Minicourse on BV functions

University of Oxford
Panu Lahti

June 16, 2016

- L. Ambrosio, N. Fusco, and D. Pallara, Functions of bounded variation and free discontinuity problems, Oxford Mathematical Monographs. The Clarendon Press, Oxford University Press, New York, 2000.
- L. C. Evans and R. F. Gariepy, Measure theory and fine properties of functions, Studies in Advanced Mathematics. CRC Press, Boca Raton, FL, 1992. viii+268 pp.
- L. Simon, Lectures on geometric measure theory, Proceedings of the Centre for Mathematical Analysis, Australian National University, 3. Australian National University, Centre for Mathematical Analysis, Canberra, 1983. vii +272 pp.

Let X be a topological space.

- A collection \mathcal{E} of subsets of X is a σ-algebra if $\emptyset \in \mathcal{E}$, $X \backslash E \in \mathcal{E}$ whenever $E \in \mathcal{E}$, and for any sequence $\left(E_{h}\right) \subset \mathcal{E}$, we have $\bigcup_{h \in \mathbb{N}} E_{h} \in \mathcal{E}$.
- We say that $\mu: \mathcal{E} \rightarrow[0, \infty]$ is a positive measure if $\mu(\emptyset)=0$ and for any sequence $\left(E_{h}\right)$ of pairwise disjoint elements of \mathcal{E},

$$
\mu\left(\bigcup_{h \in \mathbb{N}} E_{h}\right)=\sum_{h \in \mathbb{N}} \mu\left(E_{h}\right)
$$

- We say that $M \subset X$ is μ-negligible if there exists $E \in \mathcal{E}$ such that $M \subset E$ and $\mu(E)=0$. The expression "almost everywhere", or "a.e.", means outside a negligible set. The measure μ extends to the collection of μ-measurable sets, i.e. those that can be presented as $E \cup M$ with $E \in \mathcal{E}$ and M μ-negligible.
- Let $N \in \mathbb{N}$. We say that $\mu: \mathcal{E} \rightarrow \mathbb{R}^{N}$ is a vector measure if $\mu(\emptyset)=0$ and for any sequence $\left(E_{h}\right)$ of pairwise disjoint elements of \mathcal{E}

$$
\mu\left(\bigcup_{h \in \mathbb{N}} E_{h}\right)=\sum_{h \in \mathbb{N}} \mu\left(E_{h}\right) .
$$

- If μ is a vector measure on (X, \mathcal{E}), for any given $E \in \mathcal{E}$ we define the total variation measure $|\mu|(E)$ as
$\sup \left\{\sum_{h \in \mathbb{N}}\left|\mu\left(E_{h}\right)\right|: E_{h} \in \mathcal{E}\right.$ pairwise disjoint, $\left.E=\bigcup_{h \in \mathbb{N}} E_{h}\right\}$.
We can show that $|\mu|$ is then a finite positive measure on (X, \mathcal{E}), that is, $|\mu|(X)<\infty$.
- We denote by $\mathcal{B}(X)$ the σ-algebra of Borel subsets of X, i.e. the smallest σ-algebra containing the open subsets of X.
- A positive measure on $(X, \mathcal{B}(X))$ is called a Borel measure. If it is finite on compact sets, it is called a positive Radon measure.
- A vector Radon measure is an \mathbb{R}^{N}-valued set function that is a vector measure on $(K, \mathcal{B}(K))$ for every compact set $K \subset X$. We say that it is a finite Radon measure if it is a vector measure on $(X, \mathcal{B}(X))$.

Lebesgue and Hausdorff measures

We will denote by \mathcal{L}^{n} the n-dimensional Lebesgue measure in \mathbb{R}^{n}. Sometimes we write $|A|$ instead of $\mathcal{L}^{n}(A)$ for $A \subset \mathbb{R}^{n}$.

We denote by ω_{k} the volume of the unit ball in \mathbb{R}^{k}.

Definition

Let $k \in[0, \infty)$ and let $A \subset \mathbb{R}^{n}$. The k-dimensional Hausdorff measure of A is given by

$$
\mathcal{H}^{k}(A):=\lim _{\delta \rightarrow 0} \mathcal{H}_{\delta}^{k}(A)
$$

where for any $0<\delta \leq \infty$,

$$
\mathcal{H}_{\delta}^{k}(A):=\frac{\omega_{k}}{2^{k}} \inf \left\{\sum_{i \in \mathbb{N}}\left[\operatorname{diam}\left(E_{i}\right)\right]^{k}: \operatorname{diam}\left(E_{i}\right)<\delta, A \subset \bigcup_{i \in \mathbb{N}} E_{i}\right\}
$$

with the convention $\operatorname{diam}(\emptyset)=0$.

Theorem

Let μ be a positive Radon measure in an open set Ω, and let ν be an \mathbb{R}^{N}-valued Radon measure in Ω. Then for μ-a.e. $x \in \Omega$ the limit

$$
f(x):=\lim _{r \rightarrow 0} \frac{\nu(B(x, r))}{\mu(B(x, r))}
$$

exists in \mathbb{R}^{N} and ν can be presented by the Lebesgue-Radon-Nikodym decomposition $\nu=f \mu+\nu^{\text {s }}$, where $\nu^{s}=\nu\llcorner E$ for some $E \subset \Omega$ with $\mu(E)=0$.

Definition of BV functions

The symbol Ω will always denote an open set in \mathbb{R}^{n}.

Definition

Let $u \in L^{1}(\Omega)$. We say that u is a function of bounded variation in Ω if the distributional derivative of u is representable by a finite Radon measure in Ω, i.e.

$$
\int_{\Omega} u \frac{\partial \psi}{\partial x_{i}} d x=-\int_{\Omega} \psi d D_{i} u \quad \forall \psi \in C_{c}^{\infty}(\Omega), \quad i=1, \ldots, n
$$

for some \mathbb{R}^{n}-valued Radon measure $D u=\left(D_{1} u, \ldots, D_{n} u\right)$ in Ω. The vector space of all functions of bounded variation is denoted by $\operatorname{BV}(\Omega)$.

We can always write $D u=\sigma|D u|$, where $|D u|$ is a positive Radon measure and $\sigma=\left(\sigma_{1}, \ldots, \sigma_{n}\right)$ with $|\sigma(x)|=1$ for $|D u|$-a.e. $x \in \Omega$.

- $W^{1,1}(\Omega) \subset \operatorname{BV}(\Omega)$, since for $u \in W^{1,1}(\Omega)$ we have $D u=\nabla u \mathcal{L}^{n}$.
- On the other hand, for the Heaviside function $\chi_{(0, \infty)} \in \mathrm{BV}_{\text {loc }}(\mathbb{R})$ we have $D u=\delta_{0}$, and $u \notin W_{\text {loc }}^{1,1}(\mathbb{R})$.
- We say that $u \in \operatorname{BV}_{\text {loc }}(\Omega)$ if $u \in \operatorname{BV}\left(\Omega^{\prime}\right)$ for every $\Omega^{\prime} \Subset \Omega$, i.e. every open Ω^{\prime} with $\overline{\Omega^{\prime}}$ compact and contained in Ω.

Let $\rho \in C_{c}^{\infty}\left(\mathbb{R}^{n}\right)$ with $\rho(x) \geq 0$ and $\rho(-x)=\rho(x)$ for all $x \in \mathbb{R}^{n}$, supp $\rho \subset B(0,1)$, and

$$
\int_{\mathbb{R}^{n}} \rho(x) d x=1
$$

Choose $\varepsilon>0$. Let $\rho_{\varepsilon}(x):=\varepsilon^{-n} \rho(x / \varepsilon)$, and

$$
\Omega_{\varepsilon}:=\{x \in \Omega: \operatorname{dist}(x, \partial \Omega)>\varepsilon\} .
$$

Then for any $u \in L^{1}(\Omega)$, we define for any $x \in \Omega_{\varepsilon}$

$$
u * \rho_{\varepsilon}(x):=\int_{\Omega} u(y) \rho_{\varepsilon}(x-y) d y=\varepsilon^{-n} \int_{\Omega} u(y) \rho\left(\frac{x-y}{\varepsilon}\right) d y
$$

Similarly, for any vector Radon measure $\mu=\left(\mu_{1}, \ldots, \mu_{N}\right)$ on Ω, we define

$$
\mu * \rho_{\varepsilon}(x)=\int_{\Omega} \rho_{\varepsilon}(x-y) d \mu(y), \quad x \in \Omega_{\varepsilon}
$$

We can show that $\mu * \rho_{\varepsilon} \in C^{\infty}\left(\Omega_{\varepsilon}\right)$ and

$$
\nabla\left(\mu * \rho_{\varepsilon}\right)=\mu * \nabla \rho_{\varepsilon}
$$

If $v \in \operatorname{Lip}_{\text {loc }}(\Omega)$, then $\nabla\left(v * \rho_{\varepsilon}\right)=\nabla v * \rho_{\varepsilon}$.
Also, given any $v \in L^{1}(\Omega)$ and a vector Radon measure μ on Ω, from Fubini's theorem it follows easily that

$$
\int_{\Omega}\left(\mu * \rho_{\varepsilon}\right) v d \mathcal{L}^{n}=\int_{\Omega} v * \rho_{\varepsilon} d \mu
$$

if either μ is concentrated in Ω_{ε} or $v=0 \mathcal{L}^{n}$-a.e. outside Ω_{ε}.

- If $u \in \operatorname{BV}(\Omega)$, we have

$$
\nabla\left(u * \rho_{\varepsilon}\right)=D u * \rho_{\varepsilon} \quad \text { in } \Omega_{\varepsilon} .
$$

To see this, let $\psi \in C_{c}^{\infty}(\Omega)$ and $\varepsilon \in(0, \operatorname{dist}(\operatorname{supp} \psi, \partial \Omega))$. Then

$$
\begin{aligned}
& \int_{\Omega}\left(u * \rho_{\varepsilon}\right) \nabla \psi d \mathcal{L}^{n}=\int_{\Omega} u\left(\rho_{\varepsilon} * \nabla \psi\right) d \mathcal{L}^{n}=\int_{\Omega} u \nabla\left(\rho_{\varepsilon} * \psi\right) d \mathcal{L}^{n} \\
&=-\int_{\Omega} \rho_{\varepsilon} * \psi d D u=-\int_{\Omega} \psi D u * \rho_{\varepsilon} d \mathcal{L}^{n} .
\end{aligned}
$$

- If $u \in \operatorname{BV}\left(\mathbb{R}^{n}\right)$ and $D u=0, u$ is constant, which we can see as follows. For any $\varepsilon, u * \rho_{\varepsilon} \in C^{\infty}\left(\mathbb{R}^{n}\right)$ and $\nabla\left(u * \rho_{\varepsilon}\right)=D u * \rho_{\varepsilon}=0$. Thus $u * \rho_{\varepsilon}$ is constant for every $\varepsilon>0$, and since $u * \rho_{\varepsilon} \rightarrow u$ in $L^{1}\left(\mathbb{R}^{n}\right)$ as $\varepsilon \rightarrow 0$, we must have that u is constant.

Lipschitz test functions

Let $u \in \operatorname{BV}(\Omega)$ and $\psi \in \operatorname{Lip}_{c}(\Omega)$. Then for small enough $\varepsilon>0$ we have $\psi * \rho_{\varepsilon} \in C_{c}^{\infty}(\Omega)$, and thus

$$
\int_{\Omega} u \frac{\partial\left(\psi * \rho_{\varepsilon}\right)}{\partial x_{i}} d \mathcal{L}^{n}=-\int_{\Omega} \psi * \rho_{\varepsilon} d D_{i} u, \quad i=1, \ldots, n .
$$

As $\varepsilon \rightarrow 0$, we have $\psi * \rho_{\varepsilon} \rightarrow \psi$ uniformly and

$$
\frac{\partial\left(\psi * \rho_{\varepsilon}\right)}{\partial x_{i}}=\frac{\partial \psi}{\partial x_{i}} * \rho_{\varepsilon} \rightarrow \frac{\partial \psi}{\partial x_{i}}
$$

almost everywhere, so by the Lebesgue dominated convergence theorem we get

$$
\int_{\Omega} u \frac{\partial \psi}{\partial x_{i}} d \mathcal{L}^{n}=-\int_{\Omega} \psi d D_{i} u, \quad i=1, \ldots, n .
$$

That is, we can also use Lipschitz functions as test functions in the definition of BV.

