{\varepsilon_k} - u \nabla \varphi_k \right].$$

$$\implies \int_{\Omega} |\nabla v_{\delta}| \, d\mathcal{L}^{n} < \sum_{k \in \mathbb{N}} \int_{\Omega} (\varphi_{k} |Du|) * \rho_{\varepsilon_{k}} \, d\mathcal{L}^{n} + \delta$$
$$= \sum_{k \in \mathbb{N}} \int_{\Omega} \varphi_{k} \, d|Du| + \delta$$
$$= |Du|(\Omega) + \delta.$$

Weak* convergence of BV functions, part I

Definition

Let $u, u_h \in BV(\Omega)$. We say that (u_h) weakly* converges to u in $BV(\Omega)$ if $u_h \to u$ in $L^1(\Omega)$ and $Du_h \stackrel{*}{\rightharpoonup} Du$ in Ω , i.e.

$$\lim_{h\to\infty}\int_{\Omega}\psi\,dDu_h=\int_{\Omega}\psi\,dDu\qquad\forall\psi\in C_0(\Omega).$$

Here $C_0(\Omega)$ is the completion of $C_c(\Omega)$ in the sup norm.

Theorem

Let $u, u_h \in BV(\Omega)$. Then u_h weakly* converges to u in $BV(\Omega)$ if and only if $u_h \to u$ in $L^1(\Omega)$ and (u_h) is a bounded sequence in $BV(\Omega)$, i.e.

$$\sup_{h\in\mathbb{N}}\left\{\int_{\Omega}|u_{h}|\,d\mathcal{L}^{n}+|Du_{h}|(\Omega)\right\}<\infty.$$

Proof.

" \Leftarrow ": By the weak* compactness of Radon measures, for any subsequence h(k) we have a further subsequence (not relabeled) such that $Du_{h(k)} \stackrel{*}{\rightharpoonup} \mu$ in Ω for a Radon measure μ . We need to show that $\mu = Du$. We have for every $k \in \mathbb{N}$

$$\int_{\Omega} u_{h(k)} \frac{\partial \psi}{\partial x_i} \, dx = - \int_{\Omega} \psi \, dD_i u_{h(k)} \quad \forall \psi \in C_c^{\infty}(\Omega), \ i = 1, \dots, n.$$

By letting $k \to \infty$, we obtain

$$\int_{\Omega} u \frac{\partial \psi}{\partial x_i} \, dx = - \int_{\Omega} \psi \, d\mu_i \quad \forall \psi \in C^{\infty}_{c}(\Omega), \ i = 1, \dots, n,$$

so that $\mu = Du$. Since this was true for any subsequence h(k), we must have $Du_h \stackrel{*}{\rightharpoonup} Du$.

" \Rightarrow ": The measures Du_h are bounded linear functionals on $C_0(\Omega)$, and for any $\psi \in C_0(\Omega)$,

$$\sup_{h\in\mathbb{N}}\left|\int_{\Omega}\psi\,dDu_{h}\right|<\infty,$$

since

$$\int_{\Omega} \psi \, d\mathsf{D} u_h \to \int_{\Omega} \psi \, d\mathsf{D} u.$$

Thus the Banach-Steinhaus theorem gives $\sup_{h\in\mathbb{N}} |Du_h|(\Omega) < \infty$.

Definition

Let $u, u_h \in BV(\Omega)$. We say that u_h strictly converges to u in $BV(\Omega)$ if $u_h \to u$ in $L^1(\Omega)$ and $|Du_h|(\Omega) \to |Du|(\Omega)$ as $h \to \infty$.

- Strict convergence of BV functions always implies weak* convergence, by our characterization of the latter.
- However, the converse does not hold: sin(hx)/h weakly* converges in BV((0, 2π)) to 0 as h → ∞, but does not converge strictly because |Du_h|((0, 2π)) = 4 for each h.
- We showed previously that for every u ∈ BV(Ω) there exists (u_h) ⊂ C[∞](Ω) with u_h → u strictly in BV(Ω).

Let $k, n \in \mathbb{N}$ with $k \leq n$. For a differentiable mapping $f : \mathbb{R}^k \to \mathbb{R}^n$, denote by df_x the $n \times k$ -matrix whose rows are the gradient vectors of the components of f at the point $x \in \mathbb{R}^k$. Also, define the Jacobian by

$$\mathbf{J}_k df_x := \sqrt{\det(df_x^* \circ df_x)}.$$

Theorem

Let $f : \mathbb{R}^k \to \mathbb{R}^n$ be a one-to-one Lipschitz function. Then for any Borel measurable nonnegative function g we have

$$\int_{\mathbb{R}^n} g(f^{-1}(y)) \, d\mathcal{H}^k(y) = \int_{\mathbb{R}^k} g(x) \mathbf{J}_k df_x \, dx.$$

Definition

A bounded open set $\Omega \subset \mathbb{R}^n$ is a BV extension domain if for any open set $A \supset \overline{\Omega}$ there exists a linear and bounded extension operator $T : BV(\Omega) \to BV(\mathbb{R}^n)$ satisfying

•
$$Tu=0$$
 in $\mathbb{R}^n\setminus A$ for any $u\in \mathrm{BV}(\Omega)$,

•
$$|DTu|(\partial \Omega) = 0$$
 for any $u \in BV(\Omega)$.

Theorem

A bounded open set $\Omega \subset \mathbb{R}^n$ with Lipschitz boundary is a BV extension domain.

Proof omitted.

Lemma

Let $u \in BV(\Omega)$ and let $K \subset \Omega$ be a compact set. Then

$$\int_{\mathcal{K}} |u * \rho_{\varepsilon} - u| \, d\mathcal{L}^n \leq \varepsilon |Du|(\Omega) \qquad \forall \varepsilon \in (0, \operatorname{dist}(\mathcal{K}, \partial \Omega)).$$

Proof. We find $(u_h) \subset C^{\infty}(\Omega)$ with $u_h \to u$ in $L^1(\Omega)$ and $|Du_h|(\Omega) \to |Du|(\Omega)$. Thus we can in fact assume $u \in C^{\infty}(\Omega)$. Pick $x \in K$ and $y \in B(0,1)$, and denote $v(t) := u(x - \varepsilon ty)$, so that

$$u(x-\varepsilon y)-u(x)=\int_0^1 v'(t)\,dt=-\varepsilon\int_0^1 \langle
abla u(x-\varepsilon ty),y
angle\,dt.$$

Compactness in BV part II

By Fubini we get

$$\int_{\mathcal{K}} |u(x-\varepsilon y)-u(x)| \, dx \leq \varepsilon \int_{0}^{1} \int_{\mathcal{K}} |\nabla u(x-\varepsilon ty)| \, dx \, dt \leq \varepsilon |Du|(\Omega)$$

Multiplying by $\rho(y)$ and integrating we obtain, by again using Fubini

$$\int_{K} \left(\int_{\mathbb{R}^{n}} |u(x - \varepsilon y) - u(x)| \rho(y) \, dy \right) \, dx \leq \varepsilon |Du|(\Omega).$$

Thus

$$\int_{\mathcal{K}} |u * \rho_{\varepsilon}(x) - u(x)| \, dx = \int_{\mathcal{K}} \left| \int_{\mathbb{R}^n} [u(x - \varepsilon y) - u(x)] \rho(y) \, dy \right| \, dx$$
$$\leq \varepsilon |Du|(\Omega).$$

Theorem

Let (u_h) be a norm-bounded sequence in $BV(\mathbb{R}^n)$, i.e.

$$\sup_{h\in\mathbb{N}}\left\{\int_{\mathbb{R}^n}|u_h|\,d\mathcal{L}^n+|Du_h|(\mathbb{R}^n)\right\}<\infty.$$

Then for some subsequence we have $u_{h(k)} \to u \in BV(\mathbb{R}^n)$ locally weakly* in $BV(\mathbb{R}^n)$ as $k \to \infty$.

