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o-algebras and positive measures

Let X be a topological space.

@ A collection & of subsets of X is a o-algebra if ) € &,
X\ E € £ whenever E € &, and for any sequence (Ep) C &,
we have [y En € €.

@ We say that pu: & — [0, 00] is a positive measure if p(()) =0
and for any sequence (Ej) of pairwise disjoint elements of &,

M <U Eh> = 1(En).

heN heN

o We say that M C X is p-negligible if there exists E € £ such
that M C E and p(E) = 0. The expression "almost
everywhere”, or "a.e.”, means outside a negligible set. The
measure p extends to the collection of y-measurable sets, i.e.
those that can be presented as E U M with E € £ and M
u-negligible.



Vector measures

o Let N € N. We say that pu: & — RV is a vector measure if
w(@) = 0 and for any sequence (Ej,) of pairwise disjoint

elements of £
7 (U Eh> = uEp).

heN heN

o If u is a vector measure on (X, &), for any given E € £ we
define the total variation measure |u|(E) as

sup { Z |(En)| : Ep € € pairwise disjoint, E = U Eh}.
heN heN

We can show that |u| is then a finite positive measure on
(X, &), that is, |u|(X) < .



Borel and Radon measures

e We denote by B(X) the o-algebra of Borel subsets of X, i.e.
the smallest o-algebra containing the open subsets of X.

@ A positive measure on (X, B(X)) is called a Borel measure. If
it is finite on compact sets, it is called a positive Radon
measure.

@ A vector Radon measure is an RV-valued set function that is
a vector measure on (K, B(K)) for every compact set K C X.
We say that it is a finite Radon measure if it is a vector
measure on (X, B(X)).



Lebesgue and Hausdorff measures

We will denote by L£" the n-dimensional Lebesgue measure in R”.
Sometimes we write |A| instead of L"(A) for A C R".

We denote by wy the volume of the unit ball in RX.
Definition

Let k € [0,00) and let A C R". The k-dimensional Hausdorff
measure of A is given by

HE(A) = lim HE(A),
0—0
where for any 0 < § < oo,
keay.— “k. ; AL , ,
Hs(A) == ok inf {'EZN[dlam(E,)] : diam(E;) <6, AC EJNE,}

with the convention diam()) = 0.




Besicovitch differentiation theorem

Theorem

Let 1 be a positive Radon measure in an open set €, and let v be
an RN-valued Radon measure in Q. Then for p-a.e. x € Q the
limit =
f(x) := lim Y(B(x.r))
r—0 u(B(x,r))
exists in RNV and v can be presented by the

Lebesgue-Radon-Nikodym decomposition v = f u + v°, where
v® = vLE for some E C Q with u(E) = 0.




Definition of BV functions

The symbol Q will always denote an open set in R”.

Definition

Let u € L1(Q2). We say that v is a function of bounded variation in
Q if the distributional derivative of u is representable by a finite
Radon measure in €, i.e.

0
/udx— /¢dDu Vi e C°(Q), i=1,...,n
Q aXl
for some R"-valued Radon measure Du = (Dyu, ..., Dpu) in Q.
The vector space of all functions of bounded variation is denoted
by BV(Q).

We can always write Du = o|Du|, where |Du| is a positive Radon
measure and o = (01,...,0,) with |o(x)| =1 for |Dul-a.e. x € Q.



Examples of BV functions

o WLH(Q) c BV(Q), since for u € WH1(Q) we have
Du=Vul".

@ On the other hand, for the Heaviside function
X(0,00) € BVioc(R) we have Du = do, and u ¢ Wli’cl(R).

o We say that u € BVo(Q) if u € BV(Q') for every Q' € Q,
i.e. every open Q' with Q' compact and contained in Q.



Mollification, part |

Let p € C°(R") with p(x) > 0 and p(—x) = p(x) for all x € R",
suppp C B(0,1), and

/np(x)dx:l.

Choose € > 0. Let p.(x) := 7 "p(x/¢e), and
Q. :={x € Q: dist(x,00) > ¢}.

Then for any u € L1(R), we define for any x € Q.

u* pe(x) ::/QU(y)ps(X—y) dy:s_”/QU(y)p (X_y> dy.

£



Mollification, part Il

Similarly, for any vector Radon measure = (1, ..., uy) on £,
we define

pox pe(x) = /st(x —y)duly),  x€Q..
We can show that p x p. € C*>°(£.) and

V(p*pe) = px* Vpe.

If v € Lipy,(2), then V(v p;) = Vv % p..
Also, given any v € L1(Q) and a vector Radon measure j on £,
from Fubini’s theorem it follows easily that

/(u*pe)vdﬁ”z/ v pe dpu
Q Q

if either p is concentrated in €. or v =0 L"-a.e. outside (2.



Mollification of BV functions

o If ue BV(Q), we have
V(u* p:) = Du * p. in Q..

To see this, let ¥ € C°(Q2) and ¢ € (0, dist(supp ¥, 9Q)).
Then

/Q(u*pa)wdﬁ”=/Qu(pg*w)dc":/Quwpﬂw)cw"
:—/st*zpdDu:—/QwDu*png".

e If u € BV(R") and Du =0, u is constant, which we can see
as follows. For any e, u* p. € C*(R") and
V(uxp:) = Dux p: =0. Thus u * p. is constant for every
€ >0, and since u* p. — v in L}(R") as ¢ — 0, we must
have that u is constant.



Lipschitz test functions

Let v € BV(Q) and ¢ € Lip.(€2). Then for small enough ¢ > 0 we
have ¢ * p. € C2°(2), and thus

3(¢ * ps)

dﬁ":—/w*psdD,-u, i=1,...,n.
Q Ox; Q

As ¢ — 0, we have ¥ * p. — 1 uniformly and

INpxps) O e
ox; Ox; *Pe ox;

almost everywhere, so by the Lebesgue dominated convergence
theorem we get

/ dﬁ"* /wdDu i=1,...,n.
Q

That is, we can also use Lipschitz functions as test functions in the
definition of BV.