A Leibniz rule

Lemma

If $\phi \in \operatorname{Lip}_{\text {loc }}(\Omega)$ and $u \in \operatorname{BV}_{\text {loc }}(\Omega)$, we have $u \phi \in \operatorname{BV}_{\text {loc }}(\Omega)$ with $D(u \phi)=\phi D u+u \nabla \phi \mathcal{L}^{n}$.

Proof.

Clearly $u \phi \in L_{\text {loc }}^{1}(\Omega)$. We have for any $\psi \in C_{c}^{\infty}(\Omega)$ and $i=1, \ldots, n$

$$
\begin{aligned}
\int_{\Omega} u \phi \frac{\partial \psi}{\partial x_{i}} d x & =\int_{\Omega} u \frac{\partial(\phi \psi)}{\partial x_{i}} d x-\int_{\Omega} u \frac{\partial \phi}{\partial x_{i}} \psi d x \\
& =-\int_{\Omega} \phi \psi d D_{i} u-\int_{\Omega} u \frac{\partial \phi}{\partial x_{i}} \psi d x
\end{aligned}
$$

since $\phi \psi \in \operatorname{Lip}_{c}(\Omega)$.

The variation, part I

Definition

Let $u \in L_{\text {loc }}^{1}(\Omega)$. We define the variation of u in Ω by

$$
V(u, \Omega):=\sup \left\{\int_{\Omega} u \operatorname{div} \psi d \mathcal{L}^{n}: \psi \in\left[C_{c}^{1}(\Omega)\right]^{n},|\psi| \leq 1\right\}
$$

Theorem

Let $u \in L^{1}(\Omega)$. Then $u \in \operatorname{BV}(\Omega)$ if and only if $V(u, \Omega)<\infty$. In addition, $V(u, \Omega)=|D u|(\Omega)$.

Proof. Let $u \in \operatorname{BV}(\Omega)$. Then for any $\psi \in\left[C_{c}^{1}(\Omega)\right]^{n}$ with $|\psi| \leq 1$,

$$
\int_{\Omega} u \operatorname{div} \psi d \mathcal{L}^{n}=-\sum_{i=1}^{n} \int_{\Omega} \psi_{i} d D_{i} u=-\sum_{i=1}^{n} \int_{\Omega} \psi_{i} \sigma_{i} d|D u|
$$

with $|\sigma|=1|D u|$-almost everywhere, so that $V(u, \Omega) \leq|D u|(\Omega)$.

Assume then that $V(u, \Omega)<\infty$. By homogeneity we have

$$
\left|\int_{\Omega} u \operatorname{div} \psi d \mathcal{L}^{n}\right| \leq V(u, \Omega)\|\psi\|_{L^{\infty}(\Omega)} \quad \forall \psi \in C_{c}^{1}(\Omega)
$$

Since $C_{c}^{1}(\Omega)$ is dense in $C_{c}(\Omega)$ and thus in $C_{0}(\Omega)$ (which is just the closure of $C_{c}(\Omega)$, in the $\|\cdot\|_{L^{\infty}(\Omega)}$-norm) we can find a continuous linear functional L on $C_{0}(\Omega)$ coinciding with

$$
\psi \mapsto \int_{\Omega} u \operatorname{div} \psi d \mathcal{L}^{n}
$$

on $C_{c}^{1}(\Omega)$ and satisfying $\|L\| \leq V(u, \Omega)$. Then the Riesz representation theorem says that there exists an \mathbb{R}^{n}-valued Radon measure $\mu=\left(\mu_{1}, \ldots, \mu_{n}\right)$ with $|\mu|(\Omega)=\|L\|$ and

$$
L(\psi)=\sum_{i=1}^{n} \int_{\Omega} \psi_{i} d \mu_{i} \quad \forall \psi \in\left[C_{0}(\Omega)\right]^{n}
$$

Hence we have

$$
\int_{\Omega} u \operatorname{div} \psi d \mathcal{L}^{n}=\sum_{i=1}^{n} \int_{\Omega} \psi_{i} d \mu_{i} \quad \forall \psi \in\left[C_{c}^{1}(\Omega)\right]^{n},
$$

so that $u \in \operatorname{BV}(\Omega), D u=-\mu$, and

$$
|D u|(\Omega)=|\mu|(\Omega)=\|L\| \leq V(u, \Omega)
$$

Lower semicontinuity

Lemma

If $u_{h} \rightarrow u$ in $L_{\text {loc }}^{1}(\Omega)$, then $V(u, \Omega) \leq \liminf _{h \rightarrow \infty} V\left(u_{h}, \Omega\right)$.

Proof.

For any $\psi \in\left[C_{c}^{1}(\Omega)\right]^{n}$, we have

$$
\int_{\Omega} u \operatorname{div} \psi d \mathcal{L}^{n}=\lim _{h \rightarrow \infty} \int_{\Omega} u_{h} \operatorname{div} \psi d \mathcal{L}^{n} \leq \liminf _{h \rightarrow \infty} V\left(u_{h}, \Omega\right) .
$$

Taking the supremum over such ψ we obtain the result.

- The BV norm is defined as

$$
\|u\|_{\mathrm{BV}(\Omega)}:=\int_{\Omega}|u| d \mathcal{L}^{n}+|D u|(\Omega) .
$$

- If $u \in W^{1,1}(\Omega)$, then $|D u|(\Omega)=\|\nabla u\|_{L^{1}(\Omega)}$, so that $\|u\|_{\mathrm{BV}(\Omega)}=\|u\|_{W^{1,1}(\Omega)}$.
- Smooth functions are not dense in $\operatorname{BV}(\Omega)$, since the Sobolev space $W^{1,1}(\Omega) \varsubsetneqq \mathrm{BV}(\Omega)$ is complete.

Approximation by smooth functions

While smooth functions are not dense in $\operatorname{BV}(\Omega)$, we have the following.

Theorem

Let $u \in \operatorname{BV}(\Omega)$. Then there exists a sequence $\left(u_{h}\right) \subset C^{\infty}(\Omega)$ with $u_{h} \rightarrow u$ in $L^{1}(\Omega)$ and

$$
\lim _{h \rightarrow \infty} \int_{\Omega}\left|\nabla u_{h}\right| d \mathcal{L}^{n}=|D u|(\Omega)
$$

Proof. Fix $\delta>0$. Note that by lower semicontinuity, for any sequence $\left(u_{h}\right) \subset C^{\infty}(\Omega)$ with $u_{h} \rightarrow u$ in $L^{1}(\Omega)$, we have

$$
|D u|(\Omega) \leq \liminf _{h \rightarrow \infty} \int_{\Omega}\left|\nabla u_{h}\right| d \mathcal{L}^{n} .
$$

Thus we need to construct a function $v_{\delta} \in C^{\infty}(\Omega)$ such that

$$
\int_{\Omega}\left|u-v_{\delta}\right| d \mathcal{L}^{n}<\delta, \quad \int_{\Omega}\left|\nabla v_{\delta}\right| d \mathcal{L}^{n}<|D u|(\Omega)+\delta .
$$

Approximation by smooth functions, proof I

Define $\Omega_{0}:=\emptyset$ and

$$
\Omega_{k}:=\{x \in \Omega \cap B(0, k): \operatorname{dist}(x, \partial \Omega)>1 / k\}, \quad k \in \mathbb{N} .
$$

Define $V_{k}:=\Omega_{k+1} \backslash \overline{\Omega_{k-1}}, k \in \mathbb{N}$. Then $\bigcup_{k \in \mathbb{N}} V_{k}=\Omega$.

Then pick a partition of unity $\varphi_{k} \in C_{c}^{\infty}\left(V_{k}\right)$, with $0 \leq \varphi_{k} \leq 1$ and $\sum_{k \in \mathbb{N}} \varphi_{k} \equiv 1$ in Ω. For every $k \in \mathbb{N}$ there exists $\varepsilon_{k}>0$ such that $\operatorname{supp}\left(\left(u \varphi_{k}\right) * \rho_{\varepsilon_{k}}\right) \subset V_{k}$ and

$$
\int_{\Omega}\left[\left|\left(u \varphi_{k}\right) * \rho_{\varepsilon_{k}}-u \varphi_{k}\right|+\left|\left(u \nabla \varphi_{k}\right) * \rho_{\varepsilon_{k}}-u \nabla \varphi_{k}\right|\right] d \mathcal{L}^{n}<2^{-k} \delta
$$

Define $v_{\delta}:=\sum_{k \in \mathbb{N}}\left(u \varphi_{k}\right) * \rho_{\varepsilon_{k}}$, so that $v_{\delta} \in C^{\infty}(\Omega)$ and

$$
\int_{\Omega}\left|v_{\delta}-u\right| d \mathcal{L}^{n} \leq \sum_{k \in \mathbb{N}} \int_{\Omega}\left|\left(u \varphi_{k}\right) * \rho_{\varepsilon_{k}}-u \varphi_{k}\right| d \mathcal{L}^{n}<\delta
$$

Approximation by smooth functions, proof II

We also have

$$
\begin{aligned}
\nabla v_{\delta} & =\sum_{k \in \mathbb{N}} \nabla\left(\left(u \varphi_{k}\right) * \rho_{\varepsilon_{k}}\right)=\sum_{k \in \mathbb{N}}\left(D\left(u \varphi_{k}\right)\right) * \rho_{\varepsilon_{k}} \\
= & \sum_{k \in \mathbb{N}}\left(\varphi_{k} D u\right) * \rho_{\varepsilon_{k}}+\sum_{k \in \mathbb{N}}\left(u \nabla \varphi_{k}\right) * \rho_{\varepsilon_{k}} \\
= & \sum_{k \in \mathbb{N}}\left(\varphi_{k} D u\right) * \rho_{\varepsilon_{k}}+\sum_{k \in \mathbb{N}}\left[\left(u \nabla \varphi_{k}\right) * \rho_{\varepsilon_{k}}-u \nabla \varphi_{k}\right] \\
\Longrightarrow \int_{\Omega}\left|\nabla v_{\delta}\right| d \mathcal{L}^{n} & <\sum_{k \in \mathbb{N}} \int_{\Omega}\left(\varphi_{k}|D u|\right) * \rho_{\varepsilon_{k}} d \mathcal{L}^{n}+\delta \\
& =\sum_{k \in \mathbb{N}} \int_{\Omega} \varphi_{k} d|D u|+\delta \\
& =|D u|(\Omega)+\delta
\end{aligned}
$$

Definition

Let $u, u_{h} \in \operatorname{BV}(\Omega)$. We say that $\left(u_{h}\right)$ weakly* converges to u in $\operatorname{BV}(\Omega)$ if $u_{h} \rightarrow u$ in $L^{1}(\Omega)$ and $D u_{h} \xrightarrow{*} D u$ in Ω, i.e.

$$
\lim _{h \rightarrow \infty} \int_{\Omega} \psi d D u_{h}=\int_{\Omega} \psi d D u \quad \forall \psi \in C_{0}(\Omega)
$$

Here $C_{0}(\Omega)$ is the completion of $C_{c}(\Omega)$ in the sup norm.

Theorem

Let $u, u_{h} \in \operatorname{BV}(\Omega)$. Then u_{h} weakly* converges to u in $\operatorname{BV}(\Omega)$ if and only if $u_{h} \rightarrow u$ in $L^{1}(\Omega)$ and $\left(u_{h}\right)$ is a bounded sequence in $\mathrm{BV}(\Omega)$, i.e.

$$
\sup _{h \in \mathbb{N}}\left\{\int_{\Omega}\left|u_{h}\right| d \mathcal{L}^{n}+\left|D u_{h}\right|(\Omega)\right\}<\infty
$$

Proof.

