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σ-algebras and positive measures

Let X be a topological space.

A collection E of subsets of X is a σ-algebra if ∅ ∈ E ,
X \ E ∈ E whenever E ∈ E , and for any sequence (Eh) ⊂ E ,
we have

⋃
h∈N Eh ∈ E .

We say that µ : E → [0,∞] is a positive measure if µ(∅) = 0
and for any sequence (Eh) of pairwise disjoint elements of E ,

µ

(⋃
h∈N

Eh

)
=
∑
h∈N

µ(Eh).

We say that M ⊂ X is µ-negligible if there exists E ∈ E such
that M ⊂ E and µ(E ) = 0. The expression ”almost
everywhere”, or ”a.e.”, means outside a negligible set. The
measure µ extends to the collection of µ-measurable sets, i.e.
those that can be presented as E ∪M with E ∈ E and M
µ-negligible.



Vector measures

Let N ∈ N. We say that µ : E → RN is a vector measure if
µ(∅) = 0 and for any sequence (Eh) of pairwise disjoint
elements of E

µ

(⋃
h∈N

Eh

)
=
∑
h∈N

µ(Eh).

If µ is a vector measure on (X , E), for any given E ∈ E we
define the total variation measure |µ|(E ) as

sup

{∑
h∈N
|µ(Eh)| : Eh ∈ E pairwise disjoint, E =

⋃
h∈N

Eh

}
.

We can show that |µ| is then a finite positive measure on
(X , E), that is, |µ|(X ) <∞.



Borel and Radon measures

We denote by B(X ) the σ-algebra of Borel subsets of X , i.e.
the smallest σ-algebra containing the open subsets of X .

A positive measure on (X ,B(X )) is called a Borel measure. If
it is finite on compact sets, it is called a positive Radon
measure.

A vector Radon measure is an RN -valued set function that is
a vector measure on (K ,B(K )) for every compact set K ⊂ X .
We say that it is a finite Radon measure if it is a vector
measure on (X ,B(X )).



Lebesgue and Hausdorff measures

We will denote by Ln the n-dimensional Lebesgue measure in Rn.
Sometimes we write |A| instead of Ln(A) for A ⊂ Rn.

We denote by ωk the volume of the unit ball in Rk .

Definition

Let k ∈ [0,∞) and let A ⊂ Rn. The k-dimensional Hausdorff
measure of A is given by

Hk(A) := lim
δ→0
Hk
δ (A),

where for any 0 < δ ≤ ∞,

Hk
δ (A) :=

ωk

2k
inf

{∑
i∈N

[diam(Ei )]k : diam(Ei ) < δ, A ⊂
⋃
i∈N

Ei

}

with the convention diam(∅) = 0.



Besicovitch differentiation theorem

Theorem

Let µ be a positive Radon measure in an open set Ω, and let ν be
an RN -valued Radon measure in Ω. Then for µ-a.e. x ∈ Ω the
limit

f (x) := lim
r→0

ν(B(x , r))

µ(B(x , r))

exists in RN and ν can be presented by the
Lebesgue-Radon-Nikodym decomposition ν = f µ+ νs , where
νs = ν E for some E ⊂ Ω with µ(E ) = 0.



Definition of BV functions

The symbol Ω will always denote an open set in Rn.

Definition

Let u ∈ L1(Ω). We say that u is a function of bounded variation in
Ω if the distributional derivative of u is representable by a finite
Radon measure in Ω, i.e.∫

Ω
u
∂ψ

∂xi
dx = −

∫
Ω
ψ dDiu ∀ψ ∈ C∞c (Ω), i = 1, . . . , n

for some Rn-valued Radon measure Du = (D1u, . . . ,Dnu) in Ω.
The vector space of all functions of bounded variation is denoted
by BV(Ω).

We can always write Du = σ|Du|, where |Du| is a positive Radon
measure and σ = (σ1, . . . , σn) with |σ(x)| = 1 for |Du|-a.e. x ∈ Ω.



Examples of BV functions

W 1,1(Ω) ⊂ BV(Ω), since for u ∈W 1,1(Ω) we have
Du = ∇u Ln.

On the other hand, for the Heaviside function
χ(0,∞) ∈ BVloc(R) we have Du = δ0, and u /∈W 1,1

loc (R).

We say that u ∈ BVloc(Ω) if u ∈ BV(Ω′) for every Ω′ b Ω,
i.e. every open Ω′ with Ω′ compact and contained in Ω.



Mollification, part I

Let ρ ∈ C∞c (Rn) with ρ(x) ≥ 0 and ρ(−x) = ρ(x) for all x ∈ Rn,
supp ρ ⊂ B(0, 1), and ∫

Rn

ρ(x) dx = 1.

Choose ε > 0. Let ρε(x) := ε−nρ(x/ε), and

Ωε := {x ∈ Ω : dist(x , ∂Ω) > ε}.

Then for any u ∈ L1(Ω), we define for any x ∈ Ωε

u ∗ ρε(x) :=

∫
Ω

u(y)ρε(x − y) dy = ε−n
∫

Ω
u(y)ρ

(
x − y

ε

)
dy .



Mollification, part II

Similarly, for any vector Radon measure µ = (µ1, . . . , µN) on Ω,
we define

µ ∗ ρε(x) =

∫
Ω
ρε(x − y) dµ(y), x ∈ Ωε.

We can show that µ ∗ ρε ∈ C∞(Ωε) and

∇(µ ∗ ρε) = µ ∗ ∇ρε.

If v ∈ Liploc(Ω), then ∇(v ∗ ρε) = ∇v ∗ ρε.
Also, given any v ∈ L1(Ω) and a vector Radon measure µ on Ω,
from Fubini’s theorem it follows easily that∫

Ω
(µ ∗ ρε)v dLn =

∫
Ω

v ∗ ρε dµ

if either µ is concentrated in Ωε or v = 0 Ln-a.e. outside Ωε.



Mollification of BV functions

If u ∈ BV(Ω), we have

∇(u ∗ ρε) = Du ∗ ρε in Ωε.

To see this, let ψ ∈ C∞c (Ω) and ε ∈ (0, dist(suppψ, ∂Ω)).
Then∫

Ω
(u ∗ ρε)∇ψ dLn =

∫
Ω

u(ρε ∗ ∇ψ) dLn =

∫
Ω

u∇(ρε ∗ ψ) dLn

= −
∫

Ω
ρε ∗ ψ dDu = −

∫
Ω
ψDu ∗ ρε dLn.

If u ∈ BV(Rn) and Du = 0, u is constant, which we can see
as follows. For any ε, u ∗ ρε ∈ C∞(Rn) and
∇(u ∗ ρε) = Du ∗ ρε = 0. Thus u ∗ ρε is constant for every
ε > 0, and since u ∗ ρε → u in L1(Rn) as ε→ 0, we must
have that u is constant.



Lipschitz test functions

Let u ∈ BV(Ω) and ψ ∈ Lipc(Ω). Then for small enough ε > 0 we
have ψ ∗ ρε ∈ C∞c (Ω), and thus∫

Ω
u
∂(ψ ∗ ρε)
∂xi

dLn = −
∫

Ω
ψ ∗ ρε dDiu, i = 1, . . . , n.

As ε→ 0, we have ψ ∗ ρε → ψ uniformly and

∂(ψ ∗ ρε)
∂xi

=
∂ψ

∂xi
∗ ρε →

∂ψ

∂xi

almost everywhere, so by the Lebesgue dominated convergence
theorem we get∫

Ω
u
∂ψ

∂xi
dLn = −

∫
Ω
ψ dDiu, i = 1, . . . , n.

