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Stability of Multidimensional Thermoelastic Contact
Discontinuities
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Abstract We study the system of nonisentropic thermoelasticity describing
the motion of thermoelastic nonconductors of heat in two and three spatial
dimensions, where the frame-indifferent constitutive relation generalizes that
for compressible neo-Hookean materials. Thermoelastic contact discontinuities
are characteristic discontinuities for which the velocity is continuous across the
discontinuity interface. Mathematically, this renders a nonlinear multidimen-
sional hyperbolic problem with a characteristic free boundary. We identify a
stability condition on the piecewise constant background states and establish
the linear stability of thermoelastic contact discontinuities in the sense that
the variable coefficient linearized problem satisfies a priori tame estimates in
the usual Sobolev spaces under small perturbations. Our tame estimates for
the linearized problem do not break down when the strength of thermoelastic
contact discontinuities tends to zero. The missing normal derivatives are recov-
ered from the estimates of several quantities relating to physical involutions.
In the estimate of tangential derivatives, there is a significant new difficulty,
namely the presence of characteristic variables in the boundary conditions.
To overcome this difficulty, we explore an intrinsic cancellation effect, which
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reduces the boundary terms to an instant integral. Then we can absorb the in-
stant integral into the instant tangential energy by means of the interpolation
argument and an explicit estimate for the traces on the hyperplane.
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1 Introduction

We study the equations of nonisentropic thermoelasticity in the Eulerian co-
ordinates, governing the evolution of thermoelastic nonconductors of heat in
two and three spatial dimensions. The constitutive relation under considera-
tion generalizes that for compressible neo-Hookean materials (see CIARLET [13,
p. 189]) and satisfies the necessary frame indifference principle (see DAFER-
MOs [18, §2.4]). This system can be reduced to a symmetrizable hyperbolic
system on account of the divergence constraints.

Our main interest concerns the stability of thermoelastic contact disconti-
nuities that are piecewise smooth, weak solutions with the discontinuity inter-
face, across which the mass does not transfer and the velocity is continuous.
The boundary matrix for the free boundary problem of thermoelastic con-
tact discontinuities is always singular on the discontinuity interface. In other
words, thermoelastic contact discontinuities are characteristic discontinuities
to the system of thermoelasticity. As is well-known, characteristic discontinu-
ities, along with shocks and rarefaction waves, are building blocks of general
entropy solutions of multidimensional hyperbolic systems of conservation laws
(see, e.g., CHEN—FELDMAN [4]). Therefore, it is important to analyze the sta-
bility of thermoelastic contact discontinuities when the initial thermodynamic
process and interface are perturbed from the piecewise constant background
state. Mathematically, this renders a nonlinear hyperbolic initial-boundary
value problem with a characteristic free boundary.

Our work is motivated by the results on 3D compressible current-vortex
sheets [6, 28], 2D MHD contact discontinuities [22, 23], and 2D compress-
ible vortex sheets in elastodynamics [8, 9]. For ideal compressible magneto-
hydrodynamics (MHD), there are two types of characteristic discontinuities:
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compressible current-vortex sheets and MHD contact discontinuities, corre-
sponding respectively to H - N|p =0 and H - N|r # 0, where H is denoted as
the magnetic field, I" as the discontinuity interface, and N as the spatial nor-
mal to I'. CHEN—-WANG [6, 7] and TRAKHININ [28] established the nonlinear
stability of 3D compressible current-vortex sheets independently, indicating
the stabilization effect of non-paralleled magnetic fields to the motion of 3D
compressible vortex sheets. The local existence of 2D MHD contact disconti-
nuities was proved by MORANDO ET AL. [22, 23] under the Rayleigh—Taylor
sign condition on the jump of the normal derivative of the pressure through
a series of delicate energy estimates. Notice that the extension of the results
in [22, 23] to 3D MHD contact discontinuities is still a difficult open problem.
For the system of thermoelasticity, CHEN ET AL. [8, 9] recently obtained the
linear stability of the 2D isentropic compressible vortex sheets associated with
the boundary constraint F' - N|p = 0 for the deformation gradient F, by de-
veloping the methodology in COULOMBEL—SECCHI [15]. Comparing with the
aforementioned two types of characteristic discontinuities in MHD, we natu-
rally introduce and investigate the thermoelastic contact discontinuities that
correspond to F - N|p # 0.