$" \Leftarrow$ ": By the weak* compactness of Radon measures, for any subsequence $h(k)$ we have a further subsequence (not relabeled) such that $D u_{h(k)} \stackrel{*}{\rightharpoonup} \mu$ in Ω for a Radon measure μ. We need to show that $\mu=D u$. We have for every $k \in \mathbb{N}$

$$
\int_{\Omega} u_{h(k)} \frac{\partial \psi}{\partial x_{i}} d x=-\int_{\Omega} \psi d D_{i} u_{h(k)} \quad \forall \psi \in C_{c}^{\infty}(\Omega), i=1, \ldots, n .
$$

By letting $k \rightarrow \infty$, we obtain

$$
\int_{\Omega} u \frac{\partial \psi}{\partial x_{i}} d x=-\int_{\Omega} \psi d \mu_{i} \quad \forall \psi \in C_{c}^{\infty}(\Omega), i=1, \ldots, n,
$$

so that $\mu=D u$. Since this was true for any subsequence $h(k)$, we must have $D u_{h} \xrightarrow{*} D u$.
$" \Rightarrow$ ": The measures $D u_{h}$ are bounded linear functionals on $C_{0}(\Omega)$, and for any $\psi \in C_{0}(\Omega)$,

$$
\sup _{h \in \mathbb{N}}\left|\int_{\Omega} \psi d D u_{h}\right|<\infty
$$

since

$$
\int_{\Omega} \psi d D u_{h} \rightarrow \int_{\Omega} \psi d D u
$$

Thus the Banach-Steinhaus theorem gives $\sup _{h \in \mathbb{N}}\left|D u_{h}\right|(\Omega)<\infty$.

Definition

Let $u, u_{h} \in \operatorname{BV}(\Omega)$. We say that u_{h} strictly converges to u in $\operatorname{BV}(\Omega)$ if $u_{h} \rightarrow u$ in $L^{1}(\Omega)$ and $\left|D u_{h}\right|(\Omega) \rightarrow|D u|(\Omega)$ as $h \rightarrow \infty$.

- Strict convergence of BV functions always implies weak* convergence, by our characterization of the latter.
- However, the converse does not hold: $\sin (h x) / h$ weakly* converges in $\operatorname{BV}((0,2 \pi))$ to 0 as $h \rightarrow \infty$, but does not converge strictly because $\left|D u_{h}\right|((0,2 \pi))=4$ for each h.
- We showed previously that for every $u \in \operatorname{BV}(\Omega)$ there exists $\left(u_{h}\right) \subset C^{\infty}(\Omega)$ with $u_{h} \rightarrow u$ strictly in $\operatorname{BV}(\Omega)$.

The area formula

Let $k, n \in \mathbb{N}$ with $k \leq n$. For a differentiable mapping
$f: \mathbb{R}^{k} \rightarrow \mathbb{R}^{n}$, denote by $d f_{x}$ the $n \times k$-matrix whose rows are the gradient vectors of the components of f at the point $x \in \mathbb{R}^{k}$. Also, define the Jacobian by

$$
\mathbf{J}_{k} d f_{x}:=\sqrt{\operatorname{det}\left(d f_{x}^{*} \circ d f_{x}\right)}
$$

Theorem

Let $f: \mathbb{R}^{k} \rightarrow \mathbb{R}^{n}$ be a one-to-one Lipschitz function. Then for any Borel measurable nonnegative function g we have

$$
\int_{\mathbb{R}^{n}} g\left(f^{-1}(y)\right) d \mathcal{H}^{k}(y)=\int_{\mathbb{R}^{k}} g(x) \mathbf{J}_{k} d f_{x} d x
$$

Definition

A bounded open set $\Omega \subset \mathbb{R}^{n}$ is a BV extension domain if for any open set $A \supset \bar{\Omega}$ there exists a linear and bounded extension operator $T: \operatorname{BV}(\Omega) \rightarrow \mathrm{BV}\left(\mathbb{R}^{n}\right)$ satisfying

- $T u=0$ in $\mathbb{R}^{n} \backslash A$ for any $u \in \operatorname{BV}(\Omega)$,
- $|D T u|(\partial \Omega)=0$ for any $u \in \operatorname{BV}(\Omega)$.

Theorem

A bounded open set $\Omega \subset \mathbb{R}^{n}$ with Lipschitz boundary is a BV extension domain.

Proof omitted.

Compactness in BV part I

Lemma

Let $u \in \operatorname{BV}(\Omega)$ and let $K \subset \Omega$ be a compact set. Then

$$
\int_{K}\left|u * \rho_{\varepsilon}-u\right| d \mathcal{L}^{n} \leq \varepsilon|D u|(\Omega) \quad \forall \varepsilon \in(0, \operatorname{dist}(K, \partial \Omega)) .
$$

Proof. We find $\left(u_{h}\right) \subset C^{\infty}(\Omega)$ with $u_{h} \rightarrow u$ in $L^{1}(\Omega)$ and $\left|D u_{h}\right|(\Omega) \rightarrow|D u|(\Omega)$. Thus we can in fact assume $u \in C^{\infty}(\Omega)$. Pick $x \in K$ and $y \in B(0,1)$, and denote $v(t):=u(x-\varepsilon$ ty $)$, so that

$$
u(x-\varepsilon y)-u(x)=\int_{0}^{1} v^{\prime}(t) d t=-\varepsilon \int_{0}^{1}\langle\nabla u(x-\varepsilon t y), y\rangle d t .
$$

By Fubini we get
$\int_{K}|u(x-\varepsilon y)-u(x)| d x \leq \varepsilon \int_{0}^{1} \int_{K}|\nabla u(x-\varepsilon t y)| d x d t \leq \varepsilon|D u|(\Omega)$
Multiplying by $\rho(y)$ and integrating we obtain, by again using
Fubini

$$
\int_{K}\left(\int_{\mathbb{R}^{n}}|u(x-\varepsilon y)-u(x)| \rho(y) d y\right) d x \leq \varepsilon|D u|(\Omega)
$$

Thus

$$
\begin{aligned}
\int_{K}\left|u * \rho_{\varepsilon}(x)-u(x)\right| d x & =\int_{K}\left|\int_{\mathbb{R}^{n}}[u(x-\varepsilon y)-u(x)] \rho(y) d y\right| d x \\
& \leq \varepsilon|D u|(\Omega)
\end{aligned}
$$

Compactness in BV part III

Theorem

Let $\left(u_{h}\right)$ be a norm-bounded sequence in $\operatorname{BV}\left(\mathbb{R}^{n}\right)$, i.e.

$$
\sup _{h \in \mathbb{N}}\left\{\int_{\mathbb{R}^{n}}\left|u_{h}\right| d \mathcal{L}^{n}+\left|D u_{h}\right|\left(\mathbb{R}^{n}\right)\right\}<\infty .
$$

Then for some subsequence we have $u_{h(k)} \rightarrow u \in \operatorname{BV}\left(\mathbb{R}^{n}\right)$ locally weakly* in $\operatorname{BV}\left(\mathbb{R}^{n}\right)$ as $k \rightarrow \infty$.

Proof. Fix $\varepsilon>0$ and for each $h \in \mathbb{N}$, let $u_{h, \varepsilon}:=u_{h} * \rho_{\varepsilon}$. Then

$$
\left\|u_{h, \varepsilon}\right\|_{L^{\infty}\left(\mathbb{R}^{n}\right)} \leq\left\|u_{h}\right\|_{L^{1}\left(\mathbb{R}^{n}\right)}\left\|\rho_{\varepsilon}\right\|_{L^{\infty}\left(\mathbb{R}^{n}\right)}
$$

and since $\nabla u_{h, \varepsilon}=u_{h} * \nabla \rho_{\varepsilon}$,

$$
\left\|\nabla u_{h, \varepsilon}\right\|_{L^{\infty}\left(\mathbb{R}^{n}\right)} \leq\left\|u_{h}\right\|_{L^{1}\left(\mathbb{R}^{n}\right)}\left\|\nabla \rho_{\varepsilon}\right\|_{L^{\infty}\left(\mathbb{R}^{n}\right)}
$$

Compactness in BV part IV

Thus with ε fixed, $\left(u_{h, \varepsilon}\right)$ is an equibounded and equicontinuous sequence. Fix a bounded set $U \subset \mathbb{R}^{n}$. By Arzelà-Ascoli we can find a subsequence converging uniformly on U. By a diagonal argument we find a subsequence $h(k)$ such that $u_{h(k), \varepsilon}$ converges uniformly on U for any $\varepsilon=1 / p, p \in \mathbb{N}$.

Thus we have

$$
\begin{aligned}
& \limsup _{k, k^{\prime} \rightarrow \infty} \int_{U}\left|u_{h(k)}-u_{h\left(k^{\prime}\right)}\right| d \mathcal{L}^{n} \leq \limsup _{k, k^{\prime} \rightarrow \infty} \int_{U}\left|u_{h(k)}-u_{h(k), 1 / p}\right| d \mathcal{L}^{n} \\
& \quad+\lim _{k, k^{\prime} \rightarrow \infty} \int_{U}\left|u_{h(k), 1 / p}-u_{h\left(k^{\prime}\right), 1 / p}\right| d \mathcal{L}^{n} \\
& \quad+\lim _{k, k^{\prime} \rightarrow \infty} \sup _{U}\left|u_{h\left(k^{\prime}\right), 1 / p}-u_{h\left(k^{\prime}\right)}\right| d \mathcal{L}^{n} \\
& \quad \leq \frac{2}{p} \sup _{h \in \mathbb{N}}\left|D u_{h}\right|\left(\mathbb{R}^{n}\right)
\end{aligned}
$$

Compactness in BV part V

Since we can take $p \in \mathbb{N}$ arbitrarily large, we have

$$
\lim _{k, k^{\prime} \rightarrow \infty} \int_{U}\left|u_{h(k)}-u_{h\left(k^{\prime}\right)}\right| d \mathcal{L}^{n}=0
$$

so that $u_{h(k)}$ is a Cauchy sequence in $L^{1}(U)$ and necessarily converges in $L^{1}(U)$ to some function u. By the lower semicontinuity of the variation, we have $u \in \operatorname{BV}(U)$, and by our previous characterization of weak* convergence in BV we have that $u_{h(k)}$ weakly* converges to u in $\operatorname{BV}(U)$.

Finally, by another diagonal argument we find a subsequence $h(k)$ (not relabeled) for which this convergence takes place in every bounded open $U \subset \mathbb{R}^{n}$.

Compactness in BV part VI

Corollary

Let $\Omega \subset \mathbb{R}^{n}$ be a bounded BV extension domain, and let $\left(u_{h}\right) \subset \operatorname{BV}(\Omega)$ be a norm-bounded sequence. Then for some subsequence we have $u_{h(k)} \rightarrow u \in \operatorname{BV}(\Omega)$ weakly* in $\operatorname{BV}(\Omega)$.

Proof.

Extend each function u_{h} to $T u_{h} \in \operatorname{BV}\left(\mathbb{R}^{n}\right)$. Then by the previous theorem, for a subsequence we have $T u_{h(k)} \rightarrow u \in \operatorname{BV}\left(\mathbb{R}^{n}\right)$ locally weakly* in $\operatorname{BV}\left(\mathbb{R}^{n}\right)$, in particular $T u_{h(k)} \rightarrow u$ weakly* in $\operatorname{BV}(\Omega)$, since Ω is bounded. Thus $u_{h(k)} \rightarrow u$ weakly* in $\operatorname{BV}(\Omega)$.

As before, Ω will always denote an open set in \mathbb{R}^{n}.
We denote by χ_{E} the characteristic function of a set $E \subset \mathbb{R}^{n}$, i.e. the function that takes the value 1 in the set E and the value 0 outside it.

Definition

Let $E \subset \mathbb{R}^{n}$ be a \mathcal{L}^{n}-measurable set. The perimeter of E in Ω is the variation of χ_{E} in Ω, i.e.

$$
P(E, \Omega):=\sup \left\{\int_{E} \operatorname{div} \psi d \mathcal{L}^{n}: \quad \psi \in\left[C_{c}^{1}(\Omega)\right]^{n}, \quad|\psi| \leq 1\right\} .
$$

We say that E is of finite perimeter in Ω if $P(E, \Omega)<\infty$.