That is, we can also use Lipschitz functions as test functions in the
definition of BV.



A Leibniz rule

Lemma

If φ ∈ Liploc(Ω) and u ∈ BVloc(Ω), we have uφ ∈ BVloc(Ω) with
D(uφ) = φDu + u∇φLn.

Proof.

Clearly uφ ∈ L1
loc(Ω). We have for any ψ ∈ C∞c (Ω) and

i = 1, . . . , n∫
Ω

u φ
∂ψ

∂xi
dx =

∫
Ω

u
∂(φψ)

∂xi
dx −

∫
Ω

u
∂φ

∂xi
ψ dx

= −
∫

Ω
φψ dDiu −

∫
Ω

u
∂φ

∂xi
ψ dx ,

since φψ ∈ Lipc(Ω).



The variation, part I

Definition

Let u ∈ L1
loc(Ω). We define the variation of u in Ω by

V (u,Ω) := sup

{∫
Ω

u divψ dLn : ψ ∈ [C 1
c (Ω)]n, |ψ| ≤ 1

}
.

Theorem

Let u ∈ L1(Ω). Then u ∈ BV(Ω) if and only if V (u,Ω) <∞. In
addition, V (u,Ω) = |Du|(Ω).

Proof. Let u ∈ BV(Ω). Then for any ψ ∈ [C 1
c (Ω)]n with |ψ| ≤ 1,∫

Ω
u divψ dLn = −

n∑
i=1

∫
Ω
ψi dDiu = −

n∑
i=1

∫
Ω
ψiσi d |Du|

with |σ| = 1 |Du|-almost everywhere, so that V (u,Ω) ≤ |Du|(Ω).



The variation, part II

Assume then that V (u,Ω) <∞. By homogeneity we have∣∣∣∣∫
Ω

u divψ dLn
∣∣∣∣ ≤ V (u,Ω)‖ψ‖L∞(Ω) ∀ψ ∈ C 1

c (Ω).

Since C 1
c (Ω) is dense in Cc(Ω) and thus in C0(Ω) (which is just

the closure of Cc(Ω), in the ‖ · ‖L∞(Ω)-norm) we can find a
continuous linear functional L on C0(Ω) coinciding with

ψ 7→
∫

Ω
u divψ dLn

on C 1
c (Ω) and satisfying ‖L‖ ≤ V (u,Ω). Then the Riesz

representation theorem says that there exists an Rn-valued Radon
measure µ = (µ1, . . . , µn) with |µ|(Ω) = ‖L‖ and

L(ψ) =
n∑

i=1

∫
Ω
ψi dµi ∀ψ ∈ [C0(Ω)]n.



The variation, part III

Hence we have∫
Ω

u divψ dLn =
n∑

i=1

∫
Ω
ψi dµi ∀ψ ∈ [C 1

c (Ω)]n,

so that u ∈ BV(Ω), Du = −µ, and

|Du|(Ω) = |µ|(Ω) = ‖L‖ ≤ V (u,Ω).

�



Lower semicontinuity

Lemma

If uh → u in L1
loc(Ω), then V (u,Ω) ≤ lim infh→∞ V (uh,Ω).

Proof.

For any ψ ∈ [C 1
c (Ω)]n, we have∫

Ω
u divψ dLn = lim

h→∞

∫
Ω

uh divψ dLn ≤ lim inf
h→∞

V (uh,Ω).

Taking the supremum over such ψ we obtain the result.



The BV norm

The BV norm is defined as

‖u‖BV(Ω) :=

∫
Ω
|u| dLn + |Du|(Ω).

If u ∈W 1,1(Ω), then |Du|(Ω) = ‖∇u‖L1(Ω), so that
‖u‖BV(Ω) = ‖u‖W 1,1(Ω).

Smooth functions are not dense in BV(Ω), since the Sobolev
space W 1,1(Ω)  BV(Ω) is complete.



Approximation by smooth functions
While smooth functions are not dense in BV(Ω), we have the
following.

Theorem

Let u ∈ BV(Ω). Then there exists a sequence (uh) ⊂ C∞(Ω) with
uh → u in L1(Ω) and

lim
h→∞

∫
Ω
|∇uh| dLn = |Du|(Ω).

Proof. Fix δ > 0. Note that by lower semicontinuity, for any
sequence (uh) ⊂ C∞(Ω) with uh → u in L1(Ω), we have

|Du|(Ω) ≤ lim inf
h→∞

∫
Ω
|∇uh| dLn.

Thus we need to construct a function vδ ∈ C∞(Ω) such that∫
Ω
|u − vδ| dLn < δ,

∫
Ω
|∇vδ| dLn < |Du|(Ω) + δ.



Approximation by smooth functions, proof I

Define Ω0 := ∅ and

Ωk := {x ∈ Ω ∩ B(0, k) : dist(x , ∂Ω) > 1/k}, k ∈ N.

Define Vk := Ωk+1 \ Ωk−1, k ∈ N. Then
⋃

k∈N Vk = Ω.

Then pick a partition of unity ϕk ∈ C∞c (Vk), with 0 ≤ ϕk ≤ 1 and∑
k∈N ϕk ≡ 1 in Ω. For every k ∈ N there exists εk > 0 such that

supp((uϕk) ∗ ρεk ) ⊂ Vk and∫
Ω

[
|(uϕk) ∗ ρεk − uϕk |+ |(u∇ϕk) ∗ ρεk − u∇ϕk |

]
dLn < 2−kδ.

Define vδ :=
∑

k∈N(uϕk) ∗ ρεk , so that vδ ∈ C∞(Ω) and∫
Ω
|vδ − u| dLn ≤

∑
k∈N

∫
Ω
|(uϕk) ∗ ρεk − uϕk | dLn < δ.



Approximation by smooth functions, proof II

We also have

∇vδ =
∑
k∈N
∇ ((uϕk) ∗ ρεk ) =

∑
k∈N

(D(uϕk)) ∗ ρεk

=
∑
k∈N

(ϕkDu) ∗ ρεk +
∑
k∈N

(u∇ϕk) ∗ ρεk

=
∑
k∈N

(ϕkDu) ∗ ρεk +
∑
k∈N

[(u∇ϕk) ∗ ρεk − u∇ϕk ] .

=⇒
∫

Ω
|∇vδ| dLn <

∑
k∈N

∫
Ω

(ϕk |Du|) ∗ ρεk dLn + δ

=
∑
k∈N

∫
Ω
ϕk d |Du|+ δ

= |Du|(Ω) + δ.

�



Weak* convergence of BV functions, part I

Definition

Let u, uh ∈ BV(Ω). We say that (uh) weakly* converges to u in

BV(Ω) if uh → u in L1(Ω) and Duh
∗
⇀ Du in Ω, i.e.

lim
h→∞

∫
Ω
ψ dDuh =

∫
Ω
ψ dDu ∀ψ ∈ C0(Ω).

Here C0(Ω) is the completion of Cc(Ω) in the sup norm.

Theorem

Let u, uh ∈ BV(Ω). Then uh weakly* converges to u in BV(Ω) if
and only if uh → u in L1(Ω) and (uh) is a bounded sequence in
BV(Ω), i.e.

sup
h∈N

{∫
Ω
|uh| dLn + |Duh|(Ω)

}
<∞.



Weak* convergence of BV functions, part II

Proof.
”⇐”: By the weak* compactness of Radon measures, for any
subsequence h(k) we have a further subsequence (not relabeled)

such that Duh(k)
∗
⇀ µ in Ω for a Radon measure µ. We need to

show that µ = Du. We have for every k ∈ N∫
Ω

uh(k)
∂ψ

∂xi
dx = −

∫
Ω
ψ dDiuh(k) ∀ψ ∈ C∞c (Ω), i = 1, . . . , n.