Proof. Fix $\varepsilon > 0$ and for each $h \in \mathbb{N}$, let $u_{h,\varepsilon} := u_h * \rho_{\varepsilon}$. Then

$$\|u_{h,\varepsilon}\|_{L^{\infty}(\mathbb{R}^n)} \leq \|u_h\|_{L^1(\mathbb{R}^n)} \|\rho_{\varepsilon}\|_{L^{\infty}(\mathbb{R}^n)}$$

and since $\nabla u_{h,\varepsilon} = u_h * \nabla \rho_{\varepsilon}$,

$$\|\nabla u_{h,\varepsilon}\|_{L^{\infty}(\mathbb{R}^n)} \leq \|u_h\|_{L^1(\mathbb{R}^n)} \|\nabla \rho_{\varepsilon}\|_{L^{\infty}(\mathbb{R}^n)}.$$

Compactness in BV part IV

Thus with ε fixed, $(u_{h,\varepsilon})$ is an equibounded and equicontinuous sequence. Fix a bounded set $U \subset \mathbb{R}^n$. By Arzelà-Ascoli we can find a subsequence converging uniformly on U. By a diagonal argument we find a subsequence h(k) such that $u_{h(k),\varepsilon}$ converges uniformly on U for any $\varepsilon = 1/p$, $p \in \mathbb{N}$.

Thus we have

$$\begin{split} \limsup_{k,k'\to\infty} &\int_{U} |u_{h(k)} - u_{h(k')}| \, d\mathcal{L}^n \leq \limsup_{k,k'\to\infty} \int_{U} |u_{h(k)} - u_{h(k),1/p}| \, d\mathcal{L}^n \\ &+ \limsup_{k,k'\to\infty} \int_{U} |u_{h(k),1/p} - u_{h(k'),1/p}| \, d\mathcal{L}^n \\ &+ \limsup_{k,k'\to\infty} \int_{U} |u_{h(k'),1/p} - u_{h(k')}| \, d\mathcal{L}^n \\ &\leq \frac{2}{p} \sup_{h\in\mathbb{N}} |Du_h|(\mathbb{R}^n). \end{split}$$

Since we can take $p \in \mathbb{N}$ arbitrarily large, we have

$$\lim_{k,k'\to\infty}\int_U |u_{h(k)}-u_{h(k')}|\,d\mathcal{L}^n=0,$$

so that $u_{h(k)}$ is a Cauchy sequence in $L^1(U)$ and necessarily converges in $L^1(U)$ to some function u. By the lower semicontinuity of the variation, we have $u \in BV(U)$, and by our previous characterization of weak* convergence in BV we have that $u_{h(k)}$ weakly* converges to u in BV(U).

Finally, by another diagonal argument we find a subsequence h(k) (not relabeled) for which this convergence takes place in every bounded open $U \subset \mathbb{R}^n$.

Corollary

Let $\Omega \subset \mathbb{R}^n$ be a bounded BV extension domain, and let $(u_h) \subset BV(\Omega)$ be a norm-bounded sequence. Then for some subsequence we have $u_{h(k)} \to u \in BV(\Omega)$ weakly* in $BV(\Omega)$.

Proof.

Extend each function u_h to $Tu_h \in BV(\mathbb{R}^n)$. Then by the previous theorem, for a subsequence we have $Tu_{h(k)} \to u \in BV(\mathbb{R}^n)$ locally weakly* in $BV(\mathbb{R}^n)$, in particular $Tu_{h(k)} \to u$ weakly* in $BV(\Omega)$, since Ω is bounded. Thus $u_{h(k)} \to u$ weakly* in $BV(\Omega)$. As before, Ω will always denote an open set in \mathbb{R}^n .

We denote by χ_E the characteristic function of a set $E \subset \mathbb{R}^n$, i.e. the function that takes the value 1 in the set E and the value 0 outside it.

Definition

Let $E \subset \mathbb{R}^n$ be a \mathcal{L}^n -measurable set. The *perimeter* of E in Ω is the variation of χ_E in Ω , i.e.

$${\mathcal P}(E,\Omega):=\sup\left\{\int_E \operatorname{div}\psi\,d{\mathcal L}^n: \ \ \psi\in [C^1_c(\Omega)]^n, \ \ |\psi|\leq 1
ight\}.$$

We say that *E* is of finite perimeter in Ω if $P(E, \Omega) < \infty$.

Example

If an open set E has a C^1 -boundary inside Ω and $\mathcal{H}^{n-1}(\partial E \cap \Omega) < \infty$, then by the Gauss-Green theorem

$$\int_{E} \operatorname{div} \psi \, d\mathcal{L}^{n} = - \int_{\partial E \cap \Omega} \langle \nu_{E}, \psi \rangle \, d\mathcal{H}^{n-1} \quad \forall \psi \in [C_{c}^{1}(\Omega)]^{n}, \quad (1)$$

where ν_E is the inner unit normal of E, so that $P(E,\Omega) \leq \mathcal{H}^{n-1}(\partial E \cap \Omega)$ — in fact by picking suitable ψ , we can show that equality holds.

Basic properties

For any set E that is of finite perimeter in Ω, the distributional derivative Dχ_E is an ℝⁿ-valued Radon measure in Ω, with polar decomposition Dχ_E = ν_E|Dχ_E|, so that

$$\int_{E} \operatorname{div} \psi \, d\mathcal{L}^{n} = - \int_{\Omega} \langle \psi, \nu_{E} \rangle \, d |D\chi_{E}| \quad \forall \psi \in [C_{c}^{1}(\Omega)]^{n}.$$

Here $|\nu_E| = 1 |D\chi_E|$ -a.e. and $|D\chi_E|(\Omega) = P(E, \Omega)$. Then we can define P(E, B) to be the same as $|D\chi_E|(B)$ for any Borel set $B \subset \Omega$.

- Thus χ_E ∈ BV_{loc}(Ω), but not necessarily χ_E ∈ BV(Ω) since we might not have χ_E ∈ L¹(Ω).
- Moreover, $P(E, \Omega) = P(\mathbb{R}^n \setminus E, \Omega)$.

We also have the following algebra property.

Lemma

Given sets E, F of finite perimeter in Ω , we have

 $P(E \cup F, \Omega) + P(E \cap F, \Omega) \le P(E, \Omega) + P(F, \Omega).$

Proof. We find sequences $u_h, v_h \in C^{\infty}(\Omega)$ with $u_h \to \chi_E$ in $L^1(\Omega), v_h \to \chi_F$ in $L^1(\Omega), 0 \le u_h, v_h \le 1$, and

$$\lim_{h\to\infty}\int_{\Omega}|\nabla u_h|\,d\mathcal{L}^n=P(E,\Omega),\ \ \lim_{h\to\infty}\int_{\Omega}|\nabla v_h|\,d\mathcal{L}^n=P(F,\Omega).$$

Algebra property continued

Then $u_h v_h \to \chi_{E \cap F}$ and $u_h + v_h - u_h v_h \to \chi_{E \cup F}$ in $L^1_{loc}(\Omega)$, and thus by the lower semicontinuity of the perimeter

$$P(E \cap F, \Omega) + P(E \cup F, \Omega)$$

$$\leq \liminf_{h \to \infty} \left(\int_{\Omega} |\nabla(u_h v_h)| \, d\mathcal{L}^n + \int_{\Omega} |\nabla(u_h + v_h - u_h v_h)| \, d\mathcal{L}^n \right)$$

$$\leq \liminf_{h \to \infty} \int_{\Omega} |\nabla u_h| \, (|v_h| + |1 - v_h|) + |\nabla v_h| \, (|u_h| + |1 - u_h|) \, d\mathcal{L}^n$$

$$= \liminf_{h \to \infty} \left(\int_{\Omega} |\nabla u_h| \, d\mathcal{L}^n + \int_{\Omega} |\nabla v_h| \, d\mathcal{L}^n \right)$$

$$= P(E, \Omega) + P(F, \Omega).$$

For any $u \in BV(\Omega)$, denoting $E_t := \{x \in \Omega : u(x) > t\}$, $t \in \mathbb{R}$, we have $|Du|(\Omega) = \int_{-\infty}^{\infty} P(E_t, \Omega) dt.$

