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The Culham Center for Fusion Energy (CCFE) is a UK-based
research facility dedicated to the scientific development of mature
technologies for the safe and efficient use of nuclear fusion energy,
which is heavily involved in the development of the International
Thermonuclear Experimental Reactor (ITER), a nuclear fusion
energy megaproject in Provence, southern France.

The plasma inside a nuclear fusion reactor reaches enormous
temperatures of up to 100millionKelvin, which canmake the interior
of the reactor prone to unwanted turbulence. Such turbulence, when
detected by measurement devices, takes the form of a chaotic time
series. A time series is a sequence of measurements (x1, x2, x3, ...)
which is strictly ordered in time. This means the number x1 must
have been measured before the number x2, and so on. Time series
are very important in science and engineering and appear in many
relevant applications, such as climatology, economics and plasma

physics. Some time series are especially irregular and hard-to-predict. Time series of this type
are called chaotic. The reason why chaotic time series are hard to predict is that tiny changes in
their present state can completely change their long-term behaviour. CCFE have a strong interest in
methods to better understand and predict the onset and the short-term evolution of chaos in time
series data in order to foresee and ultimately prevent turbulent behaviour in fusion reactors. Our aim
is to explore the potential of modern artificial intelligence techniques to predict chaotic behaviour in
time series data.

To predict the onset and the evolution of chaotic dynamics in time series measurements, we
experiment with multilayer perceptrons (MLPs), which represent an important type of computational
artificial intelligence model that can automatically extract knowledge from data. MLPs are inspired
by the biological nervous system and are thus often referred to as artificial neural networks. Artificial
neural networks need to be trained on a given data set to learn from its features and are then used to
make predictions on previously unseen data.

We conduct three different groups of numerical experiments:

1. we apply MLPs to predict the time of onset of chaos in a given time series,
2. we train MLPs to explicitly forecast the future values of a chaotic time series, and
3. we test whether our trained MLPs can transfer some of their learned predictive capabilities to

new data sets with previously unseen dynamical rules. Across all of these experiments, we use
two different types of MLPs: the standard type as well as a new, modified type called rational
MLP.

Rational MLPs have recently been shown to be superior to standardMLPs in certain applications and
we are interested in seeing if this superiority still holds for prediction tasks on chaotic data sets.



For our first group of experiments (1), we simulate chaotic time series data using the Lorenz system,
which is a classical mathematical model from meteorology, well-known for its chaotic behaviour.
Time series from the Lorenz system start off being regular and then become chaotic after some time.
We successfully train MLPs to take as their input nothing more than the starting value of a Lorenz
system time series and give as their output an accurate time prediction for the onset of chaos in the
respective input time series. We observe that rational neural networks learn faster and reach higher
accuracies than their standard counterparts.

For our second group of experiments (2), we simulate chaotic time series data using a scaled version
of the x-component of the Lorenz system whose values lie between 0 and 1. In addition, we use
the logistic map as a source of data. For chaotic time series from the Lorenz system and the logistic
map, we successfully train MLPs to take as input 3 consecutive time series values and give as output
an estimate of the next 10 time series values. Our MLP forecasting errors for Lorenz system time
series data compared to the error of a uniformly random guess are depicted in Figure 1. We see that
both rational- and standard neural networks successfully learn to predict the near-term future of the
system, although the predictions become less accurate as the number of time steps into the future (i.e.
the prediction horizon) increases, as expected. Once again, we observe that rational MLPs clearly
outperform standard MLPs.
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Figure 1 – MLP forecasting errors for Lorenz system time series compared to the forecasting error of a
uniformly random guess. Note that the absolute error between an exact value x and an estimate x̂ is
defined as |x−x̂|.

Finally, in our third group of experiments (3), we use the MLPs trained in (2) to forecast chaotic time
series whose dynamics are governed by new rules to which the models were not exposed to during
training. This is known as transfer learning. We observe that MLPs trained on the Lorenz system
successfully predict oscillatory time series generated via the logistic map. We also find that MLPs
trained on chaotic logistic map time series with a key parameter set to 4 can be used to predict logistic
map time series for a much wider range of parameter values associated with chaotic behaviour.

Discussion, Conclusions and Future Impact
Three key conclusions which can be drawn from our novel computational investigations are: (i) the
high suitability of MLPs for the accurate data-driven prediction of the temporal onset of chaos in
time-series data, (ii) the clear superiority of rational MLPs over standard MLPs across a variety
of prediction tasks associated with chaotic data sets, and (iii) the capabilities of MLPs trained for
chaotic time series forecasting to transfer their learned predictive abilities to certain new systemswith
previously unseen dynamical rules. These scientific insights are of high relevance to CCFE in their
quest for the development of data-driven methods for the analysis and prediction of chaotic time
series data stemming from turbulence in nuclear fusion reactors.

Dr Debasmita Samaddar, Computational Plasma Physicist at CCFE, said:

Markus had to demonstrate exceptional tenacity, enthusiasm and technical capability to overcome
all the challenges. His results demonstrate that neural networks can be efficiently used to predict
onset of chaos in a dynamical system - a result crucial to the performance of a fusion reactor.
He further compares and establishes the superiority of one method over another - thus leading to
exciting results."