By letting k →∞, we obtain∫
Ω

u
∂ψ

∂xi
dx = −

∫
Ω
ψ dµi ∀ψ ∈ C∞c (Ω), i = 1, . . . , n,

so that µ = Du. Since this was true for any subsequence h(k), we

must have Duh
∗
⇀ Du.



Weak* convergence of BV functions, part III

”⇒”: The measures Duh are bounded linear functionals on C0(Ω),
and for any ψ ∈ C0(Ω),

sup
h∈N

∣∣∣∣∫
Ω
ψ dDuh

∣∣∣∣ <∞,
since ∫

Ω
ψ dDuh →

∫
Ω
ψ dDu.

Thus the Banach-Steinhaus theorem gives suph∈N |Duh|(Ω) <∞.



Strict convergence of BV functions

Definition

Let u, uh ∈ BV(Ω). We say that uh strictly converges to u in
BV(Ω) if uh → u in L1(Ω) and |Duh|(Ω)→ |Du|(Ω) as h→∞.

Strict convergence of BV functions always implies weak*
convergence, by our characterization of the latter.

However, the converse does not hold: sin(hx)/h weakly*
converges in BV((0, 2π)) to 0 as h→∞, but does not
converge strictly because |Duh|((0, 2π)) = 4 for each h.

We showed previously that for every u ∈ BV(Ω) there exists
(uh) ⊂ C∞(Ω) with uh → u strictly in BV(Ω).



The area formula

Let k, n ∈ N with k ≤ n. For a differentiable mapping
f : Rk → Rn, denote by dfx the n × k-matrix whose rows are the
gradient vectors of the components of f at the point x ∈ Rk . Also,
define the Jacobian by

Jkdfx :=
√

det(df ∗x ◦ dfx).

Theorem

Let f : Rk → Rn be a one-to-one Lipschitz function. Then for any
Borel measurable nonnegative function g we have∫

Rn

g(f −1(y)) dHk(y) =

∫
Rk

g(x)Jkdfx dx .



BV extension domains

Definition

A bounded open set Ω ⊂ Rn is a BV extension domain if for any
open set A ⊃ Ω there exists a linear and bounded extension
operator T : BV(Ω)→ BV(Rn) satisfying

Tu = 0 in Rn \ A for any u ∈ BV(Ω),

|DTu|(∂Ω) = 0 for any u ∈ BV(Ω).

Theorem

A bounded open set Ω ⊂ Rn with Lipschitz boundary is a BV
extension domain.

Proof omitted.



Compactness in BV part I

Lemma

Let u ∈ BV(Ω) and let K ⊂ Ω be a compact set. Then∫
K
|u ∗ ρε − u| dLn ≤ ε|Du|(Ω) ∀ε ∈ (0, dist(K , ∂Ω)).

Proof. We find (uh) ⊂ C∞(Ω) with uh → u in L1(Ω) and
|Duh|(Ω)→ |Du|(Ω). Thus we can in fact assume u ∈ C∞(Ω).
Pick x ∈ K and y ∈ B(0, 1), and denote v(t) := u(x − εty), so
that

u(x − εy)− u(x) =

∫ 1

0
v ′(t) dt = −ε

∫ 1

0
〈∇u(x − εty), y〉 dt.



Compactness in BV part II

By Fubini we get∫
K
|u(x−εy)−u(x)| dx ≤ ε

∫ 1

0

∫
K
|∇u(x−εty)| dx dt ≤ ε|Du|(Ω)

Multiplying by ρ(y) and integrating we obtain, by again using
Fubini ∫

K

(∫
Rn

|u(x − εy)− u(x)|ρ(y) dy

)
dx ≤ ε|Du|(Ω).

Thus∫
K
|u ∗ ρε(x)− u(x)| dx =

∫
K

∣∣∣∣∫
Rn

[u(x − εy)− u(x)]ρ(y) dy

∣∣∣∣ dx

≤ ε|Du|(Ω).

�



Compactness in BV part III

Theorem

Let (uh) be a norm-bounded sequence in BV(Rn), i.e.

sup
h∈N

{∫
Rn

|uh| dLn + |Duh|(Rn)

}
<∞.

Then for some subsequence we have uh(k) → u ∈ BV(Rn) locally
weakly* in BV(Rn) as k →∞.

Proof. Fix ε > 0 and for each h ∈ N, let uh,ε := uh ∗ ρε. Then

‖uh,ε‖L∞(Rn) ≤ ‖uh‖L1(Rn)‖ρε‖L∞(Rn)

and since ∇uh,ε = uh ∗ ∇ρε,

‖∇uh,ε‖L∞(Rn) ≤ ‖uh‖L1(Rn)‖∇ρε‖L∞(Rn).



Compactness in BV part IV

Thus with ε fixed, (uh,ε) is an equibounded and equicontinuous
sequence. Fix a bounded set U ⊂ Rn. By Arzelà-Ascoli we can
find a subsequence converging uniformly on U. By a diagonal
argument we find a subsequence h(k) such that uh(k),ε converges
uniformly on U for any ε = 1/p, p ∈ N.

Thus we have

lim sup
k,k ′→∞

∫
U
|uh(k) − uh(k ′)| dLn ≤ lim sup

k,k ′→∞

∫
U
|uh(k) − uh(k),1/p| dLn

+ lim sup
k,k ′→∞

∫
U
|uh(k),1/p − uh(k ′),1/p| dLn

+ lim sup
k,k ′→∞

∫
U
|uh(k ′),1/p − uh(k ′)| dLn

≤ 2

p
sup
h∈N
|Duh|(Rn).



Compactness in BV part V

Since we can take p ∈ N arbitrarily large, we have

lim
k,k ′→∞

∫
U
|uh(k) − uh(k ′)| dLn = 0,

so that uh(k) is a Cauchy sequence in L1(U) and necessarily
converges in L1(U) to some function u. By the lower
semicontinuity of the variation, we have u ∈ BV(U), and by our
previous characterization of weak* convergence in BV we have
that uh(k) weakly* converges to u in BV(U).

Finally, by another diagonal argument we find a subsequence h(k)
(not relabeled) for which this convergence takes place in every
bounded open U ⊂ Rn. �



Compactness in BV part VI

Corollary

Let Ω ⊂ Rn be a bounded BV extension domain, and let
(uh) ⊂ BV(Ω) be a norm-bounded sequence. Then for some
subsequence we have uh(k) → u ∈ BV(Ω) weakly* in BV(Ω).

Proof.

Extend each function uh to Tuh ∈ BV(Rn). Then by the previous
theorem, for a subsequence we have Tuh(k) → u ∈ BV(Rn) locally
weakly* in BV(Rn), in particular Tuh(k) → u weakly* in BV(Ω),
since Ω is bounded. Thus uh(k) → u weakly* in BV(Ω).



Sets of finite perimeter

As before, Ω will always denote an open set in Rn.

We denote by χE the characteristic function of a set E ⊂ Rn, i.e.
the function that takes the value 1 in the set E and the value 0
outside it.

Definition

Let E ⊂ Rn be a Ln-measurable set. The perimeter of E in Ω is
the variation of χE in Ω, i.e.

P(E ,Ω) := sup

{∫
E

divψ dLn : ψ ∈ [C 1
c (Ω)]n, |ψ| ≤ 1

}
.

We say that E is of finite perimeter in Ω if P(E ,Ω) <∞.