Coarea formula, proof part l

Proof. First we prove the result for $u \in C^{\infty}(\Omega)$. By the classical coarea formula we have

$$\int_{\Omega} \mathbf{C}_1 du \, d\mathcal{L}^n = \int_{-\infty}^{\infty} \mathcal{H}^{n-1}(\Omega \cap u^{-1}(t)) \, dt,$$

where $\mathbf{C}_1 du = |\nabla u|$. By Sard's theorem we know that $\{\nabla u = 0\} \cap u^{-1}(t) = \emptyset$ for a.e. $t \in \mathbb{R}$. For these values of t we have that the boundary $\partial E_t = u^{-1}(t)$ is smooth and so

$$\mathcal{H}^{n-1}(\Omega \cap u^{-1}(t)) = \mathcal{H}^{n-1}(\Omega \cap \partial E_t) = P(E_t, \Omega)$$

by (1). Thus

$$\int_{\Omega} |\nabla u| \, d\mathcal{L}^n = \int_{-\infty}^{\infty} P(E_t, \Omega) \, dt.$$

Let then $u \in BV(\Omega)$. We prove the inequality " \geq ". Take a sequence $(u_h) \subset C^{\infty}(\Omega)$ with $u_h \to u$ strictly in $BV(\Omega)$. Define $E_t^h := \{x \in \Omega : u_h(x) > t\}$. Then

$$|u_h(x) - u(x)| = \int_{\min\{u_h(x), u(x)\}}^{\max\{u_h(x), u(x)\}} dt = \int_{-\infty}^{\infty} |\chi_{E_t^h}(x) - \chi_{E_t}(x)| dt,$$

so that by Fubini

$$\int_{\Omega} |u_h(x) - u(x)| \, dx = \int_{-\infty}^{\infty} \int_{\Omega} |\chi_{E_t^h}(x) - \chi_{E_t}(x)| \, dx \, dt.$$

Thus by picking a subsequence (not relabeled) we get $\chi_{E_t^h} \to \chi_{E_t}$ in $L^1(\Omega)$ as $h \to \infty$, for a.e. $t \in \mathbb{R}$. By the lower semicontinuity of the perimeter and Fatou's lemma we have

$$\int_{-\infty}^{\infty} P(E_t, \Omega) dt \leq \int_{-\infty}^{\infty} \liminf_{h \to \infty} P(E_t^h, \Omega) dt$$
$$\leq \liminf_{h \to \infty} \int_{-\infty}^{\infty} P(E_t^h, \Omega) dt$$
$$= \liminf_{h \to \infty} |Du_h|(\Omega)$$
$$= |Du|(\Omega).$$

Coarea formula, proof part IV

Finally, we prove the inequality " \leq ". We can see that for any $x\in \Omega,$

$$u(x) = \int_0^\infty \chi_{E_t}(x) \, dt - \int_{-\infty}^0 (1 - \chi_{E_t}(x)) \, dt.$$

Then, given any $\psi \in [\mathcal{C}^1_c(\Omega)]^n$ with $|\psi| \leq 1$, we estimate

$$\begin{split} &\int_{\Omega} u(x) \operatorname{div} \psi(x) \, dx \\ &= \int_{\Omega} \left(\int_{0}^{\infty} \chi_{E_{t}}(x) \, dt - \int_{-\infty}^{0} (1 - \chi_{E_{t}}(x)) \, dt \right) \operatorname{div} \psi(x) \, dx \\ &= \int_{0}^{\infty} \int_{\Omega} \chi_{E_{t}}(x) \operatorname{div} \psi(x) \, dx \, dt - \int_{-\infty}^{0} \int_{\Omega} (1 - \chi_{E_{t}}(x)) \operatorname{div} \psi(x) \, dx \, dt \\ &= \int_{-\infty}^{\infty} \int_{\Omega} \chi_{E_{t}}(x) \operatorname{div} \psi(x) \, dx \, dt \leq \int_{-\infty}^{\infty} P(E_{t}, \Omega) \, dt. \end{split}$$

Let $u \in BV(\Omega)$. If we define

$$\mu(B) := \int_{-\infty}^{\infty} |D\chi_{E_t}|(B) \, dt$$

for any Borel set $B \subset \Omega$, it is straightforward to check that μ is a positive Borel measure. Since |Du| and μ agree on open subsets of Ω , we have

$$|Du|(B) = \int_{-\infty}^{\infty} |D\chi_{E_t}|(B) dt$$

for any Borel set $B \subset \Omega$. We also have

$$Du(B) = \int_{-\infty}^{\infty} D\chi_{E_t}(B) dt$$

for any Borel set $B \subset \Omega$, which we see as follows.

Coarea formula, consequences II

We use Fubini and then the fact that $D\chi_{E_t}$ is a finite Radon measure for a.e. $t \in \mathbb{R}$ to obtain for any $\psi \in C_c^{\infty}(\Omega)$

$$\begin{split} \int_{\Omega} \psi \, dDu &= -\int_{\Omega} u(x) \nabla \psi(x) \, dx \\ &= -\int_{\Omega} \left(\int_{0}^{\infty} \chi_{E_{t}}(x) \, dt \right) \nabla \psi(x) \, dx \\ &+ \int_{\Omega} \left(\int_{-\infty}^{0} (1 - \chi_{E_{t}}(x)) \, dt \right) \nabla \psi(x) \, dx \\ &= -\int_{0}^{\infty} \left(\int_{\Omega} \chi_{E_{t}}(x) \nabla \psi(x) \, dx \right) \, dt \\ &+ \int_{-\infty}^{0} \left(\int_{\Omega} (1 - \chi_{E_{t}}(x)) \nabla \psi(x) \, dx \right) \, dt \\ &= \int_{-\infty}^{\infty} \left(\int_{\Omega} \psi \, dD \chi_{E_{t}} \right) \, dt. \end{split}$$

For any $u \in BV(\mathbb{R}^n)$ we have

$$\|u\|_{L^{n/(n-1)}(\mathbb{R}^n)} \leq C_S |Du|(\mathbb{R}^n)$$

for some constant $C_S = C_S(n)$.

From now on, let us assume that $n \ge 2$. In the one-dimensional setting, easier proofs and stronger results are available, but we will not consider these.

Sobolev inequality, proof

Proof.

Pick functions $(u_h) \subset C^{\infty}(\mathbb{R}^n)$ with $u_h \to u$ in $L^1(\mathbb{R}^n)$, $u_h(x) \to u(x)$ for \mathcal{L}^n -a.e. $x \in \mathbb{R}^n$ and $|Du_h|(\mathbb{R}^n) \to |Du|(\mathbb{R}^n)$. Then by Fatou's lemma and the Gagliardo-Nirenberg-Sobolev inequality, we have

$$\left(\int_{\mathbb{R}^n} |u|^{\frac{n}{n-1}} d\mathcal{L}^n\right)^{\frac{n-1}{n}} = \left(\int_{\mathbb{R}^n} \liminf_{h \to \infty} |u_h|^{\frac{n}{n-1}} d\mathcal{L}^n\right)^{\frac{n-1}{n}}$$
$$\leq \liminf_{h \to \infty} \left(\int_{\mathbb{R}^n} |u_h|^{\frac{n}{n-1}} d\mathcal{L}^n\right)^{\frac{n-1}{n}}$$
$$\leq C_S \liminf_{h \to \infty} |Du_h|(\mathbb{R}^n)$$
$$= C_S |Du|(\mathbb{R}^n).$$

For any bounded \mathcal{L}^n -measurable set $E \subset \mathbb{R}^n$, we have

$$\mathcal{L}^n(E)^{(n-1)/n} \leq C_S P(E,\mathbb{R}^n).$$

Proof.

Choose $u = \chi_E$ in the Sobolev inequality.

For any ball B(x, r) and any $u \in BV(B(x, r))$ we have

$$\left(\int_{B(x,r)} |u - u_{B(x,r)}|^{n/(n-1)} d\mathcal{L}^n\right)^{(n-1)/n} \leq C_P |Du|(B(x,r))$$

for some $C_P = C_P(n)$, where

$$u_{B(x,r)} := \int_{B(x,r)} u \, d\mathcal{L}^n := \frac{1}{\mathcal{L}^n(B(x,r))} \int_{B(x,r)} u \, d\mathcal{L}^n.$$

Proof.

Follows from the usual Poincaré inequality for Sobolev functions.