A Leibniz rule

If ¢ € Lipy,.(2) and u € BV o(2), we have up € BV ,(Q2) with
D(u¢) = ¢ Du+ uVeo L.

Proof.

Clearly ugb € LL (). We have for any 1 € C2°(2) and
i=1,...,

W ) [ 09
/Quqba dX—/Q P dx

X; Ox; 8X,

——/QqﬁwdD,-u—/Qu

since ¢ € Lip.(Q). O




The variation, part |

Let u € Li (Q2). We define the variation of u in Q by

V(u,Q) = sup{/ udivyp dL™: o € [CHQ)", [¢] < 1}.

Theorem

Let u € LY(Q). Then u € BV(Q) if and only if V(u,Q) < co. In
addition, V(u,Q) = |Dul|(R).

| :o
A\

Proof. Let u € BV(Q). Then for any ¥ € [C}(Q)]" with || < 1,

/udivwdﬁ":—Z/w,-dD;u:—Z/w;a;d|Du|
Q2 i=17/9 i=1 7%

with |o| = 1 |Du|-almost everywhere, so that V(u,Q) < |Du|(R).



The variation, part |l

Assume then that V(u,Q) < oco. By homogeneity we have

/ udivyp dL”
Q

Since C(R) is dense in C.(Q) and thus in Co(£2) (which is just
the closure of C.(£2), in the || - || o (q)-norm) we can find a
continuous linear functional L on Cy(£2) coinciding with

<V(u,Q)[dllie@ V¥ € C(Q).

wl—>/ﬂudivwd£"

on C(Q) and satisfying ||L|| < V(u, ). Then the Riesz
representation theorem says that there exists an R”-valued Radon
measure (1 = (fi1, ..., un) with |p](Q) = ||L|| and

L(v) = Z/Qd)i dupi VY € [G(Q)]"
i-1



The variation, part Ill

Hence we have
/ udivip dL" = Z/ vidui Yy e [CH(Q)"
Q =179

so that v € BV(Q), Du = —p, and

|Du|() = [ul(Q) = [ILI| < V(u, Q).



Lower semicontinuity

Lemma

If up — uin LY (), then V/(u,Q) < liminfj_ o0 V(up, Q).

loc

For any ¢ € [C2()]", we have

/udivwdﬁ": lim /uhdivxbdﬁ”gliminf V(up, Q).
Q h—oo Jo h—o00

Taking the supremum over such i we obtain the result. [




The BV norm

@ The BV norm is defined as
lullsve = /Q luldL" + |Dul(€).

o If ue WH(Q), then |Du|(Q) = ||Vul|;1(q). so that
lullsvi) = llullwir(q):

@ Smooth functions are not dense in BV(Q), since the Sobolev
space W11(Q) ¢ BV(Q) is complete.



Approximation by smooth functions

While smooth functions are not dense in BV(Q), we have the
following.

Let u € BV(Q). Then there exists a sequence (up) C C*(Q) with
up — u in L1(Q) and

jim /|Vuh]d£":]Du\(Q).
Q

h—o0

Proof. Fix 6 > 0. Note that by lower semicontinuity, for any
sequence (up) C C®(Q) with up — v in LY(Q), we have

|Dul(2) < lim inf/ |Vup|dL".
h—oo Jo
Thus we need to construct a function vs € C*°(Q) such that

/]u—V5|d£”<5, /!VV5\d£”<|Du](Q)+(5.
Q Q



Approximation by smooth functions, proof |

Define Qg := () and
Qr ={x e QN B(0, k) : dist(x,00Q) >1/k}, keN.
Define Vi := Q1 \ Qi—1, k € N. Then oy Vi = .

Then pick a partition of unity ¢, € C2°(Vj), with 0 < ¢, <1 and
Y ken @k = 1in Q. For every k € N there exists £, > 0 such that

supp((ugk) * p,) C Vi and
/Q [[(upr) * pe, — upi| + [(UV@k) * pe, — uVk|] dL" < 2755,

Define vs := > cn(upk) * pe,, so that vs € C*°(Q) and

/Q\V5 —uldL" < Z/Q |(upk) * pe, — upk| dL" < 4.

keN



Approximation by smooth functions, proof Il

We also have

Vs =V ((upk) # pe) = D (D(upk)) * pe,

keN keN

= Z (pxDu) * pe, + Z(UVSDk) * Pey

keN keN

= > (pkDu) 5 pey + > [(uV@k) * pey, — uVipr]
keN keN

= /]Vva|d£”< Z/(cpk|Du|)*p€k dL" + 96
Q keN /<

—Z/apdeuH—d
Q

keN
= |Dul(Q) + 4.



Weak* convergence of BV functions, part |

Definition

Let u, up € BV(Q2). We say that (up) weakly* converges to u in
BV(Q) if up — v in LY(Q) and Dup = Du in Q, i.e.

lim /deDuh:/QiﬁdDu Vi € Go(Q2).

h—o0

Here Co(2) is the completion of C.(2) in the sup norm.

Theorem

Let u,up € BV(Q). Then up weakly* converges to u in BV(Q) if
and only if up, — u in LY(Q) and (uy) is a bounded sequence in
BV(Q), i.e.

S {/ lup| A"+ |Duh|(Q)} < .
Q

heN




Weak* convergence of BV functions, part Il

Proof.

"<": By the weak* compactness of Radon measures, for any
subsequence h(k) we have a further subsequence (not relabeled)
such that Dup ) X 11 in Q for a Radon measure j. We need to
show that p = Du. We have for every k € N

o oo _
/Quh(k)aXi dx = —/deD,uh(k) \LUNS Cc (Q), i=1...,n
By letting kK — oo, we obtain
/uawdx:—/d)d,u,- Y € C(Q), i=1,...,n,
8X,' Q

so that g = Du. Since this was true for any subsequence h(k), we
must have Duj, = Du.



Weak* convergence of BV functions, part Il

"=": The measures Duy, are bounded linear functionals on Cp(2),
and for any ¢ € Go(Q),

sup

/ ¥ dDuy,
heN | JQ

/deDuh—>/Qz/1dDu.