Example

If an open set E has a C^{1}-boundary inside Ω and $\mathcal{H}^{n-1}(\partial E \cap \Omega)<\infty$, then by the Gauss-Green theorem

$$
\begin{equation*}
\int_{E} \operatorname{div} \psi d \mathcal{L}^{n}=-\int_{\partial E \cap \Omega}\left\langle\nu_{E}, \psi\right\rangle d \mathcal{H}^{n-1} \quad \forall \psi \in\left[C_{c}^{1}(\Omega)\right]^{n}, \tag{1}
\end{equation*}
$$

where ν_{E} is the inner unit normal of E, so that $P(E, \Omega) \leq \mathcal{H}^{n-1}(\partial E \cap \Omega)$ - in fact by picking suitable ψ, we can show that equality holds.

- For any set E that is of finite perimeter in Ω, the distributional derivative $D \chi_{E}$ is an \mathbb{R}^{n}-valued Radon measure in Ω, with polar decomposition $D \chi_{E}=\nu_{E}\left|D \chi_{E}\right|$, so that

$$
\int_{E} \operatorname{div} \psi d \mathcal{L}^{n}=-\int_{\Omega}\left\langle\psi, \nu_{E}\right\rangle d\left|D \chi_{E}\right| \quad \forall \psi \in\left[C_{c}^{1}(\Omega)\right]^{n}
$$

Here $\left|\nu_{E}\right|=1\left|D \chi_{E}\right|$-a.e. and $\left|D \chi_{E}\right|(\Omega)=P(E, \Omega)$. Then we can define $P(E, B)$ to be the same as $\left|D \chi_{E}\right|(B)$ for any Borel set $B \subset \Omega$.

- Thus $\chi_{E} \in \operatorname{BV}_{\text {loc }}(\Omega)$, but not necessarily $\chi_{E} \in \operatorname{BV}(\Omega)$ since we might not have $\chi_{E} \in L^{1}(\Omega)$.
- Moreover, $P(E, \Omega)=P\left(\mathbb{R}^{n} \backslash E, \Omega\right)$.

Algebra property

We also have the following algebra property.

Lemma

Given sets E, F of finite perimeter in Ω, we have

$$
P(E \cup F, \Omega)+P(E \cap F, \Omega) \leq P(E, \Omega)+P(F, \Omega)
$$

Proof. We find sequences $u_{h}, v_{h} \in C^{\infty}(\Omega)$ with $u_{h} \rightarrow \chi_{E}$ in $L^{1}(\Omega), v_{h} \rightarrow \chi_{F}$ in $L^{1}(\Omega), 0 \leq u_{h}, v_{h} \leq 1$, and

$$
\lim _{h \rightarrow \infty} \int_{\Omega}\left|\nabla u_{h}\right| d \mathcal{L}^{n}=P(E, \Omega), \quad \lim _{h \rightarrow \infty} \int_{\Omega}\left|\nabla v_{h}\right| d \mathcal{L}^{n}=P(F, \Omega)
$$

Then $u_{h} v_{h} \rightarrow \chi_{E \cap F}$ and $u_{h}+v_{h}-u_{h} v_{h} \rightarrow \chi_{E \cup F}$ in $L_{\text {loc }}^{1}(\Omega)$, and thus by the lower semicontinuity of the perimeter

$$
\begin{aligned}
& P(E \cap F, \Omega)+P(E \cup F, \Omega) \\
& \leq \liminf _{h \rightarrow \infty}\left(\int_{\Omega}\left|\nabla\left(u_{h} v_{h}\right)\right| d \mathcal{L}^{n}+\int_{\Omega}\left|\nabla\left(u_{h}+v_{h}-u_{h} v_{h}\right)\right| d \mathcal{L}^{n}\right) \\
& \leq \liminf _{h \rightarrow \infty} \int_{\Omega}\left|\nabla u_{h}\right|\left(\left|v_{h}\right|+\left|1-v_{h}\right|\right)+\left|\nabla v_{h}\right|\left(\left|u_{h}\right|+\left|1-u_{h}\right|\right) d \mathcal{L}^{n} \\
& =\liminf _{h \rightarrow \infty}\left(\int_{\Omega}\left|\nabla u_{h}\right| d \mathcal{L}^{n}+\int_{\Omega}\left|\nabla v_{h}\right| d \mathcal{L}^{n}\right) \\
& =P(E, \Omega)+P(F, \Omega)
\end{aligned}
$$

Coarea formula for BV

Theorem

For any $u \in \operatorname{BV}(\Omega)$, denoting $E_{t}:=\{x \in \Omega: u(x)>t\}, t \in \mathbb{R}$, we have

$$
|D u|(\Omega)=\int_{-\infty}^{\infty} P\left(E_{t}, \Omega\right) d t
$$

Proof. First we prove the result for $u \in C^{\infty}(\Omega)$. By the classical coarea formula we have

$$
\int_{\Omega} \mathbf{C}_{1} d u d \mathcal{L}^{n}=\int_{-\infty}^{\infty} \mathcal{H}^{n-1}\left(\Omega \cap u^{-1}(t)\right) d t
$$

where $\mathbf{C}_{1} d u=|\nabla u|$. By Sard's theorem we know that $\{\nabla u=0\} \cap u^{-1}(t)=\emptyset$ for a.e. $t \in \mathbb{R}$. For these values of t we have that the boundary $\partial E_{t}=u^{-1}(t)$ is smooth and so

$$
\mathcal{H}^{n-1}\left(\Omega \cap u^{-1}(t)\right)=\mathcal{H}^{n-1}\left(\Omega \cap \partial E_{t}\right)=P\left(E_{t}, \Omega\right)
$$

by (1). Thus

$$
\int_{\Omega}|\nabla u| d \mathcal{L}^{n}=\int_{-\infty}^{\infty} P\left(E_{t}, \Omega\right) d t
$$

Let then $u \in \operatorname{BV}(\Omega)$. We prove the inequality " \geq ". Take a sequence $\left(u_{h}\right) \subset C^{\infty}(\Omega)$ with $u_{h} \rightarrow u$ strictly in $\operatorname{BV}(\Omega)$. Define $E_{t}^{h}:=\left\{x \in \Omega: u_{h}(x)>t\right\}$. Then

$$
\left|u_{h}(x)-u(x)\right|=\int_{\min \left\{u_{h}(x), u(x)\right\}}^{\max \left\{u_{h}(x), u(x)\right\}} d t=\int_{-\infty}^{\infty}\left|\chi_{E_{t}^{h}}(x)-\chi_{E_{t}}(x)\right| d t
$$

so that by Fubini

$$
\int_{\Omega}\left|u_{h}(x)-u(x)\right| d x=\int_{-\infty}^{\infty} \int_{\Omega}\left|\chi_{E_{t}^{h}}(x)-\chi_{E_{t}}(x)\right| d x d t
$$

Thus by picking a subsequence (not relabeled) we get $\chi_{E_{t}^{h}} \rightarrow \chi_{E_{t}}$ in $L^{1}(\Omega)$ as $h \rightarrow \infty$, for a.e. $t \in \mathbb{R}$.

By the lower semicontinuity of the perimeter and Fatou's lemma we have

$$
\begin{aligned}
\int_{-\infty}^{\infty} P\left(E_{t}, \Omega\right) d t & \leq \int_{-\infty}^{\infty} \liminf _{h \rightarrow \infty} P\left(E_{t}^{h}, \Omega\right) d t \\
& \leq \liminf _{h \rightarrow \infty} \int_{-\infty}^{\infty} P\left(E_{t}^{h}, \Omega\right) d t \\
& =\liminf _{h \rightarrow \infty}\left|D u_{h}\right|(\Omega) \\
& =|D u|(\Omega) .
\end{aligned}
$$

Coarea formula, proof part IV

Finally, we prove the inequality " \leq ". We can see that for any $x \in \Omega$,

$$
u(x)=\int_{0}^{\infty} \chi_{E_{t}}(x) d t-\int_{-\infty}^{0}\left(1-\chi_{E_{t}}(x)\right) d t
$$

Then, given any $\psi \in\left[C_{c}^{1}(\Omega)\right]^{n}$ with $|\psi| \leq 1$, we estimate
$\int_{\Omega} u(x) \operatorname{div} \psi(x) d x$
$=\int_{\Omega}\left(\int_{0}^{\infty} \chi_{E_{t}}(x) d t-\int_{-\infty}^{0}\left(1-\chi_{E_{t}}(x)\right) d t\right) \operatorname{div} \psi(x) d x$
$=\int_{0}^{\infty} \int_{\Omega} \chi_{E_{t}}(x) \operatorname{div} \psi(x) d x d t-\int_{-\infty}^{0} \int_{\Omega}\left(1-\chi_{E_{t}}(x)\right) \operatorname{div} \psi(x) d x d t$
$=\int_{-\infty}^{\infty} \int_{\Omega} \chi_{E_{t}}(x) \operatorname{div} \psi(x) d x d t \leq \int_{-\infty}^{\infty} P\left(E_{t}, \Omega\right) d t$.

Coarea formula, consequences I

Let $u \in \operatorname{BV}(\Omega)$. If we define

$$
\mu(B):=\int_{-\infty}^{\infty}\left|D \chi_{E_{t}}\right|(B) d t
$$

for any Borel set $B \subset \Omega$, it is straightforward to check that μ is a positive Borel measure. Since $|D u|$ and μ agree on open subsets of Ω, we have

$$
|D u|(B)=\int_{-\infty}^{\infty}\left|D \chi_{E_{t}}\right|(B) d t
$$

for any Borel set $B \subset \Omega$. We also have

$$
D u(B)=\int_{-\infty}^{\infty} D \chi_{E_{t}}(B) d t
$$

for any Borel set $B \subset \Omega$, which we see as follows.

Coarea formula, consequences II

We use Fubini and then the fact that $D \chi_{E_{t}}$ is a finite Radon measure for a.e. $t \in \mathbb{R}$ to obtain for any $\psi \in C_{c}^{\infty}(\Omega)$

$$
\begin{aligned}
\int_{\Omega} \psi d D u= & -\int_{\Omega} u(x) \nabla \psi(x) d x \\
= & -\int_{\Omega}\left(\int_{0}^{\infty} \chi_{E_{t}}(x) d t\right) \nabla \psi(x) d x \\
& +\int_{\Omega}\left(\int_{-\infty}^{0}\left(1-\chi_{E_{t}}(x)\right) d t\right) \nabla \psi(x) d x \\
=- & \int_{0}^{\infty}\left(\int_{\Omega} \chi_{E_{t}}(x) \nabla \psi(x) d x\right) d t \\
& +\int_{-\infty}^{0}\left(\int_{\Omega}\left(1-\chi_{E_{t}}(x)\right) \nabla \psi(x) d x\right) d t \\
= & \int_{-\infty}^{\infty}\left(\int_{\Omega} \psi d D \chi_{E_{t}}\right) d t .
\end{aligned}
$$

Theorem

For any $u \in \operatorname{BV}\left(\mathbb{R}^{n}\right)$ we have

$$
\|u\|_{L^{n} /(n-1)\left(\mathbb{R}^{n}\right)} \leq C_{S}|D u|\left(\mathbb{R}^{n}\right)
$$

for some constant $C_{S}=C_{S}(n)$.
From now on, let us assume that $n \geq 2$. In the one-dimensional setting, easier proofs and stronger results are available, but we will not consider these.

Proof.

Pick functions $\left(u_{h}\right) \subset C^{\infty}\left(\mathbb{R}^{n}\right)$ with $u_{h} \rightarrow u$ in $L^{1}\left(\mathbb{R}^{n}\right)$, $u_{h}(x) \rightarrow u(x)$ for \mathcal{L}^{n}-a.e. $x \in \mathbb{R}^{n}$ and $\left|D u_{h}\right|\left(\mathbb{R}^{n}\right) \rightarrow|D u|\left(\mathbb{R}^{n}\right)$. Then by Fatou's lemma and the Gagliardo-Nirenberg-Sobolev inequality, we have

$$
\begin{aligned}
\left(\int_{\mathbb{R}^{n}}|u|^{\frac{n}{n-1}} d \mathcal{L}^{n}\right)^{\frac{n-1}{n}} & =\left(\int_{\mathbb{R}^{n}} \liminf _{h \rightarrow \infty}\left|u_{h}\right|^{\frac{n}{n-1}} d \mathcal{L}^{n}\right)^{\frac{n-1}{n}} \\
& \leq \liminf _{h \rightarrow \infty}\left(\int_{\mathbb{R}^{n}}\left|u_{h}\right|^{\frac{n}{n-1}} d \mathcal{L}^{n}\right)^{\frac{n-1}{n}} \\
& \leq C_{S} \liminf _{h \rightarrow \infty}\left|D u_{h}\right|\left(\mathbb{R}^{n}\right) \\
& =C_{S}|D u|\left(\mathbb{R}^{n}\right)
\end{aligned}
$$

Isoperimetric inequality

Theorem

For any bounded \mathcal{L}^{n}-measurable set $E \subset \mathbb{R}^{n}$, we have

$$
\mathcal{L}^{n}(E)^{(n-1) / n} \leq C_{S} P\left(E, \mathbb{R}^{n}\right)
$$

Proof.