Sets with smooth boundary

Example

If an open set E has a C 1-boundary inside Ω and
Hn−1(∂E ∩ Ω) <∞, then by the Gauss-Green theorem∫

E
divψ dLn = −

∫
∂E∩Ω

〈νE , ψ〉 dHn−1 ∀ψ ∈ [C 1
c (Ω)]n, (1)

where νE is the inner unit normal of E , so that
P(E ,Ω) ≤ Hn−1(∂E ∩ Ω) — in fact by picking suitable ψ, we can
show that equality holds.



Basic properties

For any set E that is of finite perimeter in Ω, the
distributional derivative DχE is an Rn-valued Radon measure
in Ω, with polar decomposition DχE = νE |DχE |, so that∫

E
divψ dLn = −

∫
Ω
〈ψ, νE 〉 d |DχE | ∀ψ ∈ [C 1

c (Ω)]n.

Here |νE | = 1 |DχE |-a.e. and |DχE |(Ω) = P(E ,Ω). Then we
can define P(E ,B) to be the same as |DχE |(B) for any Borel
set B ⊂ Ω.

Thus χE ∈ BVloc(Ω), but not necessarily χE ∈ BV(Ω) since
we might not have χE ∈ L1(Ω).

Moreover, P(E ,Ω) = P(Rn \ E ,Ω).



Algebra property

We also have the following algebra property.

Lemma

Given sets E ,F of finite perimeter in Ω, we have

P(E ∪ F ,Ω) + P(E ∩ F ,Ω) ≤ P(E ,Ω) + P(F ,Ω).

Proof. We find sequences uh, vh ∈ C∞(Ω) with uh → χE in
L1(Ω), vh → χF in L1(Ω), 0 ≤ uh, vh ≤ 1, and

lim
h→∞

∫
Ω
|∇uh| dLn = P(E ,Ω), lim

h→∞

∫
Ω
|∇vh| dLn = P(F ,Ω).



Algebra property continued

Then uhvh → χE∩F and uh + vh − uhvh → χE∪F in L1
loc(Ω), and

thus by the lower semicontinuity of the perimeter

P(E ∩ F ,Ω) + P(E ∪ F ,Ω)

≤ lim inf
h→∞

(∫
Ω
|∇(uhvh)| dLn +

∫
Ω
|∇(uh + vh − uhvh)| dLn

)
≤ lim inf

h→∞

∫
Ω
|∇uh| (|vh|+ |1− vh|) + |∇vh| (|uh|+ |1− uh|) dLn

= lim inf
h→∞

(∫
Ω
|∇uh| dLn +

∫
Ω
|∇vh| dLn

)
= P(E ,Ω) + P(F ,Ω).

�



Coarea formula for BV

Theorem

For any u ∈ BV(Ω), denoting Et := {x ∈ Ω : u(x) > t}, t ∈ R,
we have

|Du|(Ω) =

∫ ∞
−∞

P(Et ,Ω) dt.



Coarea formula, proof part I

Proof. First we prove the result for u ∈ C∞(Ω). By the classical
coarea formula we have∫

Ω
C1du dLn =

∫ ∞
−∞
Hn−1(Ω ∩ u−1(t)) dt,

where C1du = |∇u|. By Sard’s theorem we know that
{∇u = 0} ∩ u−1(t) = ∅ for a.e. t ∈ R. For these values of t we
have that the boundary ∂Et = u−1(t) is smooth and so

Hn−1(Ω ∩ u−1(t)) = Hn−1(Ω ∩ ∂Et) = P(Et ,Ω)

by (1). Thus ∫
Ω
|∇u| dLn =

∫ ∞
−∞

P(Et ,Ω) dt.



Coarea formula, proof part II

Let then u ∈ BV(Ω). We prove the inequality ”≥”. Take a
sequence (uh) ⊂ C∞(Ω) with uh → u strictly in BV(Ω). Define
Eh
t := {x ∈ Ω : uh(x) > t}. Then

|uh(x)− u(x)| =

∫ max{uh(x),u(x)}

min{uh(x),u(x)}
dt =

∫ ∞
−∞
|χEh

t
(x)− χEt (x)| dt,

so that by Fubini∫
Ω
|uh(x)− u(x)| dx =

∫ ∞
−∞

∫
Ω
|χEh

t
(x)− χEt (x)| dx dt.

Thus by picking a subsequence (not relabeled) we get χEh
t
→ χEt

in L1(Ω) as h→∞, for a.e. t ∈ R.



Coarea formula, proof part III

By the lower semicontinuity of the perimeter and Fatou’s lemma
we have ∫ ∞

−∞
P(Et ,Ω) dt ≤

∫ ∞
−∞

lim inf
h→∞

P(Eh
t ,Ω) dt

≤ lim inf
h→∞

∫ ∞
−∞

P(Eh
t ,Ω) dt

= lim inf
h→∞

|Duh|(Ω)

= |Du|(Ω).



Coarea formula, proof part IV

Finally, we prove the inequality ”≤”. We can see that for any
x ∈ Ω,

u(x) =

∫ ∞
0

χEt (x) dt −
∫ 0

−∞
(1− χEt (x)) dt.

Then, given any ψ ∈ [C 1
c (Ω)]n with |ψ| ≤ 1, we estimate∫

Ω
u(x) divψ(x) dx

=

∫
Ω

(∫ ∞
0

χEt (x) dt −
∫ 0

−∞
(1− χEt (x)) dt

)
divψ(x) dx

=

∫ ∞
0

∫
Ω

χEt (x) divψ(x) dx dt −
∫ 0

−∞

∫
Ω

(1− χEt (x)) divψ(x) dx dt

=

∫ ∞
−∞

∫
Ω

χEt (x) divψ(x) dx dt ≤
∫ ∞
−∞

P(Et ,Ω) dt.

�



Coarea formula, consequences I

Let u ∈ BV(Ω). If we define

µ(B) :=

∫ ∞
−∞
|DχEt |(B) dt

for any Borel set B ⊂ Ω, it is straightforward to check that µ is a
positive Borel measure. Since |Du| and µ agree on open subsets of
Ω, we have

|Du|(B) =

∫ ∞
−∞
|DχEt |(B) dt

for any Borel set B ⊂ Ω. We also have

Du(B) =

∫ ∞
−∞

DχEt (B) dt

for any Borel set B ⊂ Ω, which we see as follows.



Coarea formula, consequences II

We use Fubini and then the fact that DχEt is a finite Radon
measure for a.e. t ∈ R to obtain for any ψ ∈ C∞c (Ω)∫

Ω
ψ dDu = −

∫
Ω

u(x)∇ψ(x) dx

= −
∫

Ω

(∫ ∞
0

χEt (x) dt

)
∇ψ(x) dx

+

∫
Ω

(∫ 0

−∞
(1− χEt (x)) dt

)
∇ψ(x) dx

= −
∫ ∞

0

(∫
Ω

χEt (x)∇ψ(x) dx

)
dt

+

∫ 0

−∞

(∫
Ω

(1− χEt (x))∇ψ(x) dx

)
dt

=

∫ ∞
−∞

(∫
Ω
ψ dDχEt

)
dt.



Sobolev inequality

Theorem

For any u ∈ BV(Rn) we have

‖u‖Ln/(n−1)(Rn) ≤ CS |Du|(Rn)

for some constant CS = CS(n).

From now on, let us assume that n ≥ 2. In the one-dimensional
setting, easier proofs and stronger results are available, but we will
not consider these.



Sobolev inequality, proof

Proof.