Thus the Banach-Steinhaus theorem gives supjcy |Dup|(2) < oo.

< 00,

since



Strict convergence of BV functions

Definition

Let u, up, € BV(Q2). We say that up, strictly converges to u in
BV(Q) if up — v in L1(Q) and |Dup|(Q2) — |Du|(R) as h — .

@ Strict convergence of BV functions always implies weak*
convergence, by our characterization of the latter.

@ However, the converse does not hold: sin(hx)/h weakly*
converges in BV((0,27)) to 0 as h — oo, but does not
converge strictly because |Dup|((0,27)) = 4 for each h.

@ We showed previously that for every u € BV(Q) there exists
(up) € C*(Q) with up — u strictly in BV(Q).



The area formula

Let k, n € N with kK < n. For a differentiable mapping

f: Rk = R", denote by df, the n x k-matrix whose rows are the
gradient vectors of the components of f at the point x € R¥. Also,
define the Jacobian by

Jdf, = \/det(dfy o dfy).

Let f: Rk — R" be a one-to-one Lipschitz function. Then for any
Borel measurable nonnegative function g we have

[ 00 ai) = [ g0t o
R Rk




BV extension domains

Definition

A bounded open set 2 C R" is a BV extension domain if for any
open set A D € there exists a linear and bounded extension
operator T: BV(Q) — BV(RR") satisfying

@ Tu=0inR"\ Aforany u € BV(Q),

e |DTu|(02) = 0 for any u € BV(Q).

Theorem

A bounded open set 2 C R" with Lipschitz boundary is a BV
extension domain.

| A

A\

Proof omitted.



Compactness in BV part |

Let u € BV(Q2) and let K C Q be a compact set. Then

/ luk pe — u| dLP < e|Dul(Q) Ve € (0, dist(K, 5Q)).
K

Proof. We find (up) C C*°(Q) with up — v in LY(Q) and
|Dup|(2) — |Dul(€2). Thus we can in fact assume u € C*®(Q).
Pick x € K and y € B(0,1), and denote v(t) := u(x — ety), so
that

1 1
u(x —ey) — u(x) = /0 V/(t) dt = —E/O (Vu(x —ety),y) dt.



Compactness in BV part Il

By Fubini we get

1
/K|u(x—5y)—u(x)|dx§5/0 /K\Vu(x—ety)|dxdt§5|Du|(§2)

Multiplying by p(y) and integrating we obtain, by again using

Fubini
/ ( \u(x—ey)—u(x)rp(y)dy) d < | Du|().
K Rn
Thus
/ Ju pe(x) — u(x)] dx = / [u(x — ey) — u(x)]oly) dy| dx
K K Rn

< ¢|Du|(9).



Compactness in BV part Il

Let (up) be a norm-bounded sequence in BV(R"), i.e.

sup{ \uh\dﬁn—i—lDuhl(R”)} < 00.
heN (Jrn

Then for some subsequence we have up) — u € BV(R") locally
weakly* in BV(R") as k — oc.

Proof. Fix € > 0 and for each h € N, let up . := up * p.. Then
[uhell oo mny < Iunll 2 rey Il pe | oo (rmy
and since Vuy . = up x Vpg,

[V unelloomay < llunll @yl V pell Lo )



Compactness in BV part IV

Thus with ¢ fixed, (up.) is an equibounded and equicontinuous
sequence. Fix a bounded set U C R". By Arzela-Ascoli we can
find a subsequence converging uniformly on U. By a diagonal
argument we find a subsequence h(k) such that Up(k),e converges
uniformly on U for any e =1/p, p € N.

Thus we have

lim sup/U |Un(ky — Un(kny| AL™ < lim sup/U |Un(ky = Un(ky,1/pl dL"

K,k =00 K, k00

+ lim sup/U |Uh(k),1/p - Uh(k'),l/p‘ dL”

K,k —00

+ lim sup/U |Un(kr),1/p — Un(kr)| AL”

k, k' —00

2
< — sup | Dup|(R™).
P heN



Compactness in BV part V

Since we can take p € N arbitrarily large, we have

I ~ upen| AL =
k7k',n_"'>oo/u‘uh(k) Up(kry| dL™ =0,

so that up(x) is a Cauchy sequence in L1(U) and necessarily
converges in L1(U) to some function u. By the lower
semicontinuity of the variation, we have u € BV(U), and by our
previous characterization of weak* convergence in BV we have
that up(x) weakly* converges to u in BV(U).

Finally, by another diagonal argument we find a subsequence h(k)
(not relabeled) for which this convergence takes place in every
bounded open U C R". d



Compactness in BV part VI

Corollary

Let Q C R" be a bounded BV extension domain, and let
(up) € BV(Q) be a norm-bounded sequence. Then for some
subsequence we have up) — u € BV(Q) weakly* in BV(LQ).

| A

Proof.

Extend each function up, to Tup € BV(R"). Then by the previous
theorem, for a subsequence we have Tup() — u € BV(R”") locally
weakly* in BV(R"), in particular Tup) — u weakly* in BV(Q),
since Q is bounded. Thus up) — u weakly* in BV(Q). O

v




Sets of finite perimeter

As before,  will always denote an open set in R".

We denote by Xg the characteristic function of a set E C R”, i.e.
the function that takes the value 1 in the set E and the value 0
outside it.

Definition
Let E C R"” be a £L"-measurable set. The perimeter of E in Q is
the variation of Xg in Q, i.e.

P(E,Q) = sup{ [dvudcr: verc@p. i< 1}.

We say that E is of finite perimeter in Q if P(E,Q) < oc.




Sets with smooth boundary

Example

If an open set E has a Cl-boundary inside Q and
H"Y(OE N Q) < oo, then by the Gauss-Green theorem

/ divp L = — / (ve, ) dH™Y W e [CHQI, (1)
E O0ENQ

where vg is the inner unit normal of E, so that
P(E,Q) < H"Y(OE N Q) — in fact by picking suitable 1, we can
show that equality holds.