The goal of this paper is to explore the stabilizing mechanism in ther-
moelasticity such that the thermoelastic contact discontinuities are stable.
More precisely, we identify a stability condition on the piecewise constant
background states and establish the linear stability of thermoelastic contact
discontinuities in the sense that the variable coefficient linearized problem
satisfies appropriate a priori tame estimates under small perturbations. In
particular, our tame estimates do not break down when the strength of ther-
moelastic contact discontinuities tends to zero. As far as we know, this is the
first rigorous result on the stability of thermoelastic contact discontinuities in
the mathematical theory of thermoelasticity.

In general, for hyperbolic problems with a characteristic boundary, there
is a loss of control on the derivatives (precisely, on the normal derivatives of
the characteristic variables) in a priori energy estimates. To overcome this
difficulty, it is natural to introduce the Sobolev spaces with conormal regu-
larity, where two tangential derivatives count as one normal derivative (see
SECCHI [25] and the references therein). However, for our problem, we man-
age to work in the usual Sobolev spaces, since the missing normal derivatives
of the characteristic variables can be recovered from the estimates of several
quantities relating to the physical constraints.

In the estimate of tangential derivatives, there is a significant new difficulty,
namely the presence of characteristic variables in the boundary conditions,
which is completely different from the previous works such as [5-9, 15, 22, 28].
New ideas are required to control the boundary integral term arising in the
estimate of tangential derivatives owing to the complex nature of the boundary
conditions. To address this issue, we utilize a combination of the boundary
conditions and the restriction of the interior equations on the boundary to
exploit an intrinsic cancellation effect. This cancellation enables us to reduce
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the boundary term into the sum of the error term Ro (c¢f. (7.19)) and the
instant boundary integral term Rz (cf. (7.18)).

To establish the energy estimates uniform in the strength of the ther-
moelastic contact discontinuity for Ro and Rg3, we cannot use the boundary
conditions for the spatial derivatives of the discontinuity function v, owing
to the dependence of the coefficients on the strength (cf. (5.15d)). In order to
overcome this difficulty, we develop an idea from TRAKHININ [29, Proposition
5.2] and explore new identities and estimates for the derivatives of ¢ with the
aid of the interpolation argument. We make the estimate of R3 differently for
the cases whether it contains a time derivative. More precisely, we first con-
sider the case with at least one time derivative. Thanks to the restriction of
the interior equations on the boundary, the time derivative of the deformation
gradient in R3 can be transformed into the tangential space derivatives of
the velocity (¢f. (7.31)). As a result, the estimate of traces on the hyperplane
(¢f. Lemma 4.2) can be applied to control the primary term Rg; (cf. (7.42)).
Employing the identities and estimates for the normal derivative of the non-
characteristic variables, we can reduce the estimate of the instant tangential
energy into that with one less time derivative and one more tangential spatial
derivative (cf. (7.48)). Then we are led to deal with the case containing the
space derivatives. For this case, we derive estimates (7.62) and (7.68) by means
of the identities and estimates for linearized quantities (7, ¢) (¢f. (6.29)—(6.32))
and Lemma 4.2. With these estimates in hand, we can finally obtain the de-
sired estimate for all the tangential derivatives under the stability condition
(3.23) on the background state. The methods and techniques developed here
may be also helpful for other problems involving similar difficulties.

It is worth noting that our tame estimates are with a fized loss of derivatives
with respect to the source terms and coefficients. As such, the local existence
and nonlinearly structural stability of thermoelastic contact discontinuities
could be achieved with resorting to a suitable Nash—Moser iteration scheme
as in [5, 16].

Let us also mention some recent results on the classical solutions and weak—
strong uniqueness for the system of polyconvex thermoelasticity. CHRISTO-
FOROU ET AL. [11] enlarge the equations of polyconvex thermoelasticity into a
symmetrizable hyperbolic system, which yields the local existence of classical
solutions of the Cauchy problem by applying the general theory in [18, Theo-
rem 5.4.3]. The convergence in the zero-viscosity limit from thermoviscoelastic-
ity to thermoelasticity is also provided in [11] by virtue of the relative entropy
formulation developed in [10]. Moreover, CHRISTOFOROU ET AL. [11, 12] es-
tablish the weak—strong uniqueness property in the classes of entropy weak
and measure-valued solutions.