Pick functions (uh) ⊂ C∞(Rn) with uh → u in L1(Rn),
uh(x)→ u(x) for Ln-a.e. x ∈ Rn and |Duh|(Rn)→ |Du|(Rn).
Then by Fatou’s lemma and the Gagliardo-Nirenberg-Sobolev
inequality, we have(∫

Rn

|u|
n

n−1 dLn
) n−1

n

=

(∫
Rn

lim inf
h→∞

|uh|
n

n−1 dLn
) n−1

n

≤ lim inf
h→∞

(∫
Rn

|uh|
n

n−1 dLn
) n−1

n

≤ CS lim inf
h→∞

|Duh|(Rn)

= CS |Du|(Rn).



Isoperimetric inequality

Theorem

For any bounded Ln-measurable set E ⊂ Rn, we have

Ln(E )(n−1)/n ≤ CSP(E ,Rn).

Proof.

Choose u = χE in the Sobolev inequality.



Poincaré inequality

Theorem

For any ball B(x , r) and any u ∈ BV(B(x , r)) we have(∫
B(x ,r)

|u − uB(x ,r)|n/(n−1) dLn
)(n−1)/n

≤ CP |Du|(B(x , r))

for some CP = CP(n), where

uB(x ,r) :=

∫
B(x ,r)

u dLn :=
1

Ln(B(x , r))

∫
B(x ,r)

u dLn.

Proof.

Follows from the usual Poincaré inequality for Sobolev
functions.



Relative isoperimetric inequality

Theorem

For any ball B(x , r) and any Ln-measurable set E ⊂ Rn, we have

min {|B(x , r) ∩ E |, |B(x , r) \ E |}(n−1)/n ≤ 2CPP(E ,B(x , r)).

Proof. We have∫
B(x ,r)

|χE − (χE )B(x ,r)|n/(n−1) dLn

= |B(x , r) ∩ E |
(
|B(x , r) \ E |
|B(x , r)|

) n
n−1

+ |B(x , r) \ E |
(
|B(x , r) ∩ E |
|B(x , r)|

) n
n−1

.



Relative isoperimetric inequality, proof

If |B(x , r) ∩ E | ≤ |B(x , r) \ E |, then by the Poincaré inequality

CPP(E ,B(x , r)) ≥

(∫
B(x ,r)

|χE − (χE )B(x ,r)|
n

n−1 dLn
) n−1

n

≥
(
|B(x , r) \ E |
|B(x , r)|

)
|B(x , r) ∩ E |(n−1)/n

≥ 1

2
min{|B(x , r) ∩ E |, |B(x , r) \ E |}(n−1)/n.

The case |B(x , r) ∩ E | ≥ |B(x , r) \ E | is handled analogously.
�



Localization

Lemma

Let E be a set of finite perimeter in Rn, and let x ∈ Rn. Then for
a.e. r > 0, we have

P(E ∩ B(x , r),Rn) ≤ P(E ,B(x , r)) + m′(r),

where m(r) := |E ∩ B(x , r)|.

In particular, if P(E , ∂B(x , r)) = 0, then

P(E ,B(x , r)) + P(E ∩ B(x , r), ∂B(x , r)) ≤ P(E ,B(x , r)) + m′(r),

and so
P (E ∩ B(x , r), ∂B(x , r)) ≤ m′(r). (2)



Localization proof part I

Proof. We can assume that x = 0. Fix r > 0 such that the
derivative m′(r) exists; note that the derivative of a monotone
function on the real line exists almost everywhere.

For σ > 0, set

γσ(t) :=


1 if t ≤ r ,

1 + r−t
σ if r ≤ t ≤ r + σ,

0 if t ≥ r + σ.



Localization proof part II

Then define vσ(y) := χE (y)γσ(|y |), y ∈ Rn. By the Leibniz rule

Dvσ = γσ(|y |) DχE + χE (y)γ′σ(|y |) y

|y |
Ln

and thus

|Dvσ|(Rn) ≤ |DχE |(B(x , r + σ)) + σ−1

∫
B(x ,r+σ)\B(x ,r)

χE dLn,

and since vσ → χE∩B(x ,r) in L1(Rn) as σ → 0, by lower
semicontinuity

P(E ∩ B(x , r),Rn) ≤ lim inf
σ→0

|Dvσ|(Rn)

≤ |DχE |(B(x , r)) + m′(r).

�



Reduced boundary

Let E ⊂ Rn be a set of locally finite perimeter in Rn.

Definition

We define the reduced boundary FE as the set of points
x ∈ supp |DχE | such that the limit

νE (x) := lim
r→0

DχE (B(x , r))

|DχE |(B(x , r))

exists and satisfies |νE (x)| = 1.

According to the polar decomposition of vector measures
(based on the Besicovitch differentiation theorem), we have
|DχE |(Rn \ FE ) = 0 and DχE = νE |DχE |.
If x ∈ FE , then

Ln(B(x , r) ∩ E ) > 0, Ln(B(x , r) \ E ) > 0

for all r > 0.



Reduced boundary and Lebesgue points

Note that for x ∈ FE ,

1

2|DχE |(B(x , r))

∫
B(x ,r)

|νE (y)− νE (x)|2 d |DχE |(y)

= 1− 2

2|DχE |(B(x , r))

∫
B(x ,r)

〈νE (y), νE (x)〉 d |DχE |(y)

= 1−
〈

DχE (B(x , r))

|DχE |(B(x , r))
, νE (x)

〉
→ 0

as r → 0, since x ∈ FE . Thus

lim
r→0

1

|DχE |(B(x , r))

∫
B(x ,r)

|νE (y)− νE (x)| d |DχE |(y) = 0.



A priori estimates on perimeter and volume part I

Lemma

Let E be a set of finite perimeter in Rn and let x ∈ FE . Then
there exist r0 > 0, and constants α, β > 0 depending only on n,
such that

P(E ,B(x , r)) ≤ αrn−1 ∀r ∈ (0, r0),

min{|B(x , r) ∩ E |, |B(x , r) \ E ||} ≥ βrn ∀r ∈ (0, r0).

Proof. By the fact that x ∈ FE , we can choose r0 > 0 such that

|DχE |(B(x , r)) ≤ 2|DχE (B(x , r))| ∀r ∈ (0, 2r0). (3)



A priori estimates on perimeter and volume part II

By the algebra property of sets of finite perimeter, E ∩B(x , r) is of
finite perimeter in Rn. In general, for any bounded set F of finite
perimeter in Rn, we have (recall that ρε denote standard mollifiers)

DχF (Rn) =

∫
Rn

DχF ∗ ρε dLn

=

∫
Rn

∇(χF ∗ ρε) dLn = 0.

We also note that for a.e. r > 0, we have P(E , ∂B(x , r)) = 0. In
total, for a.e. r ∈ (0, 2r0) we have

P(E ,B(x , r)) ≤ 2|DχE (B(x , r))| by (3)

= 2|DχE∩B(x ,r)(B(x , r))|
= 2|DχE∩B(x ,r)(∂B(x , r))| since DχE∩B(x ,r)(Rn) = 0

≤ 2P(E ∩ B(x , r), ∂B(x , r))

≤ 2m′(r) by (2).



A priori estimates on perimeter and volume part III

Thus for any r ∈ (0, r0),

P(E ,B(x , r)) ≤ 1

r

∫ 2r

r
P(E ,B(x , t)) dt ≤ 2m(2r)

r
≤ 2n+1ωnrn−1.