For any ball B(x, r) and any \mathcal{L}^n -measurable set $E \subset \mathbb{R}^n$, we have

 $\min \{|B(x,r) \cap E|, |B(x,r) \setminus E|\}^{(n-1)/n} \leq 2C_P P(E, B(x,r)).$

Proof. We have

$$\begin{split} \int_{B(x,r)} |\chi_E - (\chi_E)_{B(x,r)}|^{n/(n-1)} \, d\mathcal{L}^n \\ &= |B(x,r) \cap E| \left(\frac{|B(x,r) \setminus E|}{|B(x,r)|} \right)^{\frac{n}{n-1}} \\ &+ |B(x,r) \setminus E| \left(\frac{|B(x,r) \cap E|}{|B(x,r)|} \right)^{\frac{n}{n-1}} \end{split}$$

٠

If $|B(x,r) \cap E| \le |B(x,r) \setminus E|$, then by the Poincaré inequality

$$C_P P(E, B(x, r)) \ge \left(\int_{B(x, r)} |\chi_E - (\chi_E)_{B(x, r)}|^{\frac{n}{n-1}} d\mathcal{L}^n \right)^{\frac{n-1}{n}}$$
$$\ge \left(\frac{|B(x, r) \setminus E|}{|B(x, r)|} \right) |B(x, r) \cap E|^{(n-1)/n}$$
$$\ge \frac{1}{2} \min\{|B(x, r) \cap E|, |B(x, r) \setminus E|\}^{(n-1)/n}$$

The case $|B(x, r) \cap E| \ge |B(x, r) \setminus E|$ is handled analogously.

 \square

Lemma

Let E be a set of finite perimeter in \mathbb{R}^n , and let $x \in \mathbb{R}^n$. Then for a.e. r > 0, we have

$$\mathsf{P}(E \cap B(x,r),\mathbb{R}^n) \leq \mathsf{P}(E,\overline{B}(x,r)) + m'(r),$$

where $m(r) := |E \cap B(x, r)|$.

In particular, if $P(E, \partial B(x, r)) = 0$, then

 $P(E,B(x,r)) + P(E \cap B(x,r), \partial B(x,r)) \leq P(E,B(x,r)) + m'(r),$

and so

$$P(E \cap B(x,r), \partial B(x,r)) \le m'(r). \tag{2}$$

Proof. We can assume that x = 0. Fix r > 0 such that the derivative m'(r) exists; note that the derivative of a monotone function on the real line exists almost everywhere.

For $\sigma > 0$, set

$$\gamma_\sigma(t) := egin{cases} 1 & ext{if } t \leq r, \ 1+rac{r-t}{\sigma} & ext{if } r \leq t \leq r+\sigma, \ 0 & ext{if } t \geq r+\sigma. \end{cases}$$

Localization proof part II

Then define $v_{\sigma}(y) := \chi_{E}(y)\gamma_{\sigma}(|y|), y \in \mathbb{R}^{n}$. By the Leibniz rule $Dv_{\sigma} = \gamma_{\sigma}(|y|) D\chi_{E} + \chi_{E}(y)\gamma_{\sigma}'(|y|) \frac{y}{|y|} \mathcal{L}^{n}$

and thus

$$|Dv_{\sigma}|(\mathbb{R}^{n}) \leq |D\chi_{E}|(B(x, r+\sigma)) + \sigma^{-1} \int_{B(x, r+\sigma)\setminus B(x, r)} \chi_{E} d\mathcal{L}^{n},$$

and since $v_{\sigma} \to \chi_{E \cap B(x,r)}$ in $L^{1}(\mathbb{R}^{n})$ as $\sigma \to 0$, by lower semicontinuity

$$P(E \cap B(x, r), \mathbb{R}^n) \leq \liminf_{\sigma \to 0} |Dv_{\sigma}|(\mathbb{R}^n)$$
$$\leq |D\chi_E|(\overline{B}(x, r)) + m'(r).$$

Reduced boundary

Let $E \subset \mathbb{R}^n$ be a set of locally finite perimeter in \mathbb{R}^n .

Definition

We define the *reduced boundary* $\mathcal{F}E$ as the set of points $x \in \text{supp} |D\chi_E|$ such that the limit

$$\nu_{E}(x) := \lim_{r \to 0} \frac{D\chi_{E}(B(x,r))}{|D\chi_{E}|(B(x,r))}$$

exists and satisfies $|\nu_E(x)| = 1$.

- According to the polar decomposition of vector measures (based on the Besicovitch differentiation theorem), we have $|D\chi_E|(\mathbb{R}^n \setminus \mathcal{F}E) = 0$ and $D\chi_E = \nu_E |D\chi_E|$.
- If $x \in \mathcal{F}E$, then

$$\mathcal{L}^n(B(x,r)\cap E)>0, \ \mathcal{L}^n(B(x,r)\setminus E)>0$$

for all r > 0.

Reduced boundary and Lebesgue points

Note that for $x \in \mathcal{F}E$,

$$\begin{aligned} \frac{1}{2|D\chi_E|(B(x,r))} &\int_{B(x,r)} |\nu_E(y) - \nu_E(x)|^2 \, d|D\chi_E|(y) \\ &= 1 - \frac{2}{2|D\chi_E|(B(x,r))} \int_{B(x,r)} \langle \nu_E(y), \nu_E(x) \rangle \, d|D\chi_E|(y) \\ &= 1 - \left\langle \frac{D\chi_E(B(x,r))}{|D\chi_E|(B(x,r))}, \nu_E(x) \right\rangle \to 0 \end{aligned}$$

as $r \to 0$, since $x \in \mathcal{F}E$. Thus

$$\lim_{r\to 0} \frac{1}{|D\chi_E|(B(x,r))|} \int_{B(x,r)} |\nu_E(y) - \nu_E(x)| \, d|D\chi_E|(y) = 0.$$

Lemma

Let E be a set of finite perimeter in \mathbb{R}^n and let $x \in \mathcal{F}E$. Then there exist $r_0 > 0$, and constants $\alpha, \beta > 0$ depending only on n, such that

$$P(E, B(x, r)) \le \alpha r^{n-1} \qquad \forall r \in (0, r_0),$$

 $\min\{|B(x,r)\cap E|, |B(x,r)\setminus E||\} \geq \beta r^n \qquad \forall r \in (0,r_0).$

Proof. By the fact that $x \in \mathcal{F}E$, we can choose $r_0 > 0$ such that

$$|D\chi_E|(B(x,r)) \le 2|D\chi_E(B(x,r))| \qquad \forall r \in (0,2r_0).$$
(3)

A priori estimates on perimeter and volume part II

By the algebra property of sets of finite perimeter, $E \cap B(x, r)$ is of finite perimeter in \mathbb{R}^n . In general, for any bounded set F of finite perimeter in \mathbb{R}^n , we have (recall that ρ_{ε} denote standard mollifiers)

$$D\chi_F(\mathbb{R}^n) = \int_{\mathbb{R}^n} D\chi_F * \rho_\varepsilon \, d\mathcal{L}^n$$
$$= \int_{\mathbb{R}^n} \nabla(\chi_F * \rho_\varepsilon) \, d\mathcal{L}^n = 0$$

We also note that for a.e. r > 0, we have $P(E, \partial B(x, r)) = 0$. In total, for a.e. $r \in (0, 2r_0)$ we have

$$\begin{aligned} \mathsf{P}(E,B(x,r)) &\leq 2|D\chi_E(B(x,r))| & \text{by (3)} \\ &= 2|D\chi_{E\cap B(x,r)}(B(x,r))| \\ &= 2|D\chi_{E\cap B(x,r)}(\partial B(x,r))| & \text{since } D\chi_{E\cap B(x,r)}(\mathbb{R}^n) = 0 \\ &\leq 2\mathsf{P}(E\cap B(x,r),\partial B(x,r)) \\ &\leq 2m'(r) & \text{by (2).} \end{aligned}$$

A priori estimates on perimeter and volume part III

Thus for any $r \in (0, r_0)$,

$$P(E, B(x, r)) \leq \frac{1}{r} \int_{r}^{2r} P(E, B(x, t)) dt \leq \frac{2m(2r)}{r} \leq 2^{n+1} \omega_n r^{n-1}.$$

This gives the first estimate. Then, by using the isoperimetric inequality as well as the localization lemma,

$$m(r)^{1-1/n} = |E \cap B(x,r)|^{1-1/n}$$

$$\leq C_S P(E \cap B(x,r), \mathbb{R}^n)$$

$$\leq C_S [P(E, B(x,r)) + m'(r)]$$

$$\leq C_S(3m'(r))$$

for a.e. $r \in (0, r_0)$, so that $(m^{1/n})'(r) \ge 1/(3nC_S)$ for a.e. $r \in (0, r_0)$, so that $m(r) \ge r^n/(3nC_S)^n$ for all $r \in (0, r_0)$. Finally, we can run the same argument with $|B(x, r) \setminus E|$ instead of $|B(x, r) \cap E|$.