The rest of this paper is organized as follows: In Sect. 2, we introduce
the system of thermoelasticity in the Eulerian coordinates, which can be sym-
metrizable hyperbolic, via the divergence constraints. Then we formulate the
free boundary problem and the reduced problem in a fixed domain for thermoe-
lastic contact discontinuities. It should be pointed out that no thermoelastic
contact discontinuity is possible for the isentropic process (¢f. Proposition 2.1).
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Section 3 is devoted to stating the main theorem of this paper, Theorem 3.1.
Before that, based on an alternative form of the boundary operator, we de-
duce the variable coefficient linearized problem around the basic state (that
is, a small perturbation of the stationary thermoelastic contact discontinuity
satisfying suitable constraints). In Sect. 4, we collect some properties of the
Sobolev functions and notations for later use, including the definitions of frac-
tional Sobolev spaces and norms, the estimates of the traces on the hyperplane,
and the Moser-type calculus inequalities. To show Theorem 3.1, in Sect. 5, we
reduce the effective linear problem to a problem with homogeneous boundary
conditions. Section 6 is dedicated to the proof of Proposition 6.1, i.e., the esti-
mate of normal derivatives. More precisely, we estimate the noncharacteristic
variables Wy, and entropies ST in §6.1-§6.2, recover the missing L?-norm of
DL Wy and 8D Wigyitq for 1 < i < dand 2 < j < d in §6.3§6.4,
and complete the proof of Proposition 6.1 by finite induction in §6.5. Let us
remark that quantities ¢, 7, and ¢ (¢f. definitions (6.18), (6.29), and (6.30))
are introduced and estimated to compensate the loss of the normal deriva-
tives of characteristic variables W7 and Wjqyi41. In Sect. 7, we deduce the
estimate of tangential derivatives, i.e., Proposition 7.1. For this purpose, we
start with the standard energy estimate to introduce the boundary term @
(¢f. (7.5)) and the instant tangential energy £2_(t) (cf. (7.8)). We present the
intrinsic cancellation for @ in §7.2. Then the boundary integral term can be
reduced to the sum of Ro (the error term, defined by (7.19)) and Rs (the
instant boundary integral term, cf. (7.18)). After that, we deduce the estimate
of Ro in §7.3 and the estimate of R3 in §7.4-87.6. Proposition 7.1 is proved,
respectively, for the two- and three-dimensional cases at the end of §7.5 and
§7.6. With Propositions 6.1 and 7.1 in hand, we conclude the proof of the main
theorem in Sect. 8. Propositions 2.1 and 2.2 are shown in “Appendices A and
B”, respectively.

2 Formulation of the Nonlinear Problems

In this section, we introduce the system of thermoelasticity in the Eulerian
coordinates and formulate the nonlinear problems for thermoelastic contact
discontinuities.

2.1 Equations of Motion

In the context of elastodynamics, a body is identified with an open subset
O of the reference space R? for d = 2,3. A motion of the body over a time
interval (t1,t) is a Lipschitz mapping z of (t1,%2) x O to R? such that z(t,-)
is a bi-Lipschitz homeomorphism of O for each t in (¢1,t3). Every particle X
of body O is deformed to the spatial position z(¢, X) at time ¢.
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_ The velocity v € R? with i-th component v; and the deformation gradient
F e M%*? with (i, j)-th entry F;; are defined by

N ox; ~ 0x;
Uz(t?X) = E(taXL Fzg(tvx) = 6X
J

(t, X),

respectively, where M"™*™ stands for the vector space of real m x n matrices.
We assume that map z(t,-) : O — R? is orientation-preserving so that

det F(t,)>0  inO. (2.1)
The compatibility between fields v and Fis expressed by

OF;,
ot

oy
- 0X;

(t, X)

(t,X) fori,j=1,...,d. (2.2)

We need to append the constraints

oF;;  0F .
- f k=1,....d 2.
an aX] Or Z’J? bl ) b ( 3)

in order to guarantee that Fisa gradient. We emphasize that constraints (2.3)
are involutions to the system of thermoelasticity, meaning that constraints
(2.3) are preserved by the evolution via relations (2.2), provided that they
hold at the initial time (see DAFERMOS [17]).