Basic properties

@ For any set E that is of finite perimeter in €, the
distributional derivative DXg is an R"-valued Radon measure
in Q, with polar decomposition DXg = vg|Dxg|, so that

[dviacr =~ [ e doxel v elci@
E Q

Here |vg| = 1 |Dxgl-a.e. and |Dxg|(2) = P(E,2). Then we
can define P(E, B) to be the same as |Dxg|(B) for any Borel
set B C Q.

@ Thus Xg € BV|oc(f2), but not necessarily xg € BV(Q) since
we might not have xg € L1(Q).

e Moreover, P(E,Q) = P(R"\ E, Q).



Algebra property

We also have the following algebra property.

Given sets E, F of finite perimeter in €2, we have

P(EUF,Q)+ P(ENF,Q) < P(E,Q) + P(F,Q).

Proof. We find sequences up, vy, € C*°(Q2) with up — Xg in
Ll(Q), Vhp — XF in Ll(Q), 0<upvp<1, and

lim /[Vuh\dﬁ”:P(E,Q), jim /\Vvh]d.C":P(F,Q).
Q h—oo Jo

h—o0



Algebra property continued

Then upvh, = Xenr and up + vy — upvy — XEUF in LIOC(Q), and
thus by the lower semicontinuity of the perimeter

P(ENF,Q)+ P(EUF,Q)

S liminf </ \V(uhvh)\ dL” +/ ’V(Uh “+ vp — uth)’ d£n>
h—o0 Q Q

< Iim inf/ IVup|(Jval +11 — val) + [V va| (Jun| + |1 — up|) dL”

= I|m|nf </ |Vup|dL" + / |Vvp| dL” >

— P(E,Q) + P(F,9).



Coarea formula for BV

For any u € BV(Q), denoting E; :== {x € Q: u(x) > t}, t € R,
we have

|Du|(Q) = /Oo P(E,, Q) dt.

—00




Coarea formula, proof part |

Proof. First we prove the result for u € C*°(Q2). By the classical
coarea formula we have

/Cldudﬁn :/ HH QN uY(t)) dt,
Q —00

where Cidu = |Vu|. By Sard’s theorem we know that
{Vu=0}nu"1(t) =0 for a.e. t € R. For these values of t we
have that the boundary E; = u~1(t) is smooth and so

HY QN u () = H Y QN OE) = P(E:, Q)

by (1). Thus

/|vu|d.c":/ P(E,, Q) dt.
Q —00



Coarea formula, proof part |l

Let then u € BV(2). We prove the inequality " >". Take a
sequence (up) C C*°(Q) with up — u strictly in BV(Q). Define
Eh = {x e Q: up(x) > t}. Then

max{up(x),u(x)} 00

()~ uto)| = [ dt= [ e - el dr
min{up(x),u(x)} —o0

so that by Fubini

/|uh x) — u(x |dx—/ /leh — Xg,(x)] dx dt.

Thus by picking a subsequence (not relabeled) we get Xgp = XE,
in L}(Q) as h — oo, for a.e. t € R.



Coarea formula, proof part Il

By the lower semicontinuity of the perimeter and Fatou's lemma
we have

/ P(Et,Q)dtg/ Iignian(Eth,Q)dt
—oo —oo 700

< Iiminf/ P(E!, Q) dt

h—oo J_

= liminf |Dup|(2)
h—ro00
= [Dul(Q).



Coarea formula, proof part IV

Finally, we prove the inequality " <". We can see that for any
x €9,

00 0
u(x) = /O Xe, () dt — / (1 - v&,(x)) dt.

o0

Then, given any ¢ € [C1(Q)]" with || < 1, we estimate

[ w0 divot d

S

:/OO XE, (x) divip(x dxdt—/ / 1 — Xxg(x))dive(x) dx dt
0 Q
=/ /XEt ) div h(x dxdtg/ P(E:, Q) dt.

oo JQ —o0

/Ooo XE,(x) dt — 0 (1-Xxg(x)) dt> div ¥(x) dx



Coarea formula, consequences |

Let v € BV(Q). If we define

W)= [ IDXe)(E) dt
for any Borel set B C Q, it is straightforward to check that p is a
positive Borel measure. Since |Du| and p agree on open subsets of
Q, we have -

Dul(B) = [~ Dxe.|(B) de

for any Borel set B C Q. We also have

Du(B) = /Oo DXg,(B) dt

—00

for any Borel set B C Q, which we see as follows.



Coarea formula, consequences |l

We use Fubini and then the fact that DXE, is a finite Radon
measure for a.e. t € R to obtain for any ¢ € C2°(Q)

/wdDu— —/ X)Vih(x) dx

_ /Q < /O (%) dt> Vih(x) dx

+/Q </_io(1—xa(x))dt> Vip(x) dx
= [ ([ retaveeo o) a

[ ([a-ratvuea) o
:/_Z (/deDxEt) dt.



Sobolev inequality

For any u € BV(R") we have

”uHL"/(n—U(R") < Cs|Dul(R")

for some constant Cs = Cs(n).

From now on, let us assume that n > 2. In the one-dimensional
setting, easier proofs and stronger results are available, but we will
not consider these.



Sobolev inequality, proof

Proof.

Pick functions (up) C C*®(R™) with ujp — v in L}(R"),

up(x) — u(x) for L"-a.e. x € R" and |Dup|(R") — |Du|(R").
Then by Fatou's lemma and the Gagliardo-Nirenberg-Sobolev
inequality, we have

n—1 n=1

( |u|71 dﬁ”) e </ liminf |up| -1 d£"> ’
Rn n h—oo

n—1
< liminf |up| -1 dL"
h—o0 Rn

< Cs liminf \Duh|(]R”)
h—o00

= Cs|Dul(R").




Isoperimetric inequality

For any bounded L"-measurable set E C R", we have

L£M(E)n=D/" < CsP(E,R").