De Giorgi structure theorem

Let $E \subset \mathbb{R}^n$ be a set of finite perimeter in \mathbb{R}^n . For each $x \in \mathcal{F}E$, define the hyperplane

$$H(x) := \{y \in \mathbb{R}^n : \langle \nu_E(x), y - x \rangle = 0\}$$

and the half-spaces

$$egin{aligned} H^+(x) &:= \{y \in \mathbb{R}^n: \, \langle
u_E(x), y - x
angle \geq 0\}, \ H^-(x) &:= \{y \in \mathbb{R}^n: \, \langle
u_E(x), y - x
angle \leq 0\}. \end{aligned}$$

With $x \in \mathcal{F}E$ fixed, define also

$$E_r := \{(y - x)/r + x : y \in E\}.$$

Theorem

Let $x \in \mathcal{F}E$. Then $\chi_{E_r} \to \chi_{H^+(x)}$ in $L^1_{loc}(\mathbb{R}^n)$ as $r \searrow 0$.

Blow-up proof part I

Proof. First of all, we may assume x = 0 and $\nu_E(0) = e_n$. Then $E_r = \{y/r : y \in E\}$, and furthermore let $\psi_s(y) := \psi(sy)$, s > 0. For any $\psi \in [C_c^1(\mathbb{R}^n)]^n$, we have

$$\int_{\mathbb{R}^n} \chi_{E_r} \operatorname{div} \psi \, d\mathcal{L}^n = \frac{1}{r^{n-1}} \int_{\mathbb{R}^n} \chi_E \operatorname{div} \psi_{r^{-1}} \, d\mathcal{L}^n.$$
(4)

Fix any M > 0. Noting that $\psi \in [C_c^1(B(0, M))]^n$ if and only if $\psi_{r^{-1}} \in [C_c^1(B(0, rM))]^n$ and taking the supremum (with $|\psi| \le 1$), we obtain

$$P(E_r, B(0, M)) = \frac{P(E, (B(0, rM)))}{r^{n-1}}.$$
(5)

Blow-up proof part II

Thus by the a priori estimate on perimeter, we obtain

$$P(E_r, B(0, M)) \le \alpha \frac{(rM)^{n-1}}{r^{n-1}} = \alpha M^{n-1}$$

for sufficiently small r > 0.

Take an arbitrary sequence $r_h \searrow 0$. By the above, $P(E_{r_h}, B(0, M))$ is a bounded sequence. By compactness, we find a subsequence (not relabeled) such that $\chi_{E_{r_h}} \rightarrow v \in BV(B(0, M))$ weakly* in BV(B(0, M)). We can also assume that $\chi_{E_{r_h}}(x) \rightarrow v(x)$ for \mathcal{L}^n -a.e. $x \in B(0, M)$, so that $v = \chi_F$ for some set F.

This can be done for every M > 0, and so by a diagonal argument, we have for some set F of locally finite perimeter in \mathbb{R}^n that $\chi_{E_{r_h}} \to \chi_F$ locally weakly* in $BV(\mathbb{R}^n)$.

Blow-up proof part III

We also obtain from (4) for any r > 0

$$\int_{\mathbb{R}^n} \langle \psi, \nu_{E_r} \rangle \, d | D\chi_{E_r} | = \frac{1}{r^{n-1}} \int_{\mathbb{R}^n} \langle \psi_{r^{-1}}, \nu_E \rangle \, d | D\chi_E |,$$

so that for any M > 0

$$\int_{B(0,M)} \nu_{E_r} \, d|D\chi_{E_r}| = \frac{1}{r^{n-1}} \int_{B(0,rM)} \nu_E \, d|D\chi_E|.$$

Thus

$$\begin{aligned} \frac{1}{|D\chi_{E_{r_h}}|(B(0,M))} \int_{B(0,M)} \nu_{E_{r_h}} d|D\chi_{E_{r_h}}| \\ &= \frac{1}{|D\chi_E|(B(0,r_hM))} \int_{B(0,r_hM)} \nu_E d|D\chi_E| \to \nu_E(0) = e_n \end{aligned}$$

as $h \to \infty$.

Blow-up proof part IV

Moreover, if $|D\chi_F|(\partial B(0, M)) = 0$ (which is true for a.e. M > 0) then by the fact that $D\chi_{E_{r_h}} \xrightarrow{*} D\chi_F$ locally in \mathbb{R}^n ,

$$D\chi_{F}|(B(0, M)) \leq \liminf_{h \to \infty} |D\chi_{E_{r_{h}}}|(B(0, M))$$

$$\leq \limsup_{h \to \infty} |D\chi_{E_{r_{h}}}|(B(0, M))$$

$$= \limsup_{h \to \infty} \int_{B(0, M)} \langle e_{n}, \nu_{E_{r_{h}}} \rangle d|D\chi_{E_{r_{h}}}$$

$$= \int_{B(0, M)} \langle e_{n}, \nu_{F} \rangle d|D\chi_{F}|.$$

Since $|\nu_F| = 1 |D\chi_F|$ -almost everywhere, we must have $\nu_F = e_n |D\chi_F|$ -almost everywhere in B(0, M), and then also

$$|D\chi_F|(B(0,M)) = \lim_{h \to \infty} |D\chi_{E_{r_h}}|(B(0,M)).$$
(6)

The above is true for a.e. M > 0. Thus $D\chi_F = e_n |D\chi_F|$, and so by mollifying we obtain

$$\nabla(\chi_{\mathsf{F}}*\rho_{\varepsilon})=(D\chi_{\mathsf{F}})*\rho_{\varepsilon}=(|D\chi_{\mathsf{F}}|*\rho_{\varepsilon})e_{\mathsf{n}},$$

so that $\chi_F * \rho_{\varepsilon}(y) = \gamma_{\varepsilon}(y_n)$ for all $y \in \mathbb{R}^n$, for some increasing $\gamma_{\varepsilon} : \mathbb{R} \to \mathbb{R}$.

Blow-up proof part VI

Letting $\varepsilon \to 0$, we obtain $\chi_F(y) = \gamma(y_n)$ for \mathcal{L}^n -a.e. $y \in \mathbb{R}^n$, for some increasing $\gamma : \mathbb{R} \to \mathbb{R}$. But $\chi_F(y) \in \{0, 1\}$ for all $y \in \mathbb{R}^n$, so necessarily $F = \{y \in \mathbb{R}^n : y_n \ge a\}$ for some $a \in \overline{\mathbb{R}}$. Suppose a > 0. Since $\chi_{E_{r_h}} \to \chi_F$ in $\mathcal{L}^1_{\text{loc}}(\mathbb{R}^n)$, we have

$$0 = \int_{B(0,a)} \chi_F \, d\mathcal{L}^n = \lim_{h \to \infty} \int_{B(0,a)} \chi_{E_{r_h}} \, d\mathcal{L}^n$$
$$= \lim_{h \to \infty} \frac{1}{r_h^n} \int_{B(0,r_h,a)} \chi_E \, d\mathcal{L}^n > 0$$

by our a priori estimate on volume, giving a contradiction. Similarly we conclude that a < 0 is impossible (and also $|a| = \infty$). Thus a = 0 and

$$F = \{y \in \mathbb{R}^n : y_n \ge 0\} = H^+(0).$$

Corollary

For every $x \in \mathcal{F}E$, $\lim_{r \to 0} \frac{\mathcal{L}^n(B(x,r) \cap H^-(x) \cap E)}{r^n} = 0$ (7)
and $\lim_{r \to 0} \frac{\mathcal{L}^n(B(x,r) \cap H^+(x) \setminus E)}{r^n} = 0$ (8)
and $\lim_{r \to 0} \frac{|D\chi_E|(B(x,r))}{\omega_{n-1}r^{n-1}} = 1.$ (9)