This gives the first estimate. Then, by using the isoperimetric
inequality as well as the localization lemma,

m(r)1−1/n = |E ∩ B(x , r)|1−1/n

≤ CSP(E ∩ B(x , r),Rn)

≤ CS

[
P(E ,B(x , r)) + m′(r)

]
≤ CS(3m′(r))

for a.e. r ∈ (0, r0), so that (m1/n)′(r) ≥ 1/(3nCS) for a.e.
r ∈ (0, r0), so that m(r) ≥ rn/(3nCS)n for all r ∈ (0, r0). Finally,
we can run the same argument with |B(x , r) \ E | instead of
|B(x , r) ∩ E |. �



De Giorgi structure theorem

Let E ⊂ Rn be a set of finite perimeter in Rn. For each x ∈ FE ,
define the hyperplane

H(x) := {y ∈ Rn : 〈νE (x), y − x〉 = 0}

and the half-spaces

H+(x) := {y ∈ Rn : 〈νE (x), y − x〉 ≥ 0},

H−(x) := {y ∈ Rn : 〈νE (x), y − x〉 ≤ 0}.

With x ∈ FE fixed, define also

Er := {(y − x)/r + x : y ∈ E}.

Theorem

Let x ∈ FE . Then χEr → χH+(x) in L1
loc(Rn) as r ↘ 0.



Blow-up proof part I

Proof. First of all, we may assume x = 0 and νE (0) = en. Then
Er = {y/r : y ∈ E}, and furthermore let ψs(y) := ψ(sy), s > 0.
For any ψ ∈ [C 1

c (Rn)]n, we have∫
Rn

χEr divψ dLn =
1

rn−1

∫
Rn

χE divψr−1 dLn. (4)

Fix any M > 0. Noting that ψ ∈ [C 1
c (B(0,M))]n if and only if

ψr−1 ∈ [C 1
c (B(0, rM))]n and taking the supremum (with |ψ| ≤ 1),

we obtain

P(Er ,B(0,M)) =
P(E , (B(0, rM)))

rn−1
. (5)



Blow-up proof part II

Thus by the a priori estimate on perimeter, we obtain

P(Er ,B(0,M)) ≤ α(rM)n−1

rn−1
= αMn−1

for sufficiently small r > 0.

Take an arbitrary sequence rh ↘ 0. By the above, P(Erh ,B(0,M))
is a bounded sequence. By compactness, we find a subsequence
(not relabeled) such that χErh

→ v ∈ BV(B(0,M)) weakly* in
BV(B(0,M)). We can also assume that χErh

(x)→ v(x) for
Ln-a.e. x ∈ B(0,M), so that v = χF for some set F .

This can be done for every M > 0, and so by a diagonal argument,
we have for some set F of locally finite perimeter in Rn that
χErh
→ χF locally weakly* in BV(Rn).



Blow-up proof part III

We also obtain from (4) for any r > 0∫
Rn

〈ψ, νEr 〉 d |DχEr | =
1

rn−1

∫
Rn

〈ψr−1 , νE 〉 d |DχE |,

so that for any M > 0∫
B(0,M)

νEr d |DχEr | =
1

rn−1

∫
B(0,rM)

νE d |DχE |.

Thus

1

|DχErh
|(B(0,M))

∫
B(0,M)

νErh
d |DχErh

|

=
1

|DχE |(B(0, rhM))

∫
B(0,rhM)

νE d |DχE | → νE (0) = en

as h→∞.



Blow-up proof part IV

Moreover, if |DχF |(∂B(0,M)) = 0 (which is true for a.e. M > 0)

then by the fact that DχErh

∗
⇁ DχF locally in Rn,

|DχF |(B(0,M)) ≤ lim inf
h→∞

|DχErh
|(B(0,M))

≤ lim sup
h→∞

|DχErh
|(B(0,M))

= lim sup
h→∞

∫
B(0,M)

〈en, νErh
〉 d |DχErh

|

=

∫
B(0,M)

〈en, νF 〉 d |DχF |.

Since |νF | = 1 |DχF |-almost everywhere, we must have νF = en
|DχF |-almost everywhere in B(0,M), and then also

|DχF |(B(0,M)) = lim
h→∞

|DχErh
|(B(0,M)). (6)



Blow-up proof part V

The above is true for a.e. M > 0. Thus DχF = en|DχF |, and so
by mollifying we obtain

∇(χF ∗ ρε) = (DχF ) ∗ ρε = (|DχF | ∗ ρε)en,

so that χF ∗ ρε(y) = γε(yn) for all y ∈ Rn, for some increasing
γε : R→ R.



Blow-up proof part VI

Letting ε→ 0, we obtain χF (y) = γ(yn) for Ln-a.e. y ∈ Rn, for
some increasing γ : R→ R. But χF (y) ∈ {0, 1} for all y ∈ Rn, so
necessarily F = {y ∈ Rn : yn ≥ a} for some a ∈ R. Suppose
a > 0. Since χErh

→ χF in L1
loc(Rn), we have

0 =

∫
B(0,a)

χF dLn = lim
h→∞

∫
B(0,a)

χErh
dLn

= lim
h→∞

1

rnh

∫
B(0,rha)

χE dLn > 0

by our a priori estimate on volume, giving a contradiction.
Similarly we conclude that a < 0 is impossible (and also |a| =∞).
Thus a = 0 and

F = {y ∈ Rn : yn ≥ 0} = H+(0).

�



Consequences of blow-up

Corollary

For every x ∈ FE ,

lim
r→0

Ln(B(x , r) ∩ H−(x) ∩ E )

rn
= 0 (7)

and

lim
r→0

Ln(B(x , r) ∩ H+(x) \ E )

rn
= 0 (8)

and

lim
r→0

|DχE |(B(x , r))

ωn−1rn−1
= 1. (9)



Consequences of blow-up, proof part II

Proof.

Ln(B(x , r) ∩ H−(x) ∩ E )

rn
= Ln(B(x , 1) ∩ H−(x) ∩ Er )

→ Ln(B(x , 1) ∩ H−(x) ∩ H+(x)) = 0 as r → 0.

(8) is proved similarly. Since

|DχH+(x)|(∂B(x , 1)) = Hn−1(H(x) ∩ ∂B(x , 1)) = 0,

we also have by (5) and (6)

lim
r→0

|DχE |(B(x , r))

rn−1
= lim

r→0
|DχEr |(B(x , 1))

= |DχH+(x)|(B(x , 1))

= Hn−1(H(x) ∩ B(x , 1)) = ωn−1.



The 5-covering theorem

Given any ball B = B(x , r), denote 5B := B(x , 5r).

Theorem

Let F be any collection of open balls in Rn with

sup{diam B : B ∈ F} <∞.

Then there exists a countable family of disjoint balls G ⊂ F such
that ⋃

B∈F
B ⊂

⋃
B∈G

5B.



Hausdorff measure and perimeter, part I

Lemma

There exists C = C (n) > 0 such that for any Borel set A ⊂ FE ,
we have

Hn−1(A) ≤ C |DχE |(A).

Proof. Fix ε > 0. By (9) we have for any x ∈ FE

lim
r→0

|DχE |(B(x , r))

ωn−1rn−1
= 1.

Since |DχE | is a Radon measure, we can find an open set U ⊃ A
such that

|DχE |(U) ≤ |DχE |(A) + ε.



Hausdorff measure and perimeter, part II
Consider the covering of the set A by balls{

B(x , r) : x ∈ A, B(x , r) ⊂ U, r < ε/10,

|DχE |(B(x , r)) ≥ ωn−1rn−1

2

}
.