Choose u = Xg in the Sobolev inequality. O]




Poincaré inequality

For any ball B(x, r) and any u € BV(B(x, r)) we have

(n—1)/n
<L( ) ’U o uB(x,r)‘n/(n_l) dﬁn) < CP|Du’(B(X7 r))
X,r

for some Cp = Cp(n), where

Follows from the usual Poincaré inequality for Sobolev
functions. ]




Relative isoperimetric inequality

For any ball B(x,r) and any L"-measurable set E C R", we have

min {|B(x,r) N E|, |B(x,r)\ E}""V/" < 2CpP(E, B(x, r)).

Proof. We have
/ IXE — (XE)B (x| "1 dL"
B(x,r)

e (4524)

18t el (520

Bl
|
—

3
|
-



Relative isoperimetric inequality, proof

If |[B(x,r)NE| <|B(x,r)\ E|, then by the Poincaré inequality

/ |XE - (XE)B(><,r)|ﬁ dc”)
B(x,r)

[B(x, r)\ E|
1B(x;r)]

min{|B(x,r) N E|, |B(x,r)\ E[}("=1)/n

n—1
n

CpP(E, B(x,r)) >

) |B(x, r) N E|("=1)/n

v

Vv

The case |B(x,r) N E| > |B(x, r) \ E| is handled analogously.



Localization

Lemma

Let E be a set of finite perimeter in R", and let x € R". Then for
a.e. r >0, we have

P(EN B(x,r),R") < P(E,B(x,r)) + m'(r),

where m(r) :=|E N B(x,r)|.

In particular, if P(E,0B(x,r)) =0, then
P(E,B(x,r))+ P(ENB(x,r),0B(x,r)) < P(E,B(x,r)) + m'(r),

and so
P(EN B(x,r),0B(x,r)) < m'(r). (2)



Localization proof part |

Proof. We can assume that x = 0. Fix r > 0 such that the
derivative m’(r) exists; note that the derivative of a monotone
function on the real line exists almost everywhere.

For o > 0, set
1 if t <r,
Yo(t) = q1+ 52 ifr<t<r+o,
0 ift>r+o.



Localization proof part Il

Then define v, (y) := Xe(y)7s(ly]), ¥ € R". By the Leibniz rule

Dvy = 75(ly]) Dxe + Xe(y),(y]) L £

|yl

and thus

IDv|(R") < DXl (Bx.r + o)) + o Xe dL",
B(x,r+0)\B(x,r)
and since Vo — XgnB(x,r) iN LY(R™) as o — 0, by lower
semicontinuity
P(E N B(x,r),R") <lim igf |Dv,|(R")
og—
< |DXg|(B(x, r)) + m'(r).



Reduced boundary

Let E C R” be a set of locally finite perimeter in R".

We define the reduced boundary FE as the set of points
x € supp |DXg| such that the limit

ve(x) := lim Dxe(B(x,r)).
"~ =0 |DXE|(B(x,r))

exists and satisfies |vg(x)| = 1.

@ According to the polar decomposition of vector measures
(based on the Besicovitch differentiation theorem), we have
‘DXE|(RH\J_'.E) =0 and Dxg = VE|DXE|-

o If x € FE, then

L"(B(x,r)NE)>0, L"(B(x,r)\E)>0

for all r > 0.



Reduced boundary and Lebesgue points

Note that for x € FE,

' — VE\X 2
2|Dxel(B(x,r)) /B(XJ)WE(Y) e(x)|~ d|Dxel(y)
2
=1 2|Dxe|(B(x,r)) /B(m (ve(y),ve(x)) d|Dxel(y)
1 Dxe(B(x,r)) _
1 <D><E|(B(x,r))’ E( )>—>0

as r — 0, since x € FE. Thus

) 1 _
T o) /B ) [7E0) — v dIDxe () =



A priori estimates on perimeter and volume part |

Lemma
Let E be a set of finite perimeter in R" and let x € FE. Then

there exist ry > 0, and constants «, 5 > 0 depending only on n,
such that

P(E,B(x,r)) <ar™!  Vre(0,n),

min{|B(x,r) N E|, |B(x,r) \ E||} > Br" Vr € (0, ro).

Proof. By the fact that x € FE, we can choose rp > 0 such that

|DXEe|(B(x,r)) < 2|DXe(B(x,r))|  Vre(0,2r).  (3)



A priori estimates on perimeter and volume part Il

By the algebra property of sets of finite perimeter, E N B(x, r) is of
finite perimeter in R". In general, for any bounded set F of finite
perimeter in R”, we have (recall that p. denote standard mollifiers)

DXF(R") = / DXF * p. dL"

= V(XF * pg) dL" =0.
Rn

We also note that for a.e. r > 0, we have P(E,0B(x,r)) =0. In
total, for a.e. r € (0,2ry) we have

P(E,B(x,r)) <2|Dxe(B(x,r))l by (3)
= 2|DXeng(x,n (B(x; r))|
= 2|DXerB(x,r)(0B(x, r))| since DXgnp(x,rn(R") =0
<2P(ENB(x,r),0B(x,r))
<2m'(r) by (2).



A priori estimates on perimeter and volume part |l

Thus for any r € (0, rp),

2m(2r)

1 2r
P(E,B(x,r)) < r/ P(E,B(x,t))dt < < 2ty L

This gives the first estimate. Then, by using the isoperimetric
inequality as well as the localization lemma,

m(r)* " = |E N B(x, r)[t7/"
< CsP(ENB(x,r),R")
< Cs [P(E, B(x,r)) + m/(r)]
< Cs(3m'(r))

for a.e. r € (0,rp), so that (m*/")(r) > 1/(3nCs) for a.e.

r € (0,rp), so that m(r) > r"/(3nCs)" for all r € (0, rp). Finally,
we can run the same argument with |B(x, r) \ E| instead of
|B(x,r)NE]|. O



De Giorgi structure theorem

Let E C R" be a set of finite perimeter in R". For each x € FE,
define the hyperplane

H(x) :={y € R": (ve(x),y — x) =0}

and the half-spaces

HY(x) :={y € R": (ve(x),y — x) > 0},

H™(x) :={y e R": (ve(x),y — x) < 0}.
With x € FE fixed, define also

E,={(y—x)/r+x:ye€E}

Let x € FE. Then Xg, = Xp+(x) in Lj,o(R") as r \, 0.