Consequences of blow-up, proof part II

Proof.

$$\frac{\mathcal{L}^n(B(x,r)\cap H^-(x)\cap E)}{r^n} = \mathcal{L}^n(B(x,1)\cap H^-(x)\cap E_r)$$
$$\to \mathcal{L}^n(B(x,1)\cap H^-(x)\cap H^+(x)) = 0 \qquad \text{as } r\to 0.$$

(8) is proved similarly. Since

$$|D\chi_{H^+(x)}|(\partial B(x,1)) = \mathcal{H}^{n-1}(H(x) \cap \partial B(x,1)) = 0,$$

we also have by (5) and (6)

$$\lim_{r \to 0} \frac{|D\chi_E|(B(x,r))}{r^{n-1}} = \lim_{r \to 0} |D\chi_{E_r}|(B(x,1))$$
$$= |D\chi_{H^+(x)}|(B(x,1))$$
$$= \mathcal{H}^{n-1}(H(x) \cap B(x,1)) = \omega_{n-1}.$$

Given any ball B = B(x, r), denote 5B := B(x, 5r).

Theorem

Let \mathcal{F} be any collection of open balls in \mathbb{R}^n with

 $\sup\{\operatorname{diam} B: B \in \mathcal{F}\} < \infty.$

Then there exists a countable family of disjoint balls $\mathcal{G} \subset \mathcal{F}$ such that

$$\bigcup_{B\in\mathcal{F}}B\subset \bigcup_{B\in\mathcal{G}}5B.$$

Lemma

There exists C = C(n) > 0 such that for any Borel set $A \subset \mathcal{F}E$, we have

$$\mathcal{H}^{n-1}(A) \leq C |D\chi_E|(A).$$

Proof. Fix $\varepsilon > 0$. By (9) we have for any $x \in \mathcal{F}E$

$$\lim_{r \to 0} \frac{|D\chi_E|(B(x,r))}{\omega_{n-1}r^{n-1}} = 1.$$

Since $|D\chi_E|$ is a Radon measure, we can find an open set $U \supset A$ such that

$$|D\chi_E|(U) \le |D\chi_E|(A) + \varepsilon.$$

Hausdorff measure and perimeter, part II

Consider the covering of the set A by balls

$$\left\{ \begin{array}{l} B(x,r): \ x \in A, \ B(x,r) \subset U, \ r < \varepsilon/10, \\ |D\chi_E|(B(x,r)) \ge \frac{\omega_{n-1}r^{n-1}}{2} \end{array} \right\}$$

By the 5-covering theorem we can pick from this covering a countable disjoint collection $\{B(x_i, r_i)\}_{i \in \mathbb{N}}$ such that $A \subset \bigcup_{i \in \mathbb{N}} B(x_i, 5r_i)$. Since diam $(B(x_i, 5r_i)) \leq \varepsilon$, we have

$$\begin{split} \mathcal{H}_{\varepsilon}^{n-1}(A) &\leq \omega_{n-1} \sum_{i \in \mathbb{N}} (5r_i)^{n-1} \\ &\leq 2 \times 5^{n-1} \sum_{i \in \mathbb{N}} |D\chi_E| (B(x_i, r_i)) \\ &\leq C |D\chi_E| (U) \leq C (|D\chi_E| (A) + \varepsilon) \end{split}$$

with $C = C(n)$. Letting $\varepsilon \to 0$, we obtain $\mathcal{H}^{n-1}(A) \leq C |D\chi_E| (A)$.

Lemma

There exists C = C(n) > 0 such that for any Borel set $A \subset \mathcal{F}E$, we have

$$|D\chi_E|(A) \le C\mathcal{H}^{n-1}(A).$$
(10)

Proof. Fix $\tau > 1$. For $i \in \mathbb{N}$, define

$$A_i := \left\{ x \in A : \frac{|D\chi_E|(B(x,r))}{\omega_{n-1}r^{n-1}} < \tau \quad \forall r \in (0,1/i) \right\}.$$

The sequence (A_i) is increasing, and its union is A due to (9).

Hausdorff measure and perimeter, part IV

Fix $i \in \mathbb{N}$, and let $\{D_j\}_{j \in \mathbb{N}}$ be sets covering A_i with diameter less than 1/i, which intersect A_i at least at a point x_i , and which satisfy

$$\sum_{j\in\mathbb{N}}\omega_{n-1}r_j^{n-1}\leq \mathcal{H}_{1/i}^{n-1}(A_i)+1/i$$

with $r_j := \operatorname{diam}(D_j)/2$.

The balls $B(x_j, 2r_j)$ still cover A_i , hence

$$egin{aligned} |D\chi_E|(A_i) &\leq \sum_{j\in\mathbb{N}} |D\chi_E|(B(x_j,2r_j)) \leq au \sum_{j\in\mathbb{N}} \omega_{n-1}(2r_j)^{n-1} \ &\leq au 2^{n-1} \left(\mathcal{H}^{n-1}(A_i)+1/i
ight). \end{aligned}$$

By letting $i \to \infty$ and $\tau \searrow 1$ we obtain $|D\chi_E|(A) \le 2^{n-1}\mathcal{H}^{n-1}(A)$.

Theorem

Let *E* be a set of finite perimeter in \mathbb{R}^n . Then the reduced boundary $\mathcal{F}E$ is countably n - 1-rectifiable and $|D\chi_E| = \mathcal{H}^{n-1} \sqcup \mathcal{F}E$.

Proof. By Egorov's theorem, we can find disjoint compact sets $F_i \subset \mathcal{F}E$, $i \in \mathbb{N}$, with

$$|D\chi_E|\left(\mathcal{F}E\setminus\bigcup_{i\in\mathbb{N}}F_i\right)=0$$

and such that the convergences (7), (8), (9) are uniform in each set F_{i} .

Rectifiability of the reduced boundary part II

Choose unit vectors ν_1, \ldots, ν_N such that for any $\nu \in \partial B(0, 1)$, we have $|\nu - \nu_j| < 1/4$ for some $j = 1, \ldots, N$. Partition the sets F_i further into sets F_i^j , $i \in \mathbb{N}$, $j = 1, \ldots, N$, such that for any $z \in F_i^j$, we have $|\nu_E(z) - \nu_j| < 1/4$. Relabel these sets K_i , $i \in \mathbb{N}$.

Fix $i \in \mathbb{N}$; we may as well take i = 1. Pick j such that $|\nu_E(z) - \nu_j| < 1/4$ for all $z \in K_1$. There exists $\delta > 0$ such that if $z \in K_1$ and $r < 2\delta$,

$$\mathcal{L}^n(B(z,r)\cap H^-(z)\cap E)<rac{\omega_nr^n}{4^{2n+1}}$$

and

$$\mathcal{L}^n(B(z,r)\cap H^+(z)\cap E)>rac{1}{4}\omega_nr^n.$$

For $\nu \in \mathbb{R}^n$, denote by P_{ν} the orthogonal projection onto the line spanned by ν , and by P_{ν}^{\perp} the orthogonal projection onto the n-1-plane with normal ν , denoted also by ν^{\perp} .