By the 5-covering theorem we can pick from this covering a
countable disjoint collection {B(xi , ri )}i∈N such that
A ⊂

⋃
i∈N B(xi , 5ri ). Since diam(B(xi , 5ri )) ≤ ε, we have

Hn−1
ε (A) ≤ ωn−1

∑
i∈N

(5ri )
n−1

≤ 2× 5n−1
∑
i∈N
|DχE |(B(xi , ri ))

≤ C |DχE |(U) ≤ C (|DχE |(A) + ε)

with C = C (n). Letting ε→ 0, we obtain Hn−1(A) ≤ C |DχE |(A).
�



Hausdorff measure and perimeter, part III

Lemma

There exists C = C (n) > 0 such that for any Borel set A ⊂ FE ,
we have

|DχE |(A) ≤ CHn−1(A). (10)

Proof. Fix τ > 1. For i ∈ N, define

Ai :=

{
x ∈ A :

|DχE |(B(x , r))

ωn−1rn−1
< τ ∀r ∈ (0, 1/i)

}
.

The sequence (Ai ) is increasing, and its union is A due to (9).



Hausdorff measure and perimeter, part IV

Fix i ∈ N, and let {Dj}j∈N be sets covering Ai with diameter less
than 1/i , which intersect Ai at least at a point xj , and which satisfy∑

j∈N
ωn−1rn−1

j ≤ Hn−1
1/i (Ai ) + 1/i

with rj := diam(Dj)/2.

The balls B(xj , 2rj) still cover Ai , hence

|DχE |(Ai ) ≤
∑
j∈N
|DχE |(B(xj , 2rj)) ≤ τ

∑
j∈N

ωn−1(2rj)
n−1

≤ τ2n−1
(
Hn−1(Ai ) + 1/i

)
.

By letting i →∞ and τ ↘ 1 we obtain |DχE |(A) ≤ 2n−1Hn−1(A).
�



Rectifiability of the reduced boundary part I

Theorem

Let E be a set of finite perimeter in Rn. Then the reduced
boundary FE is countably n − 1-rectifiable and
|DχE | = Hn−1 FE .

Proof. By Egorov’s theorem, we can find disjoint compact sets
Fi ⊂ FE , i ∈ N, with

|DχE |

(
FE \

⋃
i∈N

Fi

)
= 0

and such that the convergences (7), (8), (9) are uniform in each
set Fi .



Rectifiability of the reduced boundary part II

Choose unit vectors ν1, . . . , νN such that for any ν ∈ ∂B(0, 1), we
have |ν − νj | < 1/4 for some j = 1, . . . ,N. Partition the sets Fi

further into sets F j
i , i ∈ N, j = 1, . . . ,N, such that for any z ∈ F j

i ,
we have |νE (z)− νj | < 1/4. Relabel these sets Ki , i ∈ N.

Fix i ∈ N; we may as well take i = 1. Pick j such that
|νE (z)− νj | < 1/4 for all z ∈ K1. There exists δ > 0 such that if
z ∈ K1 and r < 2δ,

Ln(B(z , r) ∩ H−(z) ∩ E ) <
ωnrn

42n+1

and

Ln(B(z , r) ∩ H+(z) ∩ E ) >
1

4
ωnrn.

For ν ∈ Rn, denote by Pν the orthogonal projection onto the line
spanned by ν, and by P⊥ν the orthogonal projection onto the
n − 1-plane with normal ν, denoted also by ν⊥.



Rectifiability of the reduced boundary part III

Take x , y ∈ K1 and d(x , y) < δ. Suppose that we had y ∈ H−(x)
and

|Pνj (y − x)| ≥ |P⊥νj (y − x)|.

Then
|Pνj (y − x)| ≥ |y − x |/2

and so
|PνE (x)(y − x)| ≥ |y − x |/4.

This implies that

B(y , |x − y |/4) ⊂ B(x , 2|x − y |) ∩ H−(x).

so that

B(y , |x − y |/4) ∩ E ⊂ B(x , 2|x − y |) ∩ H−(x) ∩ E .



Rectifiability of the reduced boundary part IV

But since y ∈ K1,

Ln(B(y , |x − y |/4) ∩ E ) >
1

4
ωn

(
|x − y |

4

)n

=
ωn|x − y |n

4n+1

and similarly since x ∈ K1,

Ln(B(x , 2|x − y |) ∩ H−(x) ∩ E ) <
ωn(2|x − y |)n

42n+1
≤ ωn|x − y |n

4n+1
.

This is a contradiction. Thus

|Pνj (y − x)| ≤ |P⊥νj (y − x)|

for all x , y ∈ K1 with |x − y | < δ.

Thus for any z ∈ K1, B(z , δ/2) ∩ K1 is the graph of a 1-Lipschitz
map with domain in the n − 1-plane ν⊥j . This can be extended

into a 1-Lipschitz graph S1 defined on the whole of ν⊥j .



Rectifiability of the reduced boundary part V

The set K1 can be partitioned into finitely many sets contained in
balls B(z , δ/2), z ∈ K1, and the same can be done for each set Ki .
Relabel the resulting sets Hi , i ∈ N, so that each Hi is covered by
a Lipschitz graph Si .

Note that

Hn−1

(
FE \

⋃
i∈N

Hi

)
≤ C |DχE |

(
FE \

⋃
i∈N

Hi

)
= 0.

Thus the reduced boundary FE is countably n − 1-rectifiable.

Let us show that |DχE | = Hn−1 FE . For this it is enough to
show that for any i ∈ N, |DχE | Hi = Hn−1 Hi . Again we can
take i = 1.



Rectifiability of the reduced boundary part VI

We have

lim
r→0

Hn−1(S1 ∩ B(x , r))

ωn−1rn−1
= 1

for Hn−1-a.e. x ∈ S1, since S1 is a Lipschitz graph. Thus by (9),

lim
r→0

|DχE |(B(x , r))

Hn−1(S1 ∩ B(x , r))
= 1

for Hn−1-almost every x ∈ H1 ⊂ FE . By (10) we know that

|DχE | H1 � Hn−1 H1 � Hn−1 S1.

Thus by the Besicovitch differentiation theorem,

|DχE | H1 = (Hn−1 S1) H1 = Hn−1 H1.

�



Enlarged rationals

To illustrate how big the topological boundary of a set of finite
perimeter can be compared to the reduced boundary, consider the
following.

Example

Let (qh) be an enumeration of Q2. Define

E :=
∞⋃
h=1

B(qh, 2
−h).

Then by subadditivity and lower semicontinuity

P(E ,R2) ≤
∞∑
h=1

P(B(qh, 2
−h),R2) ≤ 2π

∞∑
h=1

2−h = 2π.

Thus E is of finite perimeter in R2. On the other hand, E is dense
in R2, so that ∂E = R2 \ E . Thus L2(∂E ) =∞.



The measure theoretic boundary part I

Definition

Let E ⊂ Rn be an Ln-measurable set. We define the measure
theoretic boundary ∂∗E as the set of points x ∈ Rn for which

lim sup
r→0

Ln(B(x , r) ∩ E )

Ln(B(x , r))
> 0

and

lim sup
r→0

Ln(B(x , r) \ E )

Ln(B(x , r))
> 0.

For a set of finite perimeter E , clearly FE ⊂ ∂∗E . Moreover, we
can show that ∂∗E is a Borel set.



The measure theoretic boundary part II

Theorem

Let E be a set of finite perimeter in Rn. Then
Hn−1(∂∗E \ FE ) = 0.

Proof. Consider a point x ∈ Rn where

lim
r→0

|DχE |(B(x , r))

rn−1
= 0.

By the relative isoperimetric inequality, we then have

min {|B(x , r) ∩ E |, |B(x , r) \ E |}
rn

≤
(

2CP |DχE |(B(x , r))

rn−1

)n/(n−1)

→ 0 as r → 0.



