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Mesh independence
refers to the
computational effort
required being
proportional to the
mesh size.

The Reynolds number

determines the relative
importance between
viscous and inertial
effects.

1. Introduction

Background

Two-phase flows arise in many coastal and hydraulic engineering applications such as the
study of coastal waves (see Figure 1) and the designing of channels and coastal structures.
However, computational solutions of the incompressible Navier-Stokes models used in
such applications are frequently limited by the computational cost of solving the two-phase
flow models. One particular step of the numerical model dominates the computation time:
the solution of linear systems derived from the variable density and variable viscosity
Navier-Stokes equations. Preconditioners are crucial for the practical and effective solution
of these linear systems.

Figure 1: A real air and water two-phase flow in action.

A preconditioner can be thought of as a transformation of the linear system of equations to
one which is more amenable to the iterative solution methods required for these large
systems, while still allowing the solution of the original problem to be easily constructed.
For one-phase flow problems, certain block preconditioners have been shown to be
efficient solvers and can exhibit nearly mesh independent behaviour. The primary challenge
for constructing such block preconditioners is to incorporate a faithful approximation of
the Schur complement, a matrix appeating in the process, which can be more readily
inverted. Here we consider if such preconditioners can be adapted for the case of two-
phase flow.

Problems of interest at the US Army Coastal and Hydraulics Laboratory are typically high
Reynolds number (10°-107) flows computed on very fine meshes (10-108 vertices). Thus,
of particular importance will be to consider how the preconditioners we develop depend on
the Reynolds number and mesh size. We will also consider the effect of different viscosity
and density ratios of the two fluids (ait and water being the most common fluids in nature)
and, in the time-dependent case, the length of the time-steps. We will see that newly
adapted Schur complement preconditioners appear to offer significant benefits over the
cutrently used “self-p” method (a simple and computationally inexpensive approximation
to the Schur complement).

In the remainder of the introduction we will briefly describe the details of the problem and
where our focus lies. We then explain the role of the preconditioner and describe the newly
adapted methods developed. Our numerical results are summarised before we discuss
conclusions and recommendations. Finally we outline the potential impact of our work.



We consider the
simplest level set
method along with the
Navier-Stokes
equations. We use a
backwards Euler time-
stepping scheme, the
Picard nonlinear
iteration method, and
a finite element
discretisation in space.

We consider two
preconditioners known
as PCD and LSC which
we have adapted for
use in the two-phase
case. We also compare
with a method known
as self-p.

Focusing the problem

The process of solving numerically the full set of equations for incompressible two-phase
flow using a level set method (which tracks where each of the fluids are) involves a number
of different steps. We use a backwards Euler scheme to advance the solution in time, a
finite element methodology to discretise the problem in space, and the Picard iteration
method to treat the nonlinearity in the equations. A key approach to tackling the
nonlinearity is to solve an approximating set of linear equations iteratively until the solution
converges. Since such a method requires these linear equations to be solved many times,
their efficient solution is vital to obtaining practical solution methods.

We consider a general form of the linear system required to be solved at one step of the
overall solution process. This system depends on the parameters in the problem; namely
the mesh size, the Reynolds number, the viscosity and density ratios and the time-step. Our
results will illustrate how these parameters affect the performance of the preconditioners
we test.

Our focus is in developing and testing preconditioners based on block factorisation of the
linear system, these use the structure in the equations and an understanding of the iterative
methods used to gain efficiency in the solution process. The ideas used to define the
preconditioners are fairly general in their approach and thus can be used for different
treatments of the nonlinearity, time-stepping methods and discretisations. We will see that
different preconditioners also have differing benefits and drawbacks in their use,
implementation, and performance.

2. Preconditioning

Iterative methods for linear systems

Very large linear systems are typically solved on parallel, high-performance computers using
iterative algorithms. These algorithms are efficient and reliable but their efficiency varies
with certain characteristics of the linear system, particularly a quantity known as the
condition number which measures how much the solution changes for a small change of
the input arguments. Unfortunately, linear systems arising from numerical approximations
of two-phase flow have the undesired property that the condition number grows rapidly as
the mesh is refined. We seek a strategy for counteracting this growth in condition number
of the linear systems which utilises the power of preconditioners.

The preconditioning strategy

When using a preconditioner to transform the system of linear equations there is a balance
between the preconditioner remaining a faithful representation to the problem and yet still
allowing for the solution to be easily constructed. Our aim is to identify a computationally
inexpensive transformation that limits the growth in the condition number of the resulting
linear system, thus preserving the efficiency of the overall iterative method.

One effective approach for the linear systems arising from Stokes and Navier-Stokes
equations is to construct a preconditioner from a 2-by-2 block factorisation of the linear
system into a lower-triangular and an upper-triangular system. These blocks correspond to
the velocity and pressure components of the system. In this approach a new block, known
as the Schur complement, arises in the pressute space. In the one-phase case, efficient
preconditioners have been successfully proposed based on computationally inexpensive
approximations of the Schur complement. We seek to adapt these preconditioners for the
case of two-phase flow problems. We consider two such preconditioners, called pressure
convection diffusion (PCD) and least square commutator (LSC), which we will compare to
the self-p method.