Rectifiability of the reduced boundary part III

Take $x, y \in K_1$ and $d(x, y) < \delta$. Suppose that we had $y \in H^-(x)$ and

$$|P_{\nu_j}(y-x)| \geq |P_{\nu_j}^{\perp}(y-x)|.$$

Then

$$|P_{\nu_j}(y-x)| \ge |y-x|/2$$

and so

$$|P_{\nu_E(x)}(y-x)| \ge |y-x|/4.$$

This implies that

$$B(y,|x-y|/4) \subset B(x,2|x-y|) \cap H^-(x).$$

so that

$$B(y,|x-y|/4)\cap E\subset B(x,2|x-y|)\cap H^-(x)\cap E.$$

Rectifiability of the reduced boundary part IV

But since $y \in K_1$,

$$\mathcal{L}^n(B(y,|x-y|/4)\cap E) > \frac{1}{4}\omega_n\left(\frac{|x-y|}{4}\right)^n = \frac{\omega_n|x-y|^n}{4^{n+1}}$$

and similarly since $x \in K_1$,

$$\mathcal{L}^{n}(B(x,2|x-y|)\cap H^{-}(x)\cap E) < \frac{\omega_{n}(2|x-y|)^{n}}{4^{2n+1}} \leq \frac{\omega_{n}|x-y|^{n}}{4^{n+1}}.$$

This is a contradiction. Thus

$$|P_{\nu_j}(y-x)| \leq |P_{\nu_j}^{\perp}(y-x)|$$

for all $x, y \in K_1$ with $|x - y| < \delta$.

Thus for any $z \in K_1$, $B(z, \delta/2) \cap K_1$ is the graph of a 1-Lipschitz map with domain in the n-1-plane ν_j^{\perp} . This can be extended into a 1-Lipschitz graph S_1 defined on the whole of ν_i^{\perp} .

Rectifiability of the reduced boundary part V

The set K_1 can be partitioned into finitely many sets contained in balls $B(z, \delta/2)$, $z \in K_1$, and the same can be done for each set K_i . Relabel the resulting sets H_i , $i \in \mathbb{N}$, so that each H_i is covered by a Lipschitz graph S_i .

Note that

$$\mathcal{H}^{n-1}\left(\mathcal{F} E \setminus \bigcup_{i \in \mathbb{N}} H_i\right) \leq C |D\chi_E|\left(\mathcal{F} E \setminus \bigcup_{i \in \mathbb{N}} H_i\right) = 0.$$

Thus the reduced boundary $\mathcal{F}E$ is countably n-1-rectifiable.

Let us show that $|D\chi_E| = \mathcal{H}^{n-1} \sqcup \mathcal{F}E$. For this it is enough to show that for any $i \in \mathbb{N}$, $|D\chi_E| \sqcup H_i = \mathcal{H}^{n-1} \sqcup H_i$. Again we can take i = 1.

Rectifiability of the reduced boundary part VI

We have

$$\lim_{r\to 0}\frac{\mathcal{H}^{n-1}(S_1\cap B(x,r))}{\omega_{n-1}r^{n-1}}=1$$

for \mathcal{H}^{n-1} -a.e. $x \in S_1$, since S_1 is a Lipschitz graph. Thus by (9),

$$\lim_{r\to 0}\frac{|D\chi_E|(B(x,r))}{\mathcal{H}^{n-1}(S_1\cap B(x,r))}=1$$

for \mathcal{H}^{n-1} -almost every $x \in H_1 \subset \mathcal{F}E$. By (10) we know that

$$|D\chi_E| \sqcup H_1 \ll \mathcal{H}^{n-1} \sqcup H_1 \ll \mathcal{H}^{n-1} \sqcup S_1.$$

Thus by the Besicovitch differentiation theorem,

$$|D\chi_E| \sqcup H_1 = (\mathcal{H}^{n-1} \sqcup S_1) \sqcup H_1 = \mathcal{H}^{n-1} \sqcup H_1.$$

Enlarged rationals

To illustrate how big the topological boundary of a set of finite perimeter can be compared to the reduced boundary, consider the following.

Example

Let (q_h) be an enumeration of \mathbb{Q}^2 . Define

$$E:=\bigcup_{h=1}^{\infty}B(q_h,2^{-h}).$$

Then by subadditivity and lower semicontinuity

$$P(E, \mathbb{R}^2) \leq \sum_{h=1}^{\infty} P(B(q_h, 2^{-h}), \mathbb{R}^2) \leq 2\pi \sum_{h=1}^{\infty} 2^{-h} = 2\pi.$$

Thus *E* is of finite perimeter in \mathbb{R}^2 . On the other hand, *E* is dense in \mathbb{R}^2 , so that $\partial E = \mathbb{R}^2 \setminus E$. Thus $\mathcal{L}^2(\partial E) = \infty$.

Definition

Let $E \subset \mathbb{R}^n$ be an \mathcal{L}^n -measurable set. We define the measure theoretic boundary $\partial^* E$ as the set of points $x \in \mathbb{R}^n$ for which

$$\limsup_{r\to 0} \frac{\mathcal{L}^n(B(x,r)\cap E)}{\mathcal{L}^n(B(x,r))} > 0$$

and

$$\limsup_{r\to 0}\frac{\mathcal{L}^n(B(x,r)\setminus E)}{\mathcal{L}^n(B(x,r))}>0.$$

For a set of finite perimeter E, clearly $\mathcal{F}E \subset \partial^* E$. Moreover, we can show that $\partial^* E$ is a Borel set.

Theorem

Let E be a set of finite perimeter in \mathbb{R}^n . Then $\mathcal{H}^{n-1}(\partial^* E \setminus \mathcal{F} E) = 0$.

Proof. Consider a point $x \in \mathbb{R}^n$ where

$$\lim_{r \to 0} \frac{|D\chi_E|(B(x,r))}{r^{n-1}} = 0.$$

By the relative isoperimetric inequality, we then have

$$\frac{\min\left\{|B(x,r)\cap E|, |B(x,r)\setminus E|\right\}}{r^n} \le \left(\frac{2C_P|D\chi_E|(B(x,r))}{r^{n-1}}\right)^{n/(n-1)}$$
$$\to 0 \quad \text{as } r \to 0.$$

Thus by continuity, either

$$\frac{|B(x,r) \cap E|}{r^n} \to 0 \qquad \text{or} \qquad \frac{|B(x,r) \setminus E|}{r^n} \to 0$$

as $r \to 0$. Thus $x \notin \partial^* E$. In conclusion, if $x \in \partial^* E$, then

$$\limsup_{r\to 0}\frac{|D\chi_E|(B(x,r))}{r^{n-1}}>0.$$

Then by using a similar covering argument as before, from the fact that $|D\chi_E|(\partial^*E \setminus \mathcal{F}E) = 0$ we obtain that $\mathcal{H}^{n-1}(\partial^*E \setminus \mathcal{F}E) = 0$.

We conclude that for any set *E* of finite perimeter in \mathbb{R}^n , we have

$$|D\chi_E| = \mathcal{H}^{n-1} \sqcup \mathcal{F}E = \mathcal{H}^{n-1} \sqcup \partial^* E$$

and thus

$$D\chi_E = \nu_E \mathcal{H}^{n-1} \sqcup \partial^* E$$

with $|\nu_E(x)| = 1$ for \mathcal{H}^{n-1} -a.e. $x \in \partial^* E$. Thus we obtain the following generalization of the Gauss-Green formula.

Theorem

For any set E that is of finite perimeter in Ω , we have

$$\int_{\boldsymbol{E}} \operatorname{div} \psi \, d\mathcal{L}^n = - \int_{\partial^* \boldsymbol{E}} \langle \psi, \nu_{\boldsymbol{E}} \rangle \, d\mathcal{H}^{n-1} \quad \forall \psi \in [C^1_c(\Omega)]^n.$$

Approximate limits

Let $u \in BV(\mathbb{R}^n)$. Define the lower and upper approximate limits of u for any $x \in \mathbb{R}^n$ by

$$u^{\wedge}(x) := \sup \left\{ t \in \mathbb{R} : \lim_{r \to 0} \frac{\mathcal{L}^n(B(x,r) \cap \{u < t\})}{\mathcal{L}^n(B(x,r))} = 0 \right\}$$

and

$$u^{\vee}(x):=\inf\left\{t\in\mathbb{R}:\ \lim_{r
ightarrow 0}rac{\mathcal{L}^n(B(x,r)\cap\{u>t\})}{\mathcal{L}^n(B(x,r))}=0
ight\}.$$

Then define the approximate jump set of u by

$$S_u := \left\{ x \in \mathbb{R}^n : u^{\wedge}(x) < u^{\vee}(x)
ight\}.$$

We can show that u^{\wedge} and u^{\vee} are Borel measurable functions and that S_u is a Borel set.