Choose $u=\chi_{E}$ in the Sobolev inequality.

Poincaré inequality

Theorem

For any ball $B(x, r)$ and any $u \in \operatorname{BV}(B(x, r))$ we have

$$
\left(\int_{B(x, r)}\left|u-u_{B(x, r)}\right|^{n /(n-1)} d \mathcal{L}^{n}\right)^{(n-1) / n} \leq C_{P}|D u|(B(x, r))
$$

for some $C_{P}=C_{P}(n)$, where

$$
u_{B(x, r)}:=f_{B(x, r)} u d \mathcal{L}^{n}:=\frac{1}{\mathcal{L}^{n}(B(x, r))} \int_{B(x, r)} u d \mathcal{L}^{n} .
$$

Proof.

Follows from the usual Poincaré inequality for Sobolev functions.

Relative isoperimetric inequality

Theorem

For any ball $B(x, r)$ and any \mathcal{L}^{n}-measurable set $E \subset \mathbb{R}^{n}$, we have

$$
\min \{|B(x, r) \cap E|,|B(x, r) \backslash E|\}^{(n-1) / n} \leq 2 C_{P} P(E, B(x, r)) .
$$

Proof. We have

$$
\begin{aligned}
\int_{B(x, r)} \mid \chi_{E} & -\left.\left(\chi_{E}\right)_{B(x, r)}\right|^{n /(n-1)} d \mathcal{L}^{n} \\
& =|B(x, r) \cap E|\left(\frac{|B(x, r) \backslash E|}{|B(x, r)|}\right)^{\frac{n}{n-1}} \\
& +|B(x, r) \backslash E|\left(\frac{|B(x, r) \cap E|}{|B(x, r)|}\right)^{\frac{n}{n-1}} .
\end{aligned}
$$

If $|B(x, r) \cap E| \leq|B(x, r) \backslash E|$, then by the Poincaré inequality

$$
\begin{aligned}
C_{P} P(E, B(x, r)) & \geq\left(\int_{B(x, r)}\left|\chi_{E}-\left(\chi_{E}\right)_{B(x, r)}\right|^{\frac{n}{n-1}} d \mathcal{L}^{n}\right)^{\frac{n-1}{n}} \\
& \geq\left(\frac{|B(x, r) \backslash E|}{|B(x, r)|}\right)|B(x, r) \cap E|^{(n-1) / n} \\
& \geq \frac{1}{2} \min \{|B(x, r) \cap E|,|B(x, r) \backslash E|\}^{(n-1) / n} .
\end{aligned}
$$

The case $|B(x, r) \cap E| \geq|B(x, r) \backslash E|$ is handled analogously.

Lemma

Let E be a set of finite perimeter in \mathbb{R}^{n}, and let $x \in \mathbb{R}^{n}$. Then for a.e. $r>0$, we have

$$
P\left(E \cap B(x, r), \mathbb{R}^{n}\right) \leq P(E, \bar{B}(x, r))+m^{\prime}(r),
$$

where $m(r):=|E \cap B(x, r)|$.
In particular, if $P(E, \partial B(x, r))=0$, then

$$
P(E, B(x, r))+P(E \cap B(x, r), \partial B(x, r)) \leq P(E, B(x, r))+m^{\prime}(r)
$$

and so

$$
\begin{equation*}
P(E \cap B(x, r), \partial B(x, r)) \leq m^{\prime}(r) \tag{2}
\end{equation*}
$$

Proof. We can assume that $x=0$. Fix $r>0$ such that the derivative $m^{\prime}(r)$ exists; note that the derivative of a monotone function on the real line exists almost everywhere.

For $\sigma>0$, set

$$
\gamma_{\sigma}(t):= \begin{cases}1 & \text { if } t \leq r \\ 1+\frac{r-t}{\sigma} & \text { if } r \leq t \leq r+\sigma \\ 0 & \text { if } t \geq r+\sigma\end{cases}
$$

Then define $v_{\sigma}(y):=\chi_{E}(y) \gamma_{\sigma}(|y|), y \in \mathbb{R}^{n}$. By the Leibniz rule

$$
D v_{\sigma}=\gamma_{\sigma}(|y|) D \chi_{E}+\chi_{E}(y) \gamma_{\sigma}^{\prime}(|y|) \frac{y}{|y|} \mathcal{L}^{n}
$$

and thus

$$
\left|D v_{\sigma}\right|\left(\mathbb{R}^{n}\right) \leq\left|D \chi_{E}\right|(B(x, r+\sigma))+\sigma^{-1} \int_{B(x, r+\sigma) \backslash B(x, r)} \chi_{E} d \mathcal{L}^{n}
$$

and since $v_{\sigma} \rightarrow \chi_{E \cap B(x, r)}$ in $L^{1}\left(\mathbb{R}^{n}\right)$ as $\sigma \rightarrow 0$, by lower semicontinuity

$$
\begin{aligned}
P\left(E \cap B(x, r), \mathbb{R}^{n}\right) & \leq \liminf _{\sigma \rightarrow 0}\left|D v_{\sigma}\right|\left(\mathbb{R}^{n}\right) \\
& \leq\left|D \chi_{E}\right|(\bar{B}(x, r))+m^{\prime}(r)
\end{aligned}
$$

Reduced boundary

Let $E \subset \mathbb{R}^{n}$ be a set of locally finite perimeter in \mathbb{R}^{n}.

Definition

We define the reduced boundary $\mathcal{F E}$ as the set of points $x \in \operatorname{supp}\left|D \chi_{E}\right|$ such that the limit

$$
\nu_{E}(x):=\lim _{r \rightarrow 0} \frac{D \chi_{E}(B(x, r))}{\left|D \chi_{E}\right|(B(x, r))}
$$

exists and satisfies $\left|\nu_{E}(x)\right|=1$.

- According to the polar decomposition of vector measures (based on the Besicovitch differentiation theorem), we have $\left|D \chi_{E}\right|\left(\mathbb{R}^{n} \backslash \mathcal{F} E\right)=0$ and $D \chi_{E}=\nu_{E}\left|D \chi_{E}\right|$.
- If $x \in \mathcal{F} E$, then

$$
\mathcal{L}^{n}(B(x, r) \cap E)>0, \quad \mathcal{L}^{n}(B(x, r) \backslash E)>0
$$

for all $r>0$.

Reduced boundary and Lebesgue points

Note that for $x \in \mathcal{F} E$,

$$
\begin{aligned}
& \frac{1}{2\left|D \chi_{E}\right|(B(x, r))} \int_{B(x, r)}\left|\nu_{E}(y)-\nu_{E}(x)\right|^{2} d\left|D \chi_{E}\right|(y) \\
& \quad=1-\frac{2}{2\left|D \chi_{E}\right|(B(x, r))} \int_{B(x, r)}\left\langle\nu_{E}(y), \nu_{E}(x)\right\rangle d\left|D \chi_{E}\right|(y) \\
& \quad=1-\left\langle\frac{D \chi_{E}(B(x, r))}{\left|D \chi_{E}\right|(B(x, r))}, \nu_{E}(x)\right\rangle \rightarrow 0
\end{aligned}
$$

as $r \rightarrow 0$, since $x \in \mathcal{F} E$. Thus

$$
\lim _{r \rightarrow 0} \frac{1}{\left|D \chi_{E}\right|(B(x, r))} \int_{B(x, r)}\left|\nu_{E}(y)-\nu_{E}(x)\right| d\left|D \chi_{E}\right|(y)=0
$$

Lemma

Let E be a set of finite perimeter in \mathbb{R}^{n} and let $x \in \mathcal{F} E$. Then there exist $r_{0}>0$, and constants $\alpha, \beta>0$ depending only on n, such that

$$
\begin{gathered}
P(E, B(x, r)) \leq \alpha r^{n-1} \quad \forall r \in\left(0, r_{0}\right), \\
\min \{|B(x, r) \cap E|,|B(x, r) \backslash E| \mid\} \geq \beta r^{n} \quad \forall r \in\left(0, r_{0}\right) .
\end{gathered}
$$

Proof. By the fact that $x \in \mathcal{F} E$, we can choose $r_{0}>0$ such that

$$
\begin{equation*}
\left|D \chi_{E}\right|(B(x, r)) \leq 2\left|D \chi_{E}(B(x, r))\right| \quad \forall r \in\left(0,2 r_{0}\right) \tag{3}
\end{equation*}
$$

By the algebra property of sets of finite perimeter, $E \cap B(x, r)$ is of finite perimeter in \mathbb{R}^{n}. In general, for any bounded set F of finite perimeter in \mathbb{R}^{n}, we have (recall that ρ_{ε} denote standard mollifiers)

$$
\begin{aligned}
D \chi_{F}\left(\mathbb{R}^{n}\right) & =\int_{\mathbb{R}^{n}} D \chi_{F} * \rho_{\varepsilon} d \mathcal{L}^{n} \\
& =\int_{\mathbb{R}^{n}} \nabla\left(\chi_{F} * \rho_{\varepsilon}\right) d \mathcal{L}^{n}=0 .
\end{aligned}
$$

We also note that for a.e. $r>0$, we have $P(E, \partial B(x, r))=0$. In total, for a.e. $r \in\left(0,2 r_{0}\right)$ we have

$$
\begin{aligned}
& P(E, B(x, r)) \leq 2\left|D \chi_{E}(B(x, r))\right| \quad \text { by }(3) \\
&=2\left|D \chi_{E \cap B(x, r)}(B(x, r))\right| \\
& \quad=2\left|D \chi_{E \cap B(x, r)}(\partial B(x, r))\right| \quad \text { since } D \chi_{E \cap B(x, r)}\left(\mathbb{R}^{n}\right)=0 \\
& \leq 2 P(E \cap B(x, r), \partial B(x, r)) \\
& \leq 2 m^{\prime}(r) \quad \text { by }(2) .
\end{aligned}
$$

Thus for any $r \in\left(0, r_{0}\right)$,

$$
P(E, B(x, r)) \leq \frac{1}{r} \int_{r}^{2 r} P(E, B(x, t)) d t \leq \frac{2 m(2 r)}{r} \leq 2^{n+1} \omega_{n} r^{n-1}
$$

This gives the first estimate. Then, by using the isoperimetric inequality as well as the localization lemma,

$$
\begin{aligned}
m(r)^{1-1 / n} & =|E \cap B(x, r)|^{1-1 / n} \\
& \leq C_{S} P\left(E \cap B(x, r), \mathbb{R}^{n}\right) \\
& \leq C_{S}\left[P(E, B(x, r))+m^{\prime}(r)\right] \\
& \leq C_{S}\left(3 m^{\prime}(r)\right)
\end{aligned}
$$

for a.e. $r \in\left(0, r_{0}\right)$, so that $\left(m^{1 / n}\right)^{\prime}(r) \geq 1 /\left(3 n C_{S}\right)$ for a.e. $r \in\left(0, r_{0}\right)$, so that $m(r) \geq r^{n} /\left(3 n C_{S}\right)^{n}$ for all $r \in\left(0, r_{0}\right)$. Finally, we can run the same argument with $|B(x, r) \backslash E|$ instead of $|B(x, r) \cap E|$.