The measure theoretic boundary part III

Thus by continuity, either

|B(x , r) ∩ E |
rn

→ 0 or
|B(x , r) \ E |

rn
→ 0

as r → 0. Thus x /∈ ∂∗E . In conclusion, if x ∈ ∂∗E , then

lim sup
r→0

|DχE |(B(x , r))

rn−1
> 0.

Then by using a similar covering argument as before, from the fact
that |DχE |(∂∗E \ FE ) = 0 we obtain that Hn−1(∂∗E \ FE ) = 0.

�



Gauss-Green formula

We conclude that for any set E of finite perimeter in Rn, we have

|DχE | = Hn−1 FE = Hn−1 ∂∗E

and thus
DχE = νEHn−1 ∂∗E

with |νE (x)| = 1 for Hn−1-a.e. x ∈ ∂∗E . Thus we obtain the
following generalization of the Gauss-Green formula.

Theorem

For any set E that is of finite perimeter in Ω, we have∫
E

divψ dLn = −
∫
∂∗E
〈ψ, νE 〉 dHn−1 ∀ψ ∈ [C 1

c (Ω)]n.



Approximate limits

Let u ∈ BV(Rn). Define the lower and upper approximate limits of
u for any x ∈ Rn by

u∧(x) := sup

{
t ∈ R : lim

r→0

Ln(B(x , r) ∩ {u < t})
Ln(B(x , r))

= 0

}
and

u∨(x) := inf

{
t ∈ R : lim

r→0

Ln(B(x , r) ∩ {u > t})
Ln(B(x , r))

= 0

}
.

Then define the approximate jump set of u by

Su :=
{

x ∈ Rn : u∧(x) < u∨(x)
}
.

We can show that u∧ and u∨ are Borel measurable functions and
that Su is a Borel set.



Rectifiability of the jump set part I

Theorem

Let u ∈ BV(Rn). Then the jump set Su is countably
n − 1-rectifiable.

Proof. Let x ∈ Su. Then for any u∧(x) < t < u∨(x), we have

lim sup
r→0+

Ln(B(x , r) ∩ {u > t})
Ln(B(x , r))

> 0

and

lim sup
r→0+

Ln(B(x , r) ∩ {u < t})
Ln(B(x , r))

> 0.

Thus x ∈ ∂∗{u > t}.



Rectifiability of the jump set part II

By the coarea formula, we can choose D ⊂ R to be a countable,
dense set such that {u > t} is of finite perimeter in Rn for every
t ∈ D. We know that each reduced boundary F{u > t}, and thus
each measure theoretic boundary ∂∗{u > t}, t ∈ D, is a countably
n − 1-rectifiable set. Thus

Su ⊂
⋃
t∈D

∂∗{u > t}

is also countably n − 1-rectifiable. �



Decomposition of the variation measure

Let u ∈ BV(Rn). By the Besicovitch differentiation theorem, we
have |Du| = aLn + |Du|s , where a ∈ L1(Rn) and |Du|s is singular
with respect to Ln.

Then we can further write |Du|s = |Du|c + |Du|j , where
|Du|c := |Du|s (Rn \ Su) is the Cantor part, and
|Du|j := |Du|s Su is the jump part.

Theorem

For u ∈ BV(Rn), we have the decomposition

|Du| = aLn + |Du|c + (u∨ − u∧)Hn−1 Su.

Moreover, for any Borel set A ⊂ Rn \ Su that is σ-finite with
respect to Hn−1 (i.e. can be presented as a countable union of sets
of finite Hn−1-measure), we have |Du|(A) = 0.



Decomposition of the variation measure proof part I

Proof. We have already seen that if x ∈ Su and
u∧(x) < t < u∨(x), then x ∈ ∂∗{u > t}. On the other hand, if
x ∈ ∂∗{u > t} for some t ∈ R, then

lim sup
r→0+

Ln(B(x , r) ∩ {u > t})
Ln(B(x , r))

> 0,

whence u∨(x) ≥ t, and

lim sup
r→0+

Ln(B(x , r) \ {u ≤ t})
Ln(B(x , r))

> 0,

whence u∧(x) ≤ t. In conclusion, t ∈ [u∧(x), u∨(x)].



Decomposition of the variation measure proof part II

All in all, we have{
(x , t) ∈ Rn × R : u∧(x) < t < u∨(x)

}
⊂ {(x , t) ∈ Rn × R : x ∈ ∂∗{u > t}}
⊂
{

(x , t) ∈ Rn × R : u∧(x) ≤ t ≤ u∨(x)
}
.

Thus for any Borel set A ⊂ Su, we have by using the coarea
formula and Fubini’s theorem

|Du|(A) =

∫ ∞
−∞

P({u > t},A) dt =

∫ ∞
−∞
Hn−1(∂∗{u > t} ∩ A) dt

=

∫ ∞
−∞

∫
Rn

χ∂∗{u>t}(x) d(Hn−1 A)(x) dt

=

∫
Rn

∫ ∞
−∞

χ(u∧(x),u∨(x))(t) dt d(Hn−1 A)(x)

=

∫
A

(u∨ − u∧) dHn−1.



Decomposition of the variation measure proof part III

We conclude that |Du|j = |Du| Su = (u∨ − u∧)Hn−1 Su.

Finally, suppose that a Borel set A ⊂ Rn \ Su is σ-finite with
respect to Hn−1. By using the coarea formula and Fubini’s
theorem as we did above,

|Du|(A) =

∫
A

(u∨ − u∧) dHn−1 = 0

since u∧(x) = u∨(x) for any x ∈ A. �



On measurability, part I

Let E ⊂ Rn be an Ln-measurable set. To show that ∂∗E is a Borel
set, we note that for each i ∈ N, the functions

fi (x) :=
Ln(B(x , 2−i ) ∩ E )

Ln(B(x , 2−i ))
, gi (x) :=

Ln(B(x , 2−i ) \ E )

Ln(B(x , 2−i ))

are continuous. Thus lim supi→∞ fi and lim supi→∞ gi are Borel
measurable functions, and so

∂∗E =

{
x ∈ Rn : lim sup

i→∞
fi (x) > 0 and lim sup

i→∞
gi (x) > 0

}
is a Borel set.



On measurability, part II

To show that u∧ and u∨ are Borel measurable functions, note that
for any t ∈ R,{

x ∈ Rn : u∧(x) ≥ t
}

=
∞⋂
i=1

{
x ∈ Rn : lim

r→0

Ln(B(x , r) ∩ {u < t − 1/i})
Ln(B(x , r))

= 0

}
.

Here the functions

x 7→ L
n(B(x , r) ∩ {u < s})
Ln(B(x , r))

are continuous for any s ∈ R and fixed r > 0, and so

x 7→ lim sup
r→0

Ln(B(x , r) ∩ {u < s})
Ln(B(x , r))

is a Borel measurable function. Hence {x ∈ Rn : u∧(x) ≥ t} is a
Borel set. Borel measurability of u∨ is proved analogously.



On measurability, part III

By the Borel measurability of u∧ and u∨, we have that

Su =
{

x ∈ Rn : u∧(x) < u∨(x)
}

=
⋃
t∈Q

{
x ∈ Rn : u∧(x) < t

}
∩
{

x ∈ Rn : u∨(x) > t
}

is a Borel set. Then we can show that also{
(x , t) ∈ Rn × R : u∧(x) < t < u∨(x)

}
is a Borel set in Rn × R, justifying our previous use of Fubini’s
theorem.