We will work in the Eulerian coordinates (t,z). For convenience, let us
denote by v = (v1,...,v4)" the velocity and by F = (Fj;) the deformation
gradient in the Eulerian coordinates so that

~

vi(t,z) = 0;(t, X (¢, x)) Fi(t,z) = Fj;(t, X (¢, x)),

where X (¢, z) is the inverse map of (¢, X) for each fixed ¢.
The system of thermoelasticity modeling the motion of thermoelastic non-
conductors of heat consists of the kinematic relations

(0t + 'Uzag)Fij = a[UZ‘ng for Z,] = ]., ey d, (24)

and the following conservation laws of mass, linear momentum, and energy
(see [18, §2.3]):
Orp + 0e(pve) = 0,
0¢(pvi) + 0e(pvevs) = 04T fori=1,...,d, (2.5)
0u(pe + Lplvf?) + dul(pe + Lplo])ve) = e, Tye),

where ¢; := (% and 0y := ai@ represent the partial differentials, p is the

(spatial) density related with reference density pref > 0 through

p = pret (det F) ™, (2.6)
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symbol T;; denotes the (i, j)-th entry of the Cauchy stress tensor T € M?*4,
and ¢ is the (specific) internal energy. Equations (2.4) are directly from the
compatibility relations (2.2). In the Eulerian coordinates, constraints (2.3) are
reduced to

ngagFij = ngagFik for i,j,k‘ = 1,...,d, (27)

which are the involutions of system (2.4)—(2.5); see LEI-LIU-ZHOU [20, Re-
mark 2] for instance. Throughout this paper, we adopt the Einstein summation
convention whereby a repeated index in a term implies the summation over
all the values of that index.
For every given thermoelastic medium, the following constitutive relations
hold (see COLEMAN-NOLL [14]):
oe(F,S) oe(F,S)
e=¢e(F,S), T=T" =p—2~F" ¢9:="222
(F,5) P oF S
where S and ¥ represent the (specific) entropy and the (absolute) temperature,
respectively. In this paper, we consider the internal energy functions of the
form

>0,

d
a;
e(F,8) = ), S Fi+ep.9), (2:8)
ij=1
where a;, for j =1,...,d, are positive constants. In view of (2.6), the internal

energy (F,S) depends on the deformation gradient F only through FTF.
Hence, relation (2.8) is frame-indifferent:

e(F,S)=¢(QF,S)

for all Q € M*?¢ with QQT = I; and det Q = 1. Here and below, I,,, denotes
the identity matrix of order m. Moreover, the constitutive relation (2.8) gen-
eralizes that for the compressible neo-Hookean materials (see [13, p. 189]) to
the nonisentropic thermoelasticity. A direct computation gives

T = pFdiag (a1,...,aq)F" — ply, (2.9)
with
de(p, S) de(p, S)
= 202 = =59
pi=p PP 9 05 0, (2.10)

where p = p(p, S) is the pressure. The speed of sound ¢ = ¢(p, S) is assumed

to satisfy
c(p,S) :=/pp(p,S) >0 for p > 0. (2.11)

If all of a; are the same, then the material is isotropic; otherwise it is anisotropic
(see [13, §3.4]). In the special case when all of a; are equal to zero, system
(2.5) is reduced to the compressible Euler equations in gas dynamics. Since
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this paper concerns the effect of elasticity to the evolution of materials, we set
without loss of generality that a; = 1 for all j. We refer to [13, Chapters 3—4]
and [18, Chapter 2] for a thorough discussion of the constitutive relations.