De Giorgi structure theorem

Let $E \subset \mathbb{R}^{n}$ be a set of finite perimeter in \mathbb{R}^{n}. For each $x \in \mathcal{F} E$, define the hyperplane

$$
H(x):=\left\{y \in \mathbb{R}^{n}:\left\langle\nu_{E}(x), y-x\right\rangle=0\right\}
$$

and the half-spaces

$$
\begin{aligned}
H^{+}(x) & :=\left\{y \in \mathbb{R}^{n}:\left\langle\nu_{E}(x), y-x\right\rangle \geq 0\right\} \\
H^{-}(x) & :=\left\{y \in \mathbb{R}^{n}:\left\langle\nu_{E}(x), y-x\right\rangle \leq 0\right\}
\end{aligned}
$$

With $x \in \mathcal{F} E$ fixed, define also

$$
E_{r}:=\{(y-x) / r+x: y \in E\}
$$

Theorem

Let $x \in \mathcal{F} E$. Then $\chi_{E_{r}} \rightarrow \chi_{\boldsymbol{H}^{+}(x)}$ in $L_{\text {loc }}^{1}\left(\mathbb{R}^{n}\right)$ as $r \searrow 0$.

Proof. First of all, we may assume $x=0$ and $\nu_{E}(0)=e_{n}$. Then $E_{r}=\{y / r: y \in E\}$, and furthermore let $\psi_{s}(y):=\psi(s y), s>0$.
For any $\psi \in\left[C_{c}^{1}\left(\mathbb{R}^{n}\right)\right]^{n}$, we have

$$
\begin{equation*}
\int_{\mathbb{R}^{n}} \chi_{E_{r}} \operatorname{div} \psi d \mathcal{L}^{n}=\frac{1}{r^{n-1}} \int_{\mathbb{R}^{n}} \chi_{E} \operatorname{div} \psi_{r^{-1}} d \mathcal{L}^{n} \tag{4}
\end{equation*}
$$

Fix any $M>0$. Noting that $\psi \in\left[C_{c}^{1}(B(0, M))\right]^{n}$ if and only if $\psi_{r^{-1}} \in\left[C_{c}^{1}(B(0, r M))\right]^{n}$ and taking the supremum (with $|\psi| \leq 1$), we obtain

$$
\begin{equation*}
P\left(E_{r}, B(0, M)\right)=\frac{P(E,(B(0, r M)))}{r^{n-1}} \tag{5}
\end{equation*}
$$

Thus by the a priori estimate on perimeter, we obtain

$$
P\left(E_{r}, B(0, M)\right) \leq \alpha \frac{(r M)^{n-1}}{r^{n-1}}=\alpha M^{n-1}
$$

for sufficiently small $r>0$.
Take an arbitrary sequence $r_{h} \searrow 0$. By the above, $P\left(E_{r_{h}}, B(0, M)\right)$ is a bounded sequence. By compactness, we find a subsequence (not relabeled) such that $\chi_{E_{r_{h}}} \rightarrow v \in \operatorname{BV}(B(0, M))$ weakly* in $\operatorname{BV}(B(0, M))$. We can also assume that $\chi_{E_{r_{h}}}(x) \rightarrow v(x)$ for \mathcal{L}^{n}-a.e. $x \in B(0, M)$, so that $v=\chi_{F}$ for some set F.

This can be done for every $M>0$, and so by a diagonal argument, we have for some set F of locally finite perimeter in \mathbb{R}^{n} that $\chi_{E_{r_{h}}} \rightarrow \chi_{F}$ locally weakly* in $\operatorname{BV}\left(\mathbb{R}^{n}\right)$.

We also obtain from (4) for any $r>0$

$$
\int_{\mathbb{R}^{n}}\left\langle\psi, \nu_{E_{r}}\right\rangle d\left|D \chi_{E_{r}}\right|=\frac{1}{r^{n-1}} \int_{\mathbb{R}^{n}}\left\langle\psi_{r^{-1}}, \nu_{E}\right\rangle d\left|D \chi_{E}\right|
$$

so that for any $M>0$

$$
\int_{B(0, M)} \nu_{E_{r}} d\left|D \chi_{E_{r}}\right|=\frac{1}{r^{n-1}} \int_{B(0, r M)} \nu_{E} d\left|D \chi_{E}\right|
$$

Thus

$$
\begin{aligned}
& \left.\frac{1}{\left|D \chi_{E_{r_{h}}}\right|(B(0, M))} \int_{B(0, M)} \nu_{E_{r_{h}}} d \right\rvert\, D \chi_{E_{r_{h}} \mid} \\
& \quad=\frac{1}{\left|D \chi_{E}\right|\left(B\left(0, r_{h} M\right)\right)} \int_{B\left(0, r_{h} M\right)} \nu_{E} d\left|D \chi_{E}\right| \rightarrow \nu_{E}(0)=e_{n}
\end{aligned}
$$

as $h \rightarrow \infty$.

Moreover, if $\left|D \chi_{F}\right|(\partial B(0, M))=0$ (which is true for a.e. $\left.M>0\right)$ then by the fact that $D \chi_{E_{r_{h}}} \stackrel{*}{\longrightarrow} D \chi_{F}$ locally in \mathbb{R}^{n},

$$
\begin{aligned}
\left|D \chi_{F}\right|(B(0, M)) & \leq \liminf _{h \rightarrow \infty}\left|D \chi_{E_{r_{h}}}\right|(B(0, M)) \\
& \leq \limsup _{h \rightarrow \infty}\left|D \chi_{E_{r_{h}}}\right|(B(0, M)) \\
& =\limsup _{h \rightarrow \infty} \int_{B(0, M)}\left\langle e_{n}, \nu_{E_{r_{h}}}\right\rangle d\left|D \chi_{E_{r_{h}}}\right| \\
& =\int_{B(0, M)}\left\langle e_{n}, \nu_{F}\right\rangle d\left|D \chi_{F}\right| .
\end{aligned}
$$

Since $\left|\nu_{F}\right|=1\left|D \chi_{F}\right|$-almost everywhere, we must have $\nu_{F}=e_{n}$ $\left|D \chi_{F}\right|$-almost everywhere in $B(0, M)$, and then also

$$
\begin{equation*}
\left|D \chi_{F}\right|(B(0, M))=\lim _{h \rightarrow \infty}\left|D \chi_{E_{r_{h}}}\right|(B(0, M)) \tag{6}
\end{equation*}
$$

Blow-up proof part V

The above is true for a.e. $M>0$. Thus $D \chi_{F}=e_{n}\left|D \chi_{F}\right|$, and so by mollifying we obtain

$$
\nabla\left(\chi_{F} * \rho_{\varepsilon}\right)=\left(D \chi_{F}\right) * \rho_{\varepsilon}=\left(\left|D \chi_{F}\right| * \rho_{\varepsilon}\right) e_{n}
$$

so that $\chi_{F} * \rho_{\varepsilon}(y)=\gamma_{\varepsilon}\left(y_{n}\right)$ for all $y \in \mathbb{R}^{n}$, for some increasing $\gamma_{\varepsilon}: \mathbb{R} \rightarrow \mathbb{R}$.

Letting $\varepsilon \rightarrow 0$, we obtain $\chi_{F}(y)=\gamma\left(y_{n}\right)$ for \mathcal{L}^{n}-a.e. $y \in \mathbb{R}^{n}$, for some increasing $\gamma: \mathbb{R} \rightarrow \mathbb{R}$. But $\chi_{F}(y) \in\{0,1\}$ for all $y \in \mathbb{R}^{n}$, so necessarily $F=\left\{y \in \mathbb{R}^{n}: y_{n} \geq a\right\}$ for some $a \in \overline{\mathbb{R}}$. Suppose $a>0$. Since $\chi_{E_{r_{h}}} \rightarrow \chi_{F}$ in $L_{\text {loc }}^{1}\left(\mathbb{R}^{n}\right)$, we have

$$
\begin{aligned}
0 & =\int_{B(0, a)} \chi_{F} d \mathcal{L}^{n}=\lim _{h \rightarrow \infty} \int_{B(0, a)} \chi_{E_{r_{h}}} d \mathcal{L}^{n} \\
& =\lim _{h \rightarrow \infty} \frac{1}{r_{h}^{n}} \int_{B\left(0, r_{h} a\right)} \chi_{E} d \mathcal{L}^{n}>0
\end{aligned}
$$

by our a priori estimate on volume, giving a contradiction. Similarly we conclude that $a<0$ is impossible (and also $|a|=\infty$).
Thus $a=0$ and

$$
F=\left\{y \in \mathbb{R}^{n}: y_{n} \geq 0\right\}=H^{+}(0)
$$

Consequences of blow-up

Corollary

For every $x \in \mathcal{F E}$,

$$
\begin{equation*}
\lim _{r \rightarrow 0} \frac{\mathcal{L}^{n}\left(B(x, r) \cap H^{-}(x) \cap E\right)}{r^{n}}=0 \tag{7}
\end{equation*}
$$

and

$$
\begin{equation*}
\lim _{r \rightarrow 0} \frac{\mathcal{L}^{n}\left(B(x, r) \cap H^{+}(x) \backslash E\right)}{r^{n}}=0 \tag{8}
\end{equation*}
$$

and

$$
\begin{equation*}
\lim _{r \rightarrow 0} \frac{\left|D \chi_{E}\right|(B(x, r))}{\omega_{n-1} r^{n-1}}=1 \tag{9}
\end{equation*}
$$

Consequences of blow-up, proof part II

Proof.

$$
\begin{aligned}
& \frac{\mathcal{L}^{n}\left(B(x, r) \cap H^{-}(x) \cap E\right)}{r^{n}}=\mathcal{L}^{n}\left(B(x, 1) \cap H^{-}(x) \cap E_{r}\right) \\
& \quad \rightarrow \mathcal{L}^{n}\left(B(x, 1) \cap H^{-}(x) \cap H^{+}(x)\right)=0 \quad \text { as } r \rightarrow 0 .
\end{aligned}
$$

(8) is proved similarly. Since

$$
\left|D \chi_{H^{+}(x)}\right|(\partial B(x, 1))=\mathcal{H}^{n-1}(H(x) \cap \partial B(x, 1))=0
$$

we also have by (5) and (6)

$$
\begin{aligned}
\lim _{r \rightarrow 0} \frac{\left|D \chi_{E}\right|(B(x, r))}{r^{n-1}} & =\lim _{r \rightarrow 0}\left|D \chi_{E_{r}}\right|(B(x, 1)) \\
& =\left|D \chi_{H^{+}(x)}\right|(B(x, 1)) \\
& =\mathcal{H}^{n-1}(H(x) \cap B(x, 1))=\omega_{n-1} .
\end{aligned}
$$

Given any ball $B=B(x, r)$, denote $5 B:=B(x, 5 r)$.

Theorem

Let \mathcal{F} be any collection of open balls in \mathbb{R}^{n} with

$$
\sup \{\operatorname{diam} B: B \in \mathcal{F}\}<\infty
$$

Then there exists a countable family of disjoint balls $\mathcal{G} \subset \mathcal{F}$ such that

$$
\bigcup_{B \in \mathcal{F}} B \subset \bigcup_{B \in \mathcal{G}} 5 B .
$$

Lemma

There exists $C=C(n)>0$ such that for any Borel set $A \subset \mathcal{F} E$, we have

$$
\mathcal{H}^{n-1}(A) \leq C\left|D \chi_{E}\right|(A)
$$

Proof. Fix $\varepsilon>0$. By (9) we have for any $x \in \mathcal{F} E$

$$
\lim _{r \rightarrow 0} \frac{\left|D \chi_{E}\right|(B(x, r))}{\omega_{n-1} r^{n-1}}=1
$$

Since $\left|D \chi_{E}\right|$ is a Radon measure, we can find an open set $U \supset A$ such that

$$
\left|D \chi_{E}\right|(U) \leq\left|D \chi_{E}\right|(A)+\varepsilon
$$

Consider the covering of the set A by balls

$$
\begin{aligned}
& \{B(x, r): x \in A, B(x, r) \subset U, r<\varepsilon / 10 \\
& \left.\qquad\left|D \chi_{E}\right|(B(x, r)) \geq \frac{\omega_{n-1} r^{n-1}}{2}\right\} .
\end{aligned}
$$

By the 5-covering theorem we can pick from this covering a countable disjoint collection $\left\{B\left(x_{i}, r_{i}\right)\right\}_{i \in \mathbb{N}}$ such that $A \subset \bigcup_{i \in \mathbb{N}} B\left(x_{i}, 5 r_{i}\right)$. Since $\operatorname{diam}\left(B\left(x_{i}, 5 r_{i}\right)\right) \leq \varepsilon$, we have

$$
\begin{aligned}
\mathcal{H}_{\varepsilon}^{n-1}(A) & \leq \omega_{n-1} \sum_{i \in \mathbb{N}}\left(5 r_{i}\right)^{n-1} \\
& \leq 2 \times 5^{n-1} \sum_{i \in \mathbb{N}}\left|D \chi_{E}\right|\left(B\left(x_{i}, r_{i}\right)\right) \\
& \leq C\left|D \chi_{E}\right|(U) \leq C\left(\left|D \chi_{E}\right|(A)+\varepsilon\right)
\end{aligned}
$$

with $C=C(n)$. Letting $\varepsilon \rightarrow 0$, we obtain $\mathcal{H}^{n-1}(A) \leq C\left|D \chi_{E}\right|(A)$.