Blow-up proof part |

Proof. First of all, we may assume x = 0 and vg(0) = e,. Then
E, ={y/r: y € E}, and furthermore let 9s(y) := 9¥(sy), s > 0.
For any ¢ € [CL(R")]", we have

1
/ Xe, divpdL” = —— / Xe divh, 1 dL". (4)
Rn r Rn

Fix any M > 0. Noting that v € [C1(B(0, M))]" if and only if
Y,-1 € [CL(B(0, rM))]" and taking the supremum (with |t/ < 1),

we obtain
P(E, (B(0,rM)))
rnfl :

P(E-, B(0,M)) = ()




Blow-up proof part |l

Thus by the a priori estimate on perimeter, we obtain

(I’M)n_l

n—1 = aM”—l
n—

P(E,,B(0,M)) < «
for sufficiently small r > 0.

Take an arbitrary sequence ry N\, 0. By the above, P(E,,, B(0, M))
is a bounded sequence. By compactness, we find a subsequence
(not relabeled) such that xg, — v € BV(B(0, M)) weakly* in
BV(B(0, M)). We can also assume that Xg, (x) — v(x) for
L"-a.e. x € B(0, M), so that v = xfg for some set F.

This can be done for every M > 0, and so by a diagonal argument,
we have for some set F of locally finite perimeter in R” that
XE, — XF locally weakly* in BV(R").



Blow-up proof part |l

We also obtain from (4) for any r > 0

1
/ </l/)7 VEr> d|DXEr| = —1 / <¢I"717VE> d|DXE|’
R rn Rn

so that for any M > 0

1
/ VE, d|DXEr| = n—1/ I/Ed’DXE|.
B(0,M) r B(0,rM)

Thus
1 / ve, d|DXE, |
E, E,
|Dxk, [(B(0,M)) Jo,my ™ "

o
= ved|Dxg| — ve(0) = e,
|DxE|(B(0, raM)) JB(0,r,m) | | ©)

as h — oo.



Blow-up proof part IV

Moreover, if |[Dxg|(0B(0, M)) = 0 (which is true for a.e. M > 0)
then by the fact that DXE’h = DxF locally in R”,
IDXFI(B(0, M) < liminf | DX, | (B(0, M)
< limsup [Dxg, [(B(0, M))

h—o0

= lim Sup/ <€n,1/E, >d|DXEr |
B(0,M) ’ ’

h—o0

[ (enve)dIDXe.
B(0,M)

Since |vg| = 1 |Dxg|-almost everywhere, we must have vg = e,
|DXf|-almost everywhere in B(0, M), and then also

IDXFI(B(0, M) = lim Dxe, |(B(O, M) (6)



Blow-up proof part V

The above is true for a.e. M > 0. Thus Dxg = e,|DXF|, and so
by mollifying we obtain

V(XF * pe) = (DXF) * pe = (|DXF| * pe)en,

so that Xr * p:(y) = 7:(yn) for all y € R", for some increasing
Ye : R = R.



Blow-up proof part VI

Letting € — 0, we obtain Xr(y) = v(yn) for L -a.e. y € R", for
some increasing v : R — R. But xg(y) € {0,1} for all y € R", so
necessarily F = {y € R" : y, > a} for some a € R. Suppose

a> 0. Since Xg, — Xr in Ljp (R"), we have

0:/ X/:dﬁn: lim / XE, dL”
B(0,a) h—oo JB(0,a)

1
= lim — Xe dL" >0
h—oo I B(0,rpa)

by our a priori estimate on volume, giving a contradiction.
Similarly we conclude that a < 0 is impossible (and also |a| = o).
Thus a =10 and

F={yeR": y,>0}=H"(0).



Consequences of blow-up

For every x € FE,
"B H~ E
r—0 r’
and L"(B HT E
r—0 7
and 5 =
im |PXel(B(x,r)) (9)
r—0 wn_lrn_l




Consequences of blow-up, proof part |l

L"(B(x,r) f:nH_(X) NE) = L"(B(x,1)NH™(x)N E,)

— L"(B(x,1)NH (x)NHT(x)) =0 as r — 0.

(8) is proved similarly. Since
|DXp+ () (0B(x,1)) = 1" H(H(x) N 0B(x,1)) =0,
we also have by (5) and (6)

o IDXE|(B(x, 1))

r—0 I’"f1

= lim |DXg,|(B(x,1))
r—0

= |DXH+(X)’(B(X’ 1))
=H" Y (H(x)NB(x,1)) = wy_1.




The 5-covering theorem

Given any ball B = B(x, r), denote 5B := B(x, 5r).

Theorem

Let F be any collection of open balls in R" with
sup{diam B : B € F} < 0.

Then there exists a countable family of disjoint balls G C F such

that
U Bc 58

BeF Beg




Hausdorff measure and perimeter, part |

There exists C = C(n) > 0 such that for any Borel set A C FE,
we have

H"L(A) < C|DXE|(A).

Proof. Fix £ > 0. By (9) we have for any x € FE

im |DXEl(B(x.)

=1.
r—0  wp_1r"1

Since |Dxg| is a Radon measure, we can find an open set U D A

such that
DX|(U) < [DXE(A) + <.



Hausdorff measure and perimeter, part Il

Consider the covering of the set A by balls

{B(X, r): x €A, B(x,r) C U, r <e/10,

n—1
|Dxel(B(x.r) > ‘“2}

By the 5-covering theorem we can pick from this covering a
countable disjoint collection {B(x;, r;)}icn such that
A C Ujen B(xi,5r;). Since diam(B(x;,5r;)) < €, we have

HIHA) Swno1 Y _(5r0)"
ieN
<2x 5" " |Dxe|(B(xi, 7))
ieEN
< C|Dxel(V) < C(IDXE|(A) +¢)

with C = C(n). Letting ¢ — 0, we obtain H"1(A) < C|Dxg|(A).
M



Hausdorff measure and perimeter, part Il

There exists C = C(n) > 0 such that for any Borel set A C FE,
we have

|DXe|(A) < CH™H(A). (10)

Proof. Fix 7 > 1. For i € N, define

|DXE[(B(x; r))

Wnp—1 rn—1

A,-::{xeA: <7 Vre(O,l/i)}.

