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1 Introduction
The primary aim of scientific research at the CulhamCenter for Fusion Energy (CCFE) is to
enable nuclear fusion as a viable source of energy. CCFE is a key player in the experimental
ITER reactor, which is an international nuclear fusion research project under construction
in the south of France. Nuclear fusion involves controlling plasmas at temperatures at
100 Million Kelvin, which is ten times the temperature of the sun. Unwanted turbulences
can occur in the tokamak due to the huge temperature and density gradients. One of the
challenges for CCFE is to rapidly identify such chaotic scenarios when they occur in order
to stabilize the plasma.

Traditional time series
classification
approaches are
computationally
expensive.

Time series are generated from many experiments across different scientific fields such as
nuclear fusion, quantum mechanics, biology, or medical observations. The size of the
data sets is often large and analysing these time series represents a huge computational
challenge. However, the spectacular success of using machine learning and deep
learning techniques for image classification, which have recently surpassed human-level
performance on the imagenet data set, has inspired the development of neural network
techniques for time series forecasting and classification. Neural networks are inspired by
networks in the brain and can learn to perform tasks by considering examples. Machine
learning has also been applied to the field of dynamical systems in order to perform
model-free predictions of chaotic dynamical systems. However, deep learning requires a
consequent data set to train the neural network, which might not be available due to
experimental constraints.

Our aim is to use a deep-learning approach to automatically classify time series
generated by discrete and continuous dynamical systems according to their potential
chaotic behaviour. Contrary to standard machine learning techniques, our focus will be
on training the neural network on a different and simpler set than the testing set of
interest in order to simulate the lack of experimental training data. The main challenge is
to learn the chaotic features of the training set, without overfitting, and generalise on a
second data set, which behaves differently.

Dynamical systems and chaos
A discrete dynamical system is defined by the iterations of a function f . Iterating nonlinear
but simple functions sometimes leads to complex and unpredictable results.

Unlike discrete dynamical systems, continuousdynamical systems depend on a continuous
parameter t, whichwe call time. Continuous dynamical systems often arise in applications
in biology or physics. One of the most famous examples is the Lorenz system, originally
introduced by Lorenz as a model for atmospheric convection. A solution to the Lorenz
system is shown in Figure 1, where the blue line demonstrates the trajectory passing
through a particular initial condition.

Figure 1 – A solution to the Lorenz system.

These discrete and continuous nonlinear systems can have different and complex
behaviours, which can lead to periodic or chaotic patterns. Chaos theory has been
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extensively studied during the twentieth century and appears in many applied fields
such as climate prediction, biology, or road traffic. Although there is not a universal
definition of this phenomenon, Hilborn wrote [1]:

The noun chaos and the adjective chaotic are used to describe the time behaviour of a
system when that behaviour is aperiodic (it never exactly repeats) and is apparently
random or “noisy”.

Robert C. Hilborn

In Figure 2, we illustrate a chaotic behaviour, and more particularly the sensitivity to
initial conditions, of a dynamical system defined by repeatedly applying the function
f (x) � 3.9x(1 − x). We observe that two trajectories, starting from x0 � 0.5 (blue) and
x0 � 0.499 (red), rapidly diverge from each other, which is one characteristic of chaos.
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Figure 2 – The chaotic map f (x) � 3.9x(1 − x), iterated from x0 � 0.5 (blue) and x0 � 0.499
(red).

The Lyapunov
exponent of a simple
dynamical system is
easy to compute, and
quantify sensitivity to
changes.

Given a dynamical system or time series from experimental data, we are interested in
methods for quantifying or estimating the underlying chaotic behaviour. These quantifiers
are particularly interesting to discriminate chaotic from noisy behaviour or sort systems
into classes. We use the Lyapunov exponent, which is a measure of how fast two close
trajectories diverge from each other in time, to quantify the sensitivity of the system to
changes in the initial condition. A positive Lyapunov exponent corresponds to a chaotic
behaviour.

Deep learning
Artificial intelligence has became a major field with applications in many research and
industrial areas such as image recognition, natural language processing, speech
recognition, or drug discovery. Artificial intelligence techniques are used to find
structures in a data set in order to perform prediction or classification. The artificial
intelligence evolution has been made possible due to the development of computational
power contained in graphic processing units (GPUs) or multi-core processors. Another
factor is the increasing access to large data sets that can be used to train the artificial
intelligence. Moreover, the development of high level Python libraries such as
Tensorflow or Pytorch have helped make the field more accessible.