Lemma

There exists $C=C(n)>0$ such that for any Borel set $A \subset \mathcal{F} E$, we have

$$
\begin{equation*}
\left|D \chi_{E}\right|(A) \leq C \mathcal{H}^{n-1}(A) \tag{10}
\end{equation*}
$$

Proof. Fix $\tau>1$. For $i \in \mathbb{N}$, define

$$
A_{i}:=\left\{x \in A: \frac{\left|D \chi_{E}\right|(B(x, r))}{\omega_{n-1} r^{n-1}}<\tau \quad \forall r \in(0,1 / i)\right\}
$$

The sequence $\left(A_{i}\right)$ is increasing, and its union is A due to (9).

Fix $i \in \mathbb{N}$, and let $\left\{D_{j}\right\}_{j \in \mathbb{N}}$ be sets covering A_{i} with diameter less than $1 / i$, which intersect A_{i} at least at a point x_{j}, and which satisfy

$$
\sum_{j \in \mathbb{N}} \omega_{n-1} r_{j}^{n-1} \leq \mathcal{H}_{1 / i}^{n-1}\left(A_{i}\right)+1 / i
$$

with $r_{j}:=\operatorname{diam}\left(D_{j}\right) / 2$.
The balls $B\left(x_{j}, 2 r_{j}\right)$ still cover A_{i}, hence

$$
\begin{aligned}
\left|D \chi_{E}\right|\left(A_{i}\right) & \leq \sum_{j \in \mathbb{N}}\left|D \chi_{E}\right|\left(B\left(x_{j}, 2 r_{j}\right)\right) \leq \tau \sum_{j \in \mathbb{N}} \omega_{n-1}\left(2 r_{j}\right)^{n-1} \\
& \leq \tau 2^{n-1}\left(\mathcal{H}^{n-1}\left(A_{i}\right)+1 / i\right)
\end{aligned}
$$

By letting $i \rightarrow \infty$ and $\tau \searrow 1$ we obtain $\left|D \chi_{E}\right|(A) \leq 2^{n-1} \mathcal{H}^{n-1}(A)$.

Rectifiability of the reduced boundary part I

Theorem

Let E be a set of finite perimeter in \mathbb{R}^{n}. Then the reduced boundary $\mathcal{F E}$ is countably n-1-rectifiable and $\left|D \chi_{E}\right|=\mathcal{H}^{n-1}\llcorner\mathcal{F} E$.

Proof. By Egorov's theorem, we can find disjoint compact sets $F_{i} \subset \mathcal{F} E, i \in \mathbb{N}$, with

$$
\left|D \chi_{E}\right|\left(\mathcal{F} E \backslash \bigcup_{i \in \mathbb{N}} F_{i}\right)=0
$$

and such that the convergences (7), (8), (9) are uniform in each set F_{i}.

Choose unit vectors ν_{1}, \ldots, ν_{N} such that for any $\nu \in \partial B(0,1)$, we have $\left|\nu-\nu_{j}\right|<1 / 4$ for some $j=1, \ldots, N$. Partition the sets F_{i} further into sets $F_{i}^{j}, i \in \mathbb{N}, j=1, \ldots, N$, such that for any $z \in F_{i}^{j}$, we have $\left|\nu_{E}(z)-\nu_{j}\right|<1 / 4$. Relabel these sets $K_{i}, i \in \mathbb{N}$.

Fix $i \in \mathbb{N}$; we may as well take $i=1$. Pick j such that $\left|\nu_{E}(z)-\nu_{j}\right|<1 / 4$ for all $z \in K_{1}$. There exists $\delta>0$ such that if $z \in K_{1}$ and $r<2 \delta$,

$$
\mathcal{L}^{n}\left(B(z, r) \cap H^{-}(z) \cap E\right)<\frac{\omega_{n} r^{n}}{4^{2 n+1}}
$$

and

$$
\mathcal{L}^{n}\left(B(z, r) \cap H^{+}(z) \cap E\right)>\frac{1}{4} \omega_{n} r^{n}
$$

For $\nu \in \mathbb{R}^{n}$, denote by P_{ν} the orthogonal projection onto the line spanned by ν, and by P_{ν}^{\perp} the orthogonal projection onto the $n-1$-plane with normal ν, denoted also by ν^{\perp}.

Take $x, y \in K_{1}$ and $d(x, y)<\delta$. Suppose that we had $y \in H^{-}(x)$ and

$$
\left|P_{\nu_{j}}(y-x)\right| \geq\left|P_{\nu_{j}}^{\perp}(y-x)\right|
$$

Then

$$
\left|P_{\nu_{j}}(y-x)\right| \geq|y-x| / 2
$$

and so

$$
\left|P_{\nu_{E}(x)}(y-x)\right| \geq|y-x| / 4
$$

This implies that

$$
B(y,|x-y| / 4) \subset B(x, 2|x-y|) \cap H^{-}(x)
$$

so that

$$
B(y,|x-y| / 4) \cap E \subset B(x, 2|x-y|) \cap H^{-}(x) \cap E
$$

Rectifiability of the reduced boundary part IV

But since $y \in K_{1}$,

$$
\mathcal{L}^{n}(B(y,|x-y| / 4) \cap E)>\frac{1}{4} \omega_{n}\left(\frac{|x-y|}{4}\right)^{n}=\frac{\omega_{n}|x-y|^{n}}{4^{n+1}}
$$

and similarly since $x \in K_{1}$,

$$
\mathcal{L}^{n}\left(B(x, 2|x-y|) \cap H^{-}(x) \cap E\right)<\frac{\omega_{n}(2|x-y|)^{n}}{4^{2 n+1}} \leq \frac{\omega_{n}|x-y|^{n}}{4^{n+1}}
$$

This is a contradiction. Thus

$$
\left|P_{\nu_{j}}(y-x)\right| \leq\left|P_{\nu_{j}}^{\perp}(y-x)\right|
$$

for all $x, y \in K_{1}$ with $|x-y|<\delta$.
Thus for any $z \in K_{1}, B(z, \delta / 2) \cap K_{1}$ is the graph of a 1-Lipschitz map with domain in the $n-1$-plane ν_{j}^{\perp}. This can be extended into a 1-Lipschitz graph S_{1} defined on the whole of ν_{j}^{\perp}.

The set K_{1} can be partitioned into finitely many sets contained in balls $B(z, \delta / 2), z \in K_{1}$, and the same can be done for each set K_{i}. Relabel the resulting sets $H_{i}, i \in \mathbb{N}$, so that each H_{i} is covered by a Lipschitz graph S_{i}.

Note that

$$
\mathcal{H}^{n-1}\left(\mathcal{F} E \backslash \bigcup_{i \in \mathbb{N}} H_{i}\right) \leq C\left|D \chi_{E}\right|\left(\mathcal{F} E \backslash \bigcup_{i \in \mathbb{N}} H_{i}\right)=0
$$

Thus the reduced boundary $\mathcal{F E}$ is countably $n-1$-rectifiable.
Let us show that $\left|D \chi_{E}\right|=\mathcal{H}^{n-1}\llcorner\mathcal{F} E$. For this it is enough to show that for any $i \in \mathbb{N},\left|D \chi_{E}\right|\left\llcorner H_{i}=\mathcal{H}^{n-1}\left\llcorner H_{i}\right.\right.$. Again we can take $i=1$.

Rectifiability of the reduced boundary part VI

We have

$$
\lim _{r \rightarrow 0} \frac{\mathcal{H}^{n-1}\left(S_{1} \cap B(x, r)\right)}{\omega_{n-1} r^{n-1}}=1
$$

for \mathcal{H}^{n-1}-a.e. $x \in S_{1}$, since S_{1} is a Lipschitz graph. Thus by (9),

$$
\lim _{r \rightarrow 0} \frac{\left|D \chi_{E}\right|(B(x, r))}{\mathcal{H}^{n-1}\left(S_{1} \cap B(x, r)\right)}=1
$$

for \mathcal{H}^{n-1}-almost every $x \in H_{1} \subset \mathcal{F} E$. By (10) we know that

$$
\left|D \chi_{E}\right|\left\llcornerH _ { 1 } \ll \mathcal { H } ^ { n - 1 } \left\llcornerH _ { 1 } \ll \mathcal { H } ^ { n - 1 } \left\llcorner S_{1} .\right.\right.\right.
$$

Thus by the Besicovitch differentiation theorem,

$$
\left|D \chi_{E}\right|\left\llcorner H_{1}=\left(\mathcal { H } ^ { n - 1 } \llcorner S _ { 1 }) \left\llcornerH_{1}=\mathcal{H}^{n-1}\left\llcorner H_{1} .\right.\right.\right.\right.
$$

Enlarged rationals

To illustrate how big the topological boundary of a set of finite perimeter can be compared to the reduced boundary, consider the following.

Example

Let $\left(q_{h}\right)$ be an enumeration of \mathbb{Q}^{2}. Define

$$
E:=\bigcup_{h=1}^{\infty} B\left(q_{h}, 2^{-h}\right)
$$

Then by subadditivity and lower semicontinuity

$$
P\left(E, \mathbb{R}^{2}\right) \leq \sum_{h=1}^{\infty} P\left(B\left(q_{h}, 2^{-h}\right), \mathbb{R}^{2}\right) \leq 2 \pi \sum_{h=1}^{\infty} 2^{-h}=2 \pi
$$

Thus E is of finite perimeter in \mathbb{R}^{2}. On the other hand, E is dense in \mathbb{R}^{2}, so that $\partial E=\mathbb{R}^{2} \backslash E$. Thus $\mathcal{L}^{2}(\partial E)=\infty$.

The measure theoretic boundary part I

Definition

Let $E \subset \mathbb{R}^{n}$ be an \mathcal{L}^{n}-measurable set. We define the measure theoretic boundary $\partial^{*} E$ as the set of points $x \in \mathbb{R}^{n}$ for which

$$
\limsup _{r \rightarrow 0} \frac{\mathcal{L}^{n}(B(x, r) \cap E)}{\mathcal{L}^{n}(B(x, r))}>0
$$

and

$$
\limsup _{r \rightarrow 0} \frac{\mathcal{L}^{n}(B(x, r) \backslash E)}{\mathcal{L}^{n}(B(x, r))}>0
$$

For a set of finite perimeter E, clearly $\mathcal{F} E \subset \partial^{*} E$. Moreover, we can show that $\partial^{*} E$ is a Borel set.

Theorem

Let E be a set of finite perimeter in \mathbb{R}^{n}. Then $\mathcal{H}^{n-1}\left(\partial^{*} E \backslash \mathcal{F} E\right)=0$.