In adapting the PCD and LSC methods for two-phase flow we find that appropriate scaling
is necessary to incorporate the two-phase nature of our problem. In particular, our
numerical tests found that a viscosity scaling within the preconditioners greatly improved
their performance and that, for one-phase flow, this modification reduces to the original
PCD and LSC methods.

Comparison of the preconditioners

We now describe the various known benefits and drawbacks of the three preconditioners in
terms of their use and implementation. The PCD method requires the construction of
additional matrices and the correct choice of boundary conditions to apply is not fully
understood; these problems are not encountered explicitly by the LSC method. On the
other hand, PCD requites only one sub-problem solution per iteration while
correspondingly LSC requires two. We note that the computational effort required by the
self-p method is similar to that of PCD but does not require the construction of additional
matrices. The PCD method, as well as self-p, is also readily applicable in the case where
stabilised finite elements are used; the extension of the LSC methodology in the stabilised
case is more involved.

Comments

Our experience with these newly adapted preconditioners for incompressible two-phase
flow comes primarily from our numerical experiments. We will see in our results that these
preconditioners can exhibit much improved performance over the self-p method which is
currently used in the US Army Coastal and Hydraulics Research ILaboratory’s
computational facility. Our focus has been on the practical experimentation to see if such
preconditioners are worth pursuing. To back up our numerical results, current theory will
need to be extended to incorporate two-phase flow, primarily the variable density and
viscosity. Future research providing such analysis may well yield a better understanding of
the behaviour and trends that we see and stimulate new improvements in their performance
and application. In particulat, theoretical consideration of the choice of appropriate scaling
could either confirm our choice or suggest more fruitful approaches; this may be especially
beneficial for the PCD method.

We have adopted a
practical approach:
future theoretical work
is needed to extend
the current theory to
multi-phase flow. Our
approach will provide
grounding on which to
base our choice of
preconditioners.

3. Numerical Results

In our numerical experiments we consider a classic test problem, the driven cavity problem,
adapted for two-phase flow. We focus on solving one instance of the linear system arising
from the full problem; our experience suggests that this is representative in displaying the
trends and behaviour of the preconditioners seen throughout the full solution and when
other set-ups are used. We first consider a typical convergence profile for the
preconditioners before presenting results on how the performance of each method depends
upon the parameters in the problem.

Convergence profiles

A convergence profile shows how the error in the approximate solution reduces
throughout the iteration procedure used to solve the linear system. To obtain an
approximate solution satisfying a given tolerance criterion, we would ideally like the number
of iterations requited to be small so that less computational work is needed. We recall that
the LSC method requires approximately twice as much work per iteration as the PCD
method while the self-p method requires a similar amount of work to PCD. In Figure 2,
typical convergence profiles are given for these three preconditioners; we now discuss what
this tells us about their performance.



The PCD and LSC
methods show much
more rapid
convergence than the
self-p method. In
particular, the best
performance is seen in
the LSC method which
requires a tenth of the
iterations that self-p
needs.
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Figure 2: Compatison of typical convergence profiles for the newly adapted PCD and LSC
methods as well as the self-p method. The plot shows a measure of the etror over the course
of the iterative procedure to solve the linear system until a required tolerance is satisfied.
The ideal profile is one in which the etror reduces rapidly to within the tolerance over a
small number of iterations. The example shown here is for the steady problem with
Reynolds number 1000, a viscosity and density ratio between the two fluids of 100, and a
mesh of 4096 square elements.

What we learn from the convergence profiles is that the PCD and LSC methods display
much more rapid convergence rates, since the corresponding gradients in Figure 2 are
much steeper. We note however that the PCD method initially plateaus so that the fast rate
of convergence does not kick in straight away. Despite LSC requiring roughly twice as
much work per iteration it still offers the best performance and this preconditioner’s
superiority is a generic featute from our numerical results; indeed in all our tests it required
the fewest number of iterations. On the other hand, the self-p method exhibits a much
slower convergence rate, with a shallower gradient as seen in Figure 2. This provides an
explanation for the poorer performance of self-p and suggests that it is not able to
represent the Schur complement as successfully as the other methods.

Opverall, these typical convergence profiles display characteristic features of the
preconditioners. The LSC method performs very well and is seen to be robust. The PCD
method can also perform well but is less robust; in particular the initial plateau appears to
be obstructing better convergence and is seen to lengthen in certain cases giving poorer
results. It may be that a different scaling or adaptation is needed within PCD to give the
improved performance seen by LSC. Finally, self-p is hampered by its slow rate of
convergence; this limits its effectiveness in applications, especially for the larger and more
difficult problems which exacerbates the issue.