The sequence (A;) is increasing, and its union is A due to (9).



Hausdorff measure and perimeter, part IV

Fix i € N, and let {D;};cn be sets covering A; with diameter less
than 1/i, which intersect A; at least at a point x;j, and which satisfy

S wnart Tt <HMA) 1/
jeN
with r; ;= diam(D;)/2.

The balls B(x;, 2r;) still cover A;, hence

IDXE|(A7) < > IDXE|(B(x,2r))) <7 wn1(25)"
JEN JEN

< 2" (WA + 1/0) .

By letting i — oo and 7\, 1 we obtain |[Dxg|(A) < 2" 1H~1(A).
O



Rectifiability of the reduced boundary part |

Let E be a set of finite perimeter in R". Then the reduced
boundary FE is countably n — 1-rectifiable and
|Dxg| = H""LFE.

Proof. By Egorov's theorem, we can find disjoint compact sets
F; Cc FE, i € N, with

|DXE| (IE\ U F,-> =0
ieN

and such that the convergences (7), (8), (9) are uniform in each
set F;.



Rectifiability of the reduced boundary part Il

Choose unit vectors 11, ..., vy such that for any v € 9B(0,1), we
have |v — vj| < 1/4 for some j =1,..., N. Partition the sets F;
further into sets F/, i € N, j=1,..., N, such that for any z € F/,

we have |vg(z) — vj| < 1/4. Relabel these sets Kj, i € N.

Fix i € N; we may as well take / = 1. Pick j such that
|ve(z) — vj| < 1/4 for all z € Ky. There exists § > 0 such that if
z€ Ky and r < 29,

wpt"

L"(B(z,r)NH (z)NE) < 22071

and )
L"(B(z,r)NHY(z2)NE) > anr”.

For v € R", denote by P, the orthogonal projection onto the line
spanned by v, and by P} the orthogonal projection onto the
n — 1-plane with normal v, denoted also by v



Rectifiability of the reduced boundary part IlI

Take x,y € K1 and d(x,y) < 0. Suppose that we had y € H™(x)

and
Py (y = x)| = Py (y = x)|-
Then
[Py (y =x)| = ly = x[/2
and so

|Poey(y =) = |y — x|/4.
This implies that

B(y,|x —yl|/4) C B(x,2|x —y[) N H(x).
so that

B(y,|x —y|/4)NE C B(x,2|x —y|) N H (x)NE.



Rectifiability of the reduced boundary part IV

But since y € Ki,

n 1 ‘X—y’ n wn|X—y\”
E(B(y,lx—y\/4)mE)>4wn< . >:4n+1

and similarly since x € K1,

n _ wn(2[x = y|)" _ walx —y|"
LM'B(x,2|x—y])NH (x)NE) < 22n+1 < gl

This is a contradiction. Thus

[Py (y =) < |Py;(y = X))
for all x,y € K1 with [x — y| < ¢.
Thus for any z € K1, B(z,6/2) N K is the graph of a 1-Lipschitz

map with domain in the n — 1-plane I/J-L. This can be extended
into a 1-Lipschitz graph S; defined on the whole of I/J-J‘.



Rectifiability of the reduced boundary part V

The set K1 can be partitioned into finitely many sets contained in

balls B(z,9/2), z € K1, and the same can be done for each set K;.
Relabel the resulting sets H;, i € N, so that each H; is covered by

a Lipschitz graph S;.

Note that
H! <}'E\ U H,-) < C|Dxe| (}"E\ U H,-) =0.
ieN ieN
Thus the reduced boundary FE is countably n — 1-rectifiable.
Let us show that |[Dxg| = H "L FE. For this it is enough to

show that for any i € N, |Dxg|LH; = H"~ILH;. Again we can
take i = 1.



Rectifiability of the reduced boundary part VI

We have

lim H™ (SN B(x, 1))

r—0 wp_1r"1 =1
for H"1-a.e. x € Sy, since Sy is a Lipschitz graph. Thus by (9),

IDXE|(B(er)
r—0 H"=1(5; N B(x,r))

for 7" 1-almost every x € Hy C FE. By (10) we know that
|IDXe|LH; < H"ILH < HILS,.
Thus by the Besicovitch differentiation theorem,

IDXE|LHy = (H"ILS1)LH, = H™LH;.



Enlarged rationals

To illustrate how big the topological boundary of a set of finite
perimeter can be compared to the reduced boundary, consider the
following.

Example

Let (q5) be an enumeration of Q2. Define

E:=|]JB(an27").
h=1

Then by subadditivity and lower semicontinuity

P(E,R?) <Y P(B(gn27"),R?) <21y 27" =2m
h=1 h=1

Thus E is of finite perimeter in R2. On the other hand, E is dense
in R2, so that F = R?\ E. Thus L2(0E) = .




The measure theoretic boundary part |

Let E C R" be an L"-measurable set. We define the measure
theoretic boundary 0*E as the set of points x € R” for which

L"(B(x,r) N E)

li 0
MNP LB )
and L"(B E

r—0 E”(B(X, r))

For a set of finite perimeter E, clearly FE C 0*E. Moreover, we
can show that 0*E is a Borel set.



The measure theoretic boundary part |l

Let E be a set of finite perimeter in R". Then
H™L(O0*E\ FE) =0.

Proof. Consider a point x € R" where

i |DXEI(B(x. 1)

r—0 r”*l

=0.

By the relative isoperimetric inequality, we then have

min {|B(x,r) N E|, |B(x,r) \ E|} < <2CP|DXE|(B(X, r))>n/(n1)

mn rn—l

—0 asr—0.