Proof. Consider a point $x \in \mathbb{R}^{n}$ where

$$
\lim _{r \rightarrow 0} \frac{\left|D \chi_{E}\right|(B(x, r))}{r^{n-1}}=0
$$

By the relative isoperimetric inequality, we then have

$$
\begin{aligned}
\frac{\min \{|B(x, r) \cap E|,|B(x, r) \backslash E|\}}{r^{n}} & \leq\left(\frac{2 C_{P}\left|D \chi_{E}\right|(B(x, r))}{r^{n-1}}\right)^{n /(n-1)} \\
& \rightarrow 0 \quad \text { as } r \rightarrow 0
\end{aligned}
$$

Thus by continuity, either

$$
\frac{|B(x, r) \cap E|}{r^{n}} \rightarrow 0 \quad \text { or } \quad \frac{|B(x, r) \backslash E|}{r^{n}} \rightarrow 0
$$

as $r \rightarrow 0$. Thus $x \notin \partial^{*} E$. In conclusion, if $x \in \partial^{*} E$, then

$$
\limsup _{r \rightarrow 0} \frac{\left|D \chi_{E}\right|(B(x, r))}{r^{n-1}}>0
$$

Then by using a similar covering argument as before, from the fact that $\left|D \chi_{E}\right|\left(\partial^{*} E \backslash \mathcal{F} E\right)=0$ we obtain that $\mathcal{H}^{n-1}\left(\partial^{*} E \backslash \mathcal{F} E\right)=0$.

We conclude that for any set E of finite perimeter in \mathbb{R}^{n}, we have

$$
\left|D \chi_{E}\right|=\mathcal{H}^{n-1}\left\llcorner\mathcal{F} E=\mathcal{H}^{n-1}\left\llcorner\partial^{*} E\right.\right.
$$

and thus

$$
D \chi_{E}=\nu_{E} \mathcal{H}^{n-1}\left\llcorner\partial^{*} E\right.
$$

with $\left|\nu_{E}(x)\right|=1$ for \mathcal{H}^{n-1}-a.e. $x \in \partial^{*} E$. Thus we obtain the following generalization of the Gauss-Green formula.

Theorem

For any set E that is of finite perimeter in Ω, we have

$$
\int_{E} \operatorname{div} \psi d \mathcal{L}^{n}=-\int_{\partial^{*} E}\left\langle\psi, \nu_{E}\right\rangle d \mathcal{H}^{n-1} \quad \forall \psi \in\left[C_{c}^{1}(\Omega)\right]^{n}
$$

Let $u \in \operatorname{BV}\left(\mathbb{R}^{n}\right)$. Define the lower and upper approximate limits of u for any $x \in \mathbb{R}^{n}$ by

$$
u^{\wedge}(x):=\sup \left\{t \in \mathbb{R}: \lim _{r \rightarrow 0} \frac{\mathcal{L}^{n}(B(x, r) \cap\{u<t\})}{\mathcal{L}^{n}(B(x, r))}=0\right\}
$$

and

$$
u^{\vee}(x):=\inf \left\{t \in \mathbb{R}: \lim _{r \rightarrow 0} \frac{\mathcal{L}^{n}(B(x, r) \cap\{u>t\})}{\mathcal{L}^{n}(B(x, r))}=0\right\}
$$

Then define the approximate jump set of u by

$$
S_{u}:=\left\{x \in \mathbb{R}^{n}: u^{\wedge}(x)<u^{\vee}(x)\right\}
$$

We can show that u^{\wedge} and u^{\vee} are Borel measurable functions and that S_{u} is a Borel set.

Theorem

Let $u \in \operatorname{BV}\left(\mathbb{R}^{n}\right)$. Then the jump set S_{u} is countably n-1-rectifiable.

Proof. Let $x \in S_{u}$. Then for any $u^{\wedge}(x)<t<u^{\vee}(x)$, we have

$$
\limsup _{r \rightarrow 0^{+}} \frac{\mathcal{L}^{n}(B(x, r) \cap\{u>t\})}{\mathcal{L}^{n}(B(x, r))}>0
$$

and

$$
\limsup _{r \rightarrow 0^{+}} \frac{\mathcal{L}^{n}(B(x, r) \cap\{u<t\})}{\mathcal{L}^{n}(B(x, r))}>0
$$

Thus $x \in \partial^{*}\{u>t\}$.

By the coarea formula, we can choose $D \subset \mathbb{R}$ to be a countable, dense set such that $\{u>t\}$ is of finite perimeter in \mathbb{R}^{n} for every $t \in D$. We know that each reduced boundary $\mathcal{F}\{u>t\}$, and thus each measure theoretic boundary $\partial^{*}\{u>t\}, t \in D$, is a countably $n-1$-rectifiable set. Thus

$$
S_{u} \subset \bigcup_{t \in D} \partial^{*}\{u>t\}
$$

is also countably $n-1$-rectifiable.

Decomposition of the variation measure

Let $u \in \mathrm{BV}\left(\mathbb{R}^{n}\right)$. By the Besicovitch differentiation theorem, we have $|D u|=a \mathcal{L}^{n}+|D u|^{s}$, where $a \in L^{1}\left(\mathbb{R}^{n}\right)$ and $|D u|^{s}$ is singular with respect to \mathcal{L}^{n}.

Then we can further write $|D u|^{s}=|D u|^{c}+|D u|^{j}$, where $|D u|^{c}:=|D u|^{s}\left\llcorner\left(\mathbb{R}^{n} \backslash S_{u}\right)\right.$ is the Cantor part, and $|D u|^{j}:=|D u|^{s}\left\llcorner S_{u}\right.$ is the jump part.

Theorem

For $u \in \operatorname{BV}\left(\mathbb{R}^{n}\right)$, we have the decomposition

$$
|D u|=a \mathcal{L}^{n}+|D u|^{c}+\left(u^{\vee}-u^{\wedge}\right) \mathcal{H}^{n-1}\left\llcorner S_{u} .\right.
$$

Moreover, for any Borel set $A \subset \mathbb{R}^{n} \backslash S_{u}$ that is σ-finite with respect to \mathcal{H}^{n-1} (i.e. can be presented as a countable union of sets of finite \mathcal{H}^{n-1}-measure), we have $|D u|(A)=0$.

Decomposition of the variation measure proof part I

Proof. We have already seen that if $x \in S_{u}$ and $u^{\wedge}(x)<t<u^{\vee}(x)$, then $x \in \partial^{*}\{u>t\}$. On the other hand, if $x \in \partial^{*}\{u>t\}$ for some $t \in \mathbb{R}$, then

$$
\limsup _{r \rightarrow 0^{+}} \frac{\mathcal{L}^{n}(B(x, r) \cap\{u>t\})}{\mathcal{L}^{n}(B(x, r))}>0
$$

whence $u^{\vee}(x) \geq t$, and

$$
\limsup _{r \rightarrow 0^{+}} \frac{\mathcal{L}^{n}(B(x, r) \backslash\{u \leq t\})}{\mathcal{L}^{n}(B(x, r))}>0
$$

whence $u^{\wedge}(x) \leq t$. In conclusion, $t \in\left[u^{\wedge}(x), u^{\vee}(x)\right]$.

Decomposition of the variation measure proof part II

All in all, we have

$$
\begin{aligned}
\{(x, t) & \left.\in \mathbb{R}^{n} \times \mathbb{R}: u^{\wedge}(x)<t<u^{\vee}(x)\right\} \\
& \subset\left\{(x, t) \in \mathbb{R}^{n} \times \mathbb{R}: x \in \partial^{*}\{u>t\}\right\} \\
& \subset\left\{(x, t) \in \mathbb{R}^{n} \times \mathbb{R}: u^{\wedge}(x) \leq t \leq u^{\vee}(x)\right\} .
\end{aligned}
$$

Thus for any Borel set $A \subset S_{u}$, we have by using the coarea formula and Fubini's theorem

$$
\begin{aligned}
|D u|(A) & =\int_{-\infty}^{\infty} P(\{u>t\}, A) d t=\int_{-\infty}^{\infty} \mathcal{H}^{n-1}\left(\partial^{*}\{u>t\} \cap A\right) d t \\
& =\int_{-\infty}^{\infty} \int_{\mathbb{R}^{n}} \chi_{\partial^{*}\{u>t\}}(x) d\left(\mathcal{H}^{n-1}\llcorner A)(x) d t\right. \\
& =\int_{\mathbb{R}^{n}} \int_{-\infty}^{\infty} \chi_{\left(u^{\wedge}(x), u^{\vee}(x)\right)}(t) d t d\left(\mathcal{H}^{n-1}\llcorner A)(x)\right. \\
& =\int_{A}\left(u^{\vee}-u^{\wedge}\right) d \mathcal{H}^{n-1} .
\end{aligned}
$$

Decomposition of the variation measure proof part III

We conclude that $|D u|^{j}=|D u|\left\llcorner S_{u}=\left(u^{\vee}-u^{\wedge}\right) \mathcal{H}^{n-1}\left\llcorner S_{u}\right.\right.$.
Finally, suppose that a Borel set $A \subset \mathbb{R}^{n} \backslash S_{u}$ is σ-finite with respect to \mathcal{H}^{n-1}. By using the coarea formula and Fubini's theorem as we did above,

$$
|D u|(A)=\int_{A}\left(u^{\vee}-u^{\wedge}\right) d \mathcal{H}^{n-1}=0
$$

since $u^{\wedge}(x)=u^{\vee}(x)$ for any $x \in A$.

On measurability, part I

Let $E \subset \mathbb{R}^{n}$ be an \mathcal{L}^{n}-measurable set. To show that $\partial^{*} E$ is a Borel set, we note that for each $i \in \mathbb{N}$, the functions

$$
f_{i}(x):=\frac{\mathcal{L}^{n}\left(B\left(x, 2^{-i}\right) \cap E\right)}{\mathcal{L}^{n}\left(B\left(x, 2^{-i}\right)\right)}, \quad g_{i}(x):=\frac{\mathcal{L}^{n}\left(B\left(x, 2^{-i}\right) \backslash E\right)}{\mathcal{L}^{n}\left(B\left(x, 2^{-i}\right)\right)}
$$

are continuous. Thus $\lim \sup _{i \rightarrow \infty} f_{i}$ and $\lim \sup _{i \rightarrow \infty} g_{i}$ are Borel measurable functions, and so

$$
\partial^{*} E=\left\{x \in \mathbb{R}^{n}: \limsup _{i \rightarrow \infty} f_{i}(x)>0 \text { and } \limsup _{i \rightarrow \infty} g_{i}(x)>0\right\}
$$

is a Borel set.

On measurability, part II

To show that u^{\wedge} and u^{\vee} are Borel measurable functions, note that for any $t \in \mathbb{R}$,

$$
\begin{aligned}
\{x & \left.\in \mathbb{R}^{n}: u^{\wedge}(x) \geq t\right\} \\
& =\bigcap_{i=1}^{\infty}\left\{x \in \mathbb{R}^{n}: \lim _{r \rightarrow 0} \frac{\mathcal{L}^{n}(B(x, r) \cap\{u<t-1 / i\})}{\mathcal{L}^{n}(B(x, r))}=0\right\} .
\end{aligned}
$$

Here the functions

$$
x \mapsto \frac{\mathcal{L}^{n}(B(x, r) \cap\{u<s\})}{\mathcal{L}^{n}(B(x, r))}
$$

are continuous for any $s \in \mathbb{R}$ and fixed $r>0$, and so

$$
x \mapsto \limsup _{r \rightarrow 0} \frac{\mathcal{L}^{n}(B(x, r) \cap\{u<s\})}{\mathcal{L}^{n}(B(x, r))}
$$

is a Borel measurable function. Hence $\left\{x \in \mathbb{R}^{n}: u^{\wedge}(x) \geq t\right\}$ is a Borel set. Borel measurability of u^{\vee} is proved analogously.

On measurability, part III

By the Borel measurability of u^{\wedge} and u^{\vee}, we have that

$$
\begin{aligned}
S_{u} & =\left\{x \in \mathbb{R}^{n}: u^{\wedge}(x)<u^{\vee}(x)\right\} \\
& =\bigcup_{t \in \mathbb{Q}}\left\{x \in \mathbb{R}^{n}: u^{\wedge}(x)<t\right\} \cap\left\{x \in \mathbb{R}^{n}: u^{\vee}(x)>t\right\}
\end{aligned}
$$

is a Borel set. Then we can show that also

$$
\left\{(x, t) \in \mathbb{R}^{n} \times \mathbb{R}: u^{\wedge}(x)<t<u^{\vee}(x)\right\}
$$

is a Borel set in $\mathbb{R}^{n} \times \mathbb{R}$, justifying our previous use of Fubini's theorem.