Dependence upon parameters

During our numerical tests we considered a range of mesh sizes, Reynolds numbers,
viscosity and density ratios and length of time-steps. We found that the performance of the
preconditioners were effectively independent of both the viscosity and density ratios. In the
case of PCD and LSC we found that, for small Reynolds numbers, the number of iterations
required increased slightly as the mesh became finer, while for larger Reynolds numbers,
the number of iterations levels out, suggesting nearly mesh independent behaviour.
However, for self-p, as the mesh becomes finer the amount of iterations required continues
to increase, suggesting that this method is not as well suited for fine meshes. The
dependence upon Reynolds number and time-step is interrelated, thus we split into two
cases, the steady flow problem and the time-dependent problem.

In the case of the steady flow problem we find that, as the Reynolds number increases, the
number of iterations required also increases. For coarse meshes this increase is larger, but
this may be because the flow is not well resolved for such meshes. As the mesh becomes
finer, the effect of increasing the Reynolds number reduces so that there is only a mild
increase in the iteration count for the PCD and LSC methods. This is not true in the case
of self-p; however, here the increase remains considerable. It is worth noting that, in real
applications, meshes would typically be much finer than in our numerical experiments so
the trend in mesh size is particularly important and it is only with PDC and LSC that we see
nearly mesh independent behaviour.

The LSC preconditioner
proves the most robust
method and shows
positive trends in its
dependence upon the
parameters. For
problems of practical
interest on fine

meshes it is likely that
LSC will beat self-p by
an even greater factor
than 10.

For the time-dependent problem we see differing behaviours in the PCD method when
compared with the LSC and self-p methods. In the latter methods, we observe that as the
time-step decreases the number of iterations required also decreases and that, once the
time-step becomes small enough, the dependence on the Reynolds number changes so that
now as the Reynolds number increases the iteration count decreases slightly. In contrast,
for the PCD method the number of iterations increases with either a decrease in time-step
or an increase in Reynolds number. Thus we see a qualitative difference between the PCD
and LSC methods in the case of the time-dependent problem where PCD shows poorer
performance. Again we see that LSC appears most robust and the method of choice.

4. Discussion, Conclusions and
Recommendations

In our numerical study, we have considered two newly adapted preconditioners for
equations describing incompressible two-phase flow, compared their performance, and
discussed how this is affected by the parameters in the problem. We also made a
comparison with the self-p method. Our results demonstrate that the most robust and
efficient method is the least square commutator (LSC) preconditioner which, for the finer
meshes and larger Reynolds numbers used in our tests, showed a ten-fold reduction in the
number of iterations required to solve the arising linear system over the self-p method. The
trends and behaviours observed suggests that, for problems of interest in real applications
where much finer meshes and larger Reynolds numbers are encountered, this factor of
improvement should only increase, thus providing tangible benefits by significantly
reducing the computational cost of solving these problems.



Further work will
include considering
modifications to allow
LSC to work with
stabilised methods and
performing a
theoretical analysis of
the methods to
understand their
behaviour better; this
could further lead to
improving the PCD
method. A theoretical
approach is likely to
give an understanding
of the predictability
and scalability of these
preconditioners.

We also note that the only method which shows positive trends for fine meshes, large
Reynolds numbers and small time-steps is the LSC preconditioner. Looking at the
implementation comparison we see that this would require using stable finite element
methods; however this appears to be the only main drawback. Nevertheless the much
improved performance seen by LSC appears very favourable and further work should be
done to consider if modified versions of LSC, which allow for stabilised elements but are
more complicated in their formulation, can also be adapted to work well for two-phase
problems. The PCD method naturally extends to work with stabilised elements so further
study into the theory of these methods might also yield improvements that see PCD
become a more robust and favourable method.

A more theoretical approach will provide additional understanding of the properties of
these preconditioners and such analysis will clarify the appropriate scaling for two-phase
problems, in particular for the PCD method. This is likely to give an understanding of the
predictability and scalability of these preconditioners.

Overall we have seen promising results from our study which suggest that significant
benefits can be gained by a more careful choice of preconditioner and that the block
preconditioners featured here may well prove fruitful in applications and successfully offer
substantial increases in computational efficiency.

5. Potential Impact

The applications of incompressible two-phase flow are many and varied. Practical
experimentation of such flows can be lengthy and expensive, thus an important tool is
numerical simulation. However, this is limited by the computational efficiency of the
solution methods used. For solving the large linear systems arising in the problem, the use
of effective preconditioners, such as those developed here, could see substantial
improvements in the computational runtime required for simulations and see significant
savings in overall resource utilisation.

Dr. Chris Kees, Research Hydraulic Engineer, US Army Coastal and Hydraulics
Laboratory, commented “The dramatic reductions in iteration counts for LSC and PCD are
impressive. If we see comparable reductions for realistic two-phase flow simulations, then this work could
have a big impact through reductions in our computation time. Exctension of the single-phase theory to multi-
phase systems would be very helpful to guide our choice of preconditioner based on theory rather than
experimentation.”’