One of the major successes of artificial intelligence goes back to the 90s with the defeat
of the Chess world champion Garry Kasparov by Deep Blue, an artificial intelligence
created by IBM, while a more recent breakthrough is the first victory of a Go playing
system, AlphaGo developed by Google Deepmind, against a Go world champion. This
was mainly achieved thanks to the development of a technique called deep learning.

In standard machine learning, the features used to represent the data have to be provided
by the user. The aim of deep learning is to automatically construct features to describe the
data using a neural network. The depth of the network determines the range of features
available, with a deep neural network able to identify complex patterns in a given set.
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Glossary of terms
� Artificial neural network: A trainable computational model for forecasting or

classification.

� Bifurcation parameter:A parameter of a dynamical system which leads to different
behaviours.

� Chaotic behaviour: The behaviour of a system which is characterised by a small
change in a critical parameter giving a large change in the solution.

� Convolution: A mathematical operation which highlights features in a dataset.

� Partial differential equation: A mathematical equation depending on spatial and
temporal variations used to describe physical phenomena.

� Testing set: A dataset used to evaluate a model given by a neural network.

� Time series: A sequence of points in time.

� Training set: Set of examples used to determine the parameters of a neural network.

2 Chaotic time series classification
Time series classification is one of themost challenging problems inmachine learningwith
a wide range of applications in human activity recognition, acoustic scene classification,
and cybersecurity. Our aim is to perform chaotic time series classification using deep
learning.

The problem can be stated as follows: given a time series generated by a dynamical
system (discrete or continuous), can we determine whether the time series has a chaotic
or non-chaotic behaviour ?

Moreover, our aim is to be able to classify a given time series while training the network
on a time series generating by a different dynamical system whose chaotic behaviour can
be determined a priori using the its Lyapunov exponent.

Convolutional neural
networks can identify
the main
characteristics of a
dataset without prior
knowledge.

Convolutional neural networks (CNNs)were first introduced to performhandwritten digit
recognition and have been successfully applied to images and time series. This type of
neural networks consist of a succession of operations called convolutions on the input data
set and is able to efficiently capture complex features.

We will use the neural network depicted in Figure 3 to perform time series classification.
The input data passes through two convolutional layers, followed by two fully connected
layers from which we obtain the classification.

Input time
series

convolution maximum
pooling

2 output
classes

fully connected

Figure 3 – A convolutional neural network architecture for time series classification. Figure
adapted from [2].

Discrete dynamical systems
We consider two discrete dynamical systems called the logistic map and the sine-circle
map. The logistic map is defined by repeatedly applying the function f (x) � µx(1 − x),
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where µ is a bifurcation parameter varying between zero and four. This system exhibits
periodic or chaotic behaviour depending on the value of µ. In Figure 4, we see that with
two different values of µwefind two different kind of solutions of the logisticmap, namely
periodic and chaotic sequences.
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Figure 4 – A periodic (left) and a chaotic (right) sequences of length two hundred of the
logistic map with respective parameters µ � 3.5 and µ � 3.8.

The second dynamical system considered in this section is the sine-circle map, which is
sometimes referred to as the circle map. It is defined by iterating a nonlinear map, which
depends on two parametersΩ and µ, where µ is the relevant parameter, which measures
the strength of the nonlinearity.

Similarly to the logistic map, iterating the sine-circle map leads to periodic or chaotic
signals depending on the value of the bifurcation parameter µ. We illustrate two signals
with different behaviours, generated using a bifurcation parameter of µ � 2.1 (left) and
µ � 2.3 (right), in Figure 5.

Sine-circle signals
look significantly
different from logistic
signals.
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Figure 5 – A periodic (left) and a chaotic (right) sequences of length two hundred of the
sine-circle map with respective parameters µ � 2.1 and µ � 2.3.

Wenowwant to classify signals generated by the logistic and sine-circlemaps according to
their chaotic and non-chaotic behaviour. Our main goal, and challenge, is to find a neural
network that is able to learn the features characterising chaotic sequences using data from
the logistic map and generalise them to sequences generated by the sine-circle map.

To do this, we generate two data sets, one for the logistic map and one for the sine-circle
map, by computing sequences of length one thousand for five thousand different values of
the parameter µ. We randomize the logistic map data set across the bifurcation parameter
and we choose two thirds of the data to be the training set.

We compute a classification of the training and testing signals in order to provide the
expected classification to the neural network during the training phase and validate the
output of the neural network on the testing set. This classification of chaotic time series is
done using the Lyapunov exponent.