Theorem

Let $u \in BV(\mathbb{R}^n)$. Then the jump set S_u is countably n - 1-rectifiable.

Proof. Let $x \in S_u$. Then for any $u^{\wedge}(x) < t < u^{\vee}(x)$, we have

$$\limsup_{r\to 0^+} \frac{\mathcal{L}^n(B(x,r)\cap \{u>t\})}{\mathcal{L}^n(B(x,r))} > 0$$

and

$$\limsup_{r \to 0^+} \frac{\mathcal{L}^n(B(x,r) \cap \{u < t\})}{\mathcal{L}^n(B(x,r))} > 0.$$

Thus $x \in \partial^* \{u > t\}$.

By the coarea formula, we can choose $D \subset \mathbb{R}$ to be a countable, dense set such that $\{u > t\}$ is of finite perimeter in \mathbb{R}^n for every $t \in D$. We know that each reduced boundary $\mathcal{F}\{u > t\}$, and thus each measure theoretic boundary $\partial^*\{u > t\}$, $t \in D$, is a countably n - 1-rectifiable set. Thus

$$S_u \subset \bigcup_{t \in D} \partial^* \{u > t\}$$

is also countably n - 1-rectifiable.

Decomposition of the variation measure

Let $u \in BV(\mathbb{R}^n)$. By the Besicovitch differentiation theorem, we have $|Du| = a \mathcal{L}^n + |Du|^s$, where $a \in L^1(\mathbb{R}^n)$ and $|Du|^s$ is singular with respect to \mathcal{L}^n .

Then we can further write $|Du|^s = |Du|^c + |Du|^j$, where $|Du|^c := |Du|^s \sqcup (\mathbb{R}^n \setminus S_u)$ is the *Cantor part*, and $|Du|^j := |Du|^s \sqcup S_u$ is the *jump part*.

Theorem

For $u \in BV(\mathbb{R}^n)$, we have the decomposition

$$|Du| = a \mathcal{L}^n + |Du|^c + (u^{\vee} - u^{\wedge}) \mathcal{H}^{n-1} \sqcup S_u.$$

Moreover, for any Borel set $A \subset \mathbb{R}^n \setminus S_u$ that is σ -finite with respect to \mathcal{H}^{n-1} (i.e. can be presented as a countable union of sets of finite \mathcal{H}^{n-1} -measure), we have |Du|(A) = 0.

Proof. We have already seen that if $x \in S_u$ and $u^{\wedge}(x) < t < u^{\vee}(x)$, then $x \in \partial^* \{u > t\}$. On the other hand, if $x \in \partial^* \{u > t\}$ for some $t \in \mathbb{R}$, then

$$\limsup_{r\to 0^+}\frac{\mathcal{L}^n(B(x,r)\cap\{u>t\})}{\mathcal{L}^n(B(x,r))}>0,$$

whence $u^{ee}(x) \geq t$, and

$$\limsup_{r\to 0^+} \frac{\mathcal{L}^n(B(x,r)\setminus \{u\leq t\})}{\mathcal{L}^n(B(x,r))}>0,$$

whence $u^{\wedge}(x) \leq t$. In conclusion, $t \in [u^{\wedge}(x), u^{\vee}(x)]$.

Decomposition of the variation measure proof part II

All in all, we have

$$\begin{aligned} & \left\{ (x,t) \in \mathbb{R}^n \times \mathbb{R} : \ u^{\wedge}(x) < t < u^{\vee}(x) \right\} \\ & \subset \left\{ (x,t) \in \mathbb{R}^n \times \mathbb{R} : \ x \in \partial^* \{ u > t \} \right\} \\ & \quad \subset \left\{ (x,t) \in \mathbb{R}^n \times \mathbb{R} : \ u^{\wedge}(x) \le t \le u^{\vee}(x) \right\}. \end{aligned}$$

Thus for any Borel set $A \subset S_u$, we have by using the coarea formula and Fubini's theorem

$$\begin{split} |Du|(A) &= \int_{-\infty}^{\infty} P(\{u > t\}, A) \, dt = \int_{-\infty}^{\infty} \mathcal{H}^{n-1}(\partial^* \{u > t\} \cap A) \, dt \\ &= \int_{-\infty}^{\infty} \int_{\mathbb{R}^n} \chi_{\partial^* \{u > t\}}(x) \, d(\mathcal{H}^{n-1} \sqcup A)(x) \, dt \\ &= \int_{\mathbb{R}^n} \int_{-\infty}^{\infty} \chi_{(u^{\wedge}(x), u^{\vee}(x))}(t) \, dt \, d(\mathcal{H}^{n-1} \sqcup A)(x) \\ &= \int_{A} (u^{\vee} - u^{\wedge}) \, d\mathcal{H}^{n-1}. \end{split}$$

We conclude that
$$|Du|^j = |Du| \sqcup S_u = (u^{\vee} - u^{\wedge}) \mathcal{H}^{n-1} \sqcup S_u$$
.

Finally, suppose that a Borel set $A \subset \mathbb{R}^n \setminus S_u$ is σ -finite with respect to \mathcal{H}^{n-1} . By using the coarea formula and Fubini's theorem as we did above,

$$|Du|(A) = \int_A (u^{\vee} - u^{\wedge}) d\mathcal{H}^{n-1} = 0$$

since $u^{\wedge}(x) = u^{\vee}(x)$ for any $x \in A$.

Let $E \subset \mathbb{R}^n$ be an \mathcal{L}^n -measurable set. To show that $\partial^* E$ is a Borel set, we note that for each $i \in \mathbb{N}$, the functions

$$f_i(x) := \frac{\mathcal{L}^n(B(x,2^{-i})\cap E)}{\mathcal{L}^n(B(x,2^{-i}))}, \qquad g_i(x) := \frac{\mathcal{L}^n(B(x,2^{-i})\setminus E)}{\mathcal{L}^n(B(x,2^{-i}))}$$

are continuous. Thus $\limsup_{i\to\infty} f_i$ and $\limsup_{i\to\infty} g_i$ are Borel measurable functions, and so

$$\partial^* E = \left\{ x \in \mathbb{R}^n : \limsup_{i \to \infty} f_i(x) > 0 \text{ and } \limsup_{i \to \infty} g_i(x) > 0 \right\}$$

is a Borel set.

On measurability, part II

To show that u^{\wedge} and u^{\vee} are Borel measurable functions, note that for any $t \in \mathbb{R}$,

$$\left\{ x \in \mathbb{R}^n : u^{\wedge}(x) \ge t \right\}$$

= $\bigcap_{i=1}^{\infty} \left\{ x \in \mathbb{R}^n : \lim_{r \to 0} \frac{\mathcal{L}^n(B(x,r) \cap \{u < t - 1/i\})}{\mathcal{L}^n(B(x,r))} = 0 \right\}.$

Here the functions

$$x \mapsto rac{\mathcal{L}^n(B(x,r) \cap \{u < s\})}{\mathcal{L}^n(B(x,r))}$$

are continuous for any $s \in \mathbb{R}$ and fixed r > 0, and so

$$x \mapsto \limsup_{r \to 0} \frac{\mathcal{L}^n(B(x,r) \cap \{u < s\})}{\mathcal{L}^n(B(x,r))}$$

is a Borel measurable function. Hence $\{x \in \mathbb{R}^n : u^{\wedge}(x) \ge t\}$ is a Borel set. Borel measurability of u^{\vee} is proved analogously.

On measurability, part III

By the Borel measurability of u^{\wedge} and u^{\vee} , we have that

$$S_u = \left\{ x \in \mathbb{R}^n : u^{\wedge}(x) < u^{\vee}(x) \right\}$$
$$= \bigcup_{t \in \mathbb{Q}} \left\{ x \in \mathbb{R}^n : u^{\wedge}(x) < t \right\} \cap \left\{ x \in \mathbb{R}^n : u^{\vee}(x) > t \right\}$$

is a Borel set. Then we can show that also

$$\left\{ (x,t) \in \mathbb{R}^n imes \mathbb{R} : u^{\wedge}(x) < t < u^{\vee}(x)
ight\}$$

is a Borel set in $\mathbb{R}^n \times \mathbb{R}$, justifying our previous use of Fubini's theorem.