The measure theoretic boundary part Ill

Thus by continuity, either

BoenNE o B \El

rn rn
as r — 0. Thus x ¢ 9*E. In conclusion, if x € 0*E, then

|DXE|(B(x, r))

>0,

limsup
r—0

Then by using a similar covering argument as before, from the fact
that |[DXg|(9*E \ FE) = 0 we obtain that H"~1(0*E \ FE) = 0.
O



Gauss-Green formula

We conclude that for any set E of finite perimeter in R”, we have
|Dxg| = H"ILFE = H"ILO*E

and thus

Dxg = veH " LO*E

with [vg(x)| = 1 for H™ 1-a.e. x € 9*E. Thus we obtain the
following generalization of the Gauss-Green formula.

For any set E that is of finite perimeter in 2, we have

[dvoder=— [ woeyanrt welci@
E O*E




Approximate limits

Let u € BV(R"). Define the lower and upper approximate limits of
u for any x € R” by

L"(B(x,r)N{u < t}) _ 0}

u"(x) := sup {t eR: rlirb C(B(x. 1)

and

N e LN(B(x,r)yn{u>t})
u'(x) = |nf{t€R. rlm C7(B(x.1)) —0}.

Then define the approximate jump set of u by
Su={xeR": v \(x) <u’(x)}.

We can show that v” and u" are Borel measurable functions and
that S, is a Borel set.



Rectifiability of the jump set part |

Let u € BV(R"). Then the jump set S, is countably
n — 1-rectifiable.

Proof. Let x € S,. Then for any u”(x) < t < u"(x), we have

>0

lim sup L'(B(x,r)Nn{u>t})
r—0t ‘CH(B(X7 r))
and e 1(B0x. )0 {u < 1))
0+ Lr(B(x,r))
Thus x € 0*{u > t}.

> 0.




Rectifiability of the jump set part |l

By the coarea formula, we can choose D C R to be a countable,
dense set such that {uv > t} is of finite perimeter in R” for every

t € D. We know that each reduced boundary F{u > t}, and thus
each measure theoretic boundary 0*{u > t}, t € D, is a countably
n — 1-rectifiable set. Thus

Suc | Jo{u>t}

teD

is also countably n — 1-rectifiable. O



Decomposition of the variation measure

Let u € BV(R"). By the Besicovitch differentiation theorem, we
have |Du| = a L" + |Dul®, where a € L}(R") and |Dul* is singular
with respect to L.

Then we can further write |Du|® = |Du|¢ + |Dul/, where
|Du|€ := |Dul*L(R" \ S,) is the Cantor part, and
|Dul := |Du|°LS, is the jump part.

Theorem
For u € BV(R"), we have the decomposition

|Du| = a L™ + |Dul|® + (u" — u") H" LS,

Moreover, for any Borel set A C R"\ S, that is o-finite with
respect to H" 1 (i.e. can be presented as a countable union of sets
of finite H"~t-measure), we have |Du|(A) = 0.

v




Decomposition of the variation measure proof part |

Proof. We have already seen that if x € S, and
uN(x) < t < u¥(x), then x € 9*{u > t}. On the other hand, if
x € 0*{u > t} for some t € R, then

L'(B(x,r)N{u > t})

lims > 0,
o L(B(x.n)

whence u¥(x) > t, and
BN\ (u < 1)
I >0,
o L(B(x, 1)

whence v\ (x) < t. In conclusion, t € [u™(x), u¥(x)].



Decomposition of the variation measure proof part |l

All in all, we have

{(x,t) eR"xR: v"\(x) <t <u’(x)}
C{(x,t) eR"xR: x € 0"{u > t}}
C{(xt)eR"xR: v (x) <t <u’(x)}.

Thus for any Borel set A C S,;, we have by using the coarea
formula and Fubini's theorem

|Du|(A) = /°° P({u> t},A)dt = / MO u > 1 A) de
/ / Xor {u>t} (X ) d(H"ILA)(x) dt
B / /_ X(wn ()0 () (£) dE d(HTHLA) (x)

= /(uv —uMN)dH" L
A



Decomposition of the variation measure proof part Ill

We conclude that |Dul = |Du|LS, = (u¥ — v )YH""ILS,.

Finally, suppose that a Borel set A C R"\ S, is o-finite with
respect to H" 1. By using the coarea formula and Fubini's
theorem as we did above,

|Dul|(A) = /A(uV — M) dH" =0

since u”\(x) = uV(x) for any x € A. O



On measurability, part |

Let E C R" be an £"-measurable set. To show that 9*E is a Borel
set, we note that for each i € N, the functions
L"(B(x,2=YN E) L"(B(x,2=)\ E)
fi(x) == wo &) = .
0=y 0 EY T e 1)

are continuous. Thus limsup,;_,. f; and limsup;_ ., g; are Borel
measurable functions, and so

i—o00 i—00

OE = {x € R": limsupfi(x) >0 and limsupgi(x) > O}

is a Borel set.



On measurability, part Il

To show that v and u" are Borel measurable functions, note that
for any t € R,

{x eR": u"\(x) >t}

_oo N e im LNB(x,ryn{u<t—1/i})
—Dl{ cR: lim, £(B(x, 1)) ‘0}'

Here the functions

LM(B(x,r)N{u < s})
Ln(B(x,r))

X =

are continuous for any s € R and fixed r > 0, and so

. L"(B(x,r) N{u < s})
X Ilrpjgp L(B(x,r))

is a Borel measurable function. Hence {x € R": v"(x) >t} is a
Borel set. Borel measurability of u" is proved analogously.



On measurability, part IlI

By the Borel measurability of u” and u", we have that

Su={xeR": v (x) <u’(x)}

= U {xeR": v"(x) <t}N{xeR": u(x) >t}
teQ

is a Borel set. Then we can show that also
{(x,t) eR"xR: v"\(x) <t <u’(x)}

is a Borel set in R"” x R, justifying our previous use of Fubini's
theorem.