In real applications, computing the Lyapunov exponent of a time series without knowing
the expression of the underlying dynamical system can be infeasible or computationally
expensive, which justifies the approach of using a machine learning algorithm to perform
the classification automatically.

We found that state-of-the-art neural networks for time series classification classify
sequences from the sine-circle map with an accuracy less than 65%. Our convolutional
network, however, seems to override overfitting issues on the training set by capturing
the main features of chaotic and periodic sequences and gets and achieves an average
classification score of 83.5%.
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Continuous dynamical systems
We now consider continuous dynamical systems generated by partial differential
equations that exhibit temporal or spatiotemporal chaos. The aim is to determine
whether a neural network trained on a specific continuous dynamical system is able to
generalise and classify time series generated by another system.

We first consider the Lorenz system since it is one of the simplest continuous dynamical
systems able to generate chaotic time series. The Lorenz system is defined by three partial
differential equations and depends on three parameters: σ, β, and ρ. We fix the first two
and vary the last variable to generate non-chaotic and chaotic time series (as shown in
Figure 6). Moreover, these time series are classified according to their Lyapunov exponent
and constitute our training set for the neural network.
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Figure 6 – A non-chaotic (left) and a chaotic (right) time series generated by the Lorenz
system.

We then consider the Kuramoto–Sivashinsky (KS) equation, which is an example of partial
differential equation which exhibits spatiotemporal chaos depending on its birfurcation
parameter α. This equation was originally derived to model instabilities in laminar flame
fonts and arises in a wide range of physical problems such as plasma physics, flame
propagation, or free surface film flows.

Solving this equation for different parameters α yields a wide range of solutions as
illustrated in Figure 7.
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Figure 7 – A non-chaotic (left) and a chaotic (right) solutions to the Kuramoto–Sivashinsky
equation.The time series

describe the main
time variations of the
solutions to the KS
equation.

We solve the KS equation numerically for various α and we generate a testing set of one
thousand time series, equally divided between chaotic and non-chaotic behaviours.

We observe a global accuracy of 94.4% in classifying the KS time series between chaotic
and non-chaotic after training the convolution neural network on the Lorenz training set.
In particular, convergent and chaotic time series are classified correctly with a score above
95% while low frequency time series are mostly misclassified by the neural network. We
expect thismisclassification to be due to qualitative differences between the corresponding
time series of the KS equation and the periodic time series of the Lorenz system. In
particular, the KS data set contains periodic time series with low frequency oscillations in
this regime, while the Lorenz system generates periodic time series with high frequency
oscillations. The neural network is then unable to classify features that are not present in
the training set and hence fails to extrapolate to the low frequency periodic time series of
the Kuramoto–Sivashinsky equation.
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3 Discussion, conclusions, & recommendations
Many challenging real-life applications are so complicated that they cannot be precisely
modelled, which makes the identification of different dynamical behaviours unfeasible or
in the best case scenario computationally expensive. For this reason, we have introduced
a deep learning approach for classifying time series generated by discrete and continuous
dynamical systems. Our approach is to train our neural network on time series obtained
by solving a basic dynamical system and then to use this network to classify time series of
a more intricate dynamical system.

We developed a convolutional neural networkwhich is able to learn the chaotic features of
these systems and classify with high accuracy. We applied our approach to classify time
series generated by the sine-circle map and the Kuramoto–Sivashinsky equation, using
the logistic map and the Lorenz system as training data sets, respectively. We observed
a classification accuracy greater than 80% on the sine-cicle map and more than 90% on
the KS equation. Our method outperforms state-of-the-art neural networks, which tend
to overfit the training data set.

Further developments
require the study of
more complicated
dynamical systems.

There are many directions in which our results can be extended. In particular, attempting
to classify time series obtained from real-life applications is crucial. In that respect, the
effect of noise in the training and testing data sets is an important aspect to be studied in
order to determined the influence of the noise on the accuracy of the networks to classify
the time series.

4 Potential impact
The development of deep learning techniques, which can generalise the knowledge
acquired from a training set to give meaningful information about a different testing set,
is likely to be valuable for classifying time series obtained from real-life applications.

Dr Debasmita Samaddar, Computational Plasma Physicist at CCFE, said: “Harnessing a
turbulent plasma at very high temperatures is one of the biggest challenges in the path towards
achievement of commercial fusion reactors. Being able to predict turbulent behavior is a major
outcome of Nicolas’ work. Although he has demonstrated his case with problems simpler than a
fully developed turbulent scenario as encountered within a fusion device, the work paves the way
to a breakthrough in tackling turbulence.”
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