For simplicity, the reference density p.er is supposed to be unit, leading to
div(pF}) := 0e(pFe;) =0 forj=1,....,d, (2.12)

where Fj stands for the j-th column of F'; see, e.g., 20, Remark 1]. By virtue
of the divergence constraints (2.12), we can reformulate (2.4) and (2.7) into
the conservation laws:

at(pFij) + ag(pFijUz — Uingj) =0 fori,j=1,...,d, (2.13)
0g(ngkFij - PFZjFik) =0 for i,j, k= 1, . 7d. (2.14)

In light of (2.10)—(2.12), for smooth solutions, system (2.4)—(2.5) is equivalent
to

(01 + ve00)p + pc?dpve = 0, (2.15a)
p(0¢ + ve0p)v; + 0ip — pFppOpsFi, = 0 fori=1,...,d, (2.15b)
p(0r +ve00)Fij — pFyjOev; =0 fori,j=1,...,d, (2.15¢)
(O +ve0¢)S = 0. (2.15d)

Let us take U = (p,v, Fi,...,Fy,8)" as the primary unknowns and define the
following symmetric matrices:

Ao(U) i= ding(L/(p?), pLuraes 1), (2.16)
v;/(pc?) el 0 e 0 0
e; pvily —pFply - —pFyly 0O
0 —pFl‘ Id 0
AU =] N (2.17)
: : pvi g2 :
0 _pFidId 0
0 0 0 .- 0 V;
for i = 1,...,d, where we denote e; := (;1,...,0;4)" with &;; being the

Kronecker delta. Then system (2.15) reads as
Ao(U)oU + A;(U)o;U = 0, (2.18)

which is symmetric hyperbolic, due to (2.6) and (2.11).
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2.2 Thermoelastic Contact Discontinuities

Let U be smooth on each side of a smooth hypersurface I'(t) := {z € R? :
x1 = @(t,a’)} for «’ := (za,...,2q):
U™ (t, in 27(t):={xeR?:z; > ¢t 2},
S < [THED) w250 e R m > )
U (t,x) in 27(t):={zeR?:z < p(t,a')},

where U (¢, ) are smooth functions in respective domains 2%(¢). Then U is
a weak solution of (2.5) and (2.12)—(2.14) if and only if it is a smooth solution
of (2.7), (2.12), and (2.18) in domains 2+(¢), and the following Rankine—
Hugoniot jump conditions hold at every point of front I'(¢):

[my] = (2.20a)
[mnv] + [pFZNFé] Nlpl, (2.20b)
[m (e + 5101%)] + [pEen Ee - v] = [pon], (2.20¢)
[mnFij] +[ijNvi] =0 fori,j=1,....,d, (2.204d)
[pF;n] = forj=1,...,d, (2.20e)
[kaNF” — pFinFir] =0 fori,j,k=1,...,d,  (2.20f)

where [g] := (9% — g7 )|r) stands for the jump across I'(t), and

U]iv =vi. N, Fji;\, = Fji-N, mﬁ = pi(é’tgo—v;{,)

with N := (1,—02p,...,—0a¢)T, so that m;{, represent the mass transfer
fluxes. Also see [18, §3.3] for the corresponding jump conditions written in
the Lagrangian description.

We are interested in discontinuous weak solutions U for which the mass
does not transfer across the discontinuity interface I'(t):

mi = pH(0ip —v3) =0 on I'(t). (2.21)
Then the matrix

(atSDAO(U) - NZAZ(U)) |F(t)

0 —NT 0 0 0
-N  Oq pkhiyl; -+ pFynIgy O
0 pFlNId 0
B : : O :
0 deNId 0
0 0 0 e 0 0 I
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has eigenvalues

+ /N2 4+ p2FynF;xy  with multiplicity 1,

+ oV EinFon with multiplicity d — 1,
0 with multiplicity d? — d + 2,

where O,, denotes the zero matrix of order m. As a result, the boundary
matrix on I'(t):

Apay = diag(drpAo(U) = Ny A((U™), —01pA0(U™) + N A(U ™)) |F(t)
is singular, which implies that the free boundary I'(t) is characteristic. In this
sense, the weak solution U is a characteristic discontinuity.

We now reformulate the jump conditions (2.20) by means of assumption
(2.1). More precisely, from (2.1), we derive

FliN Flii d Féii
= s |-l ae|  |#0 on I(v). (2.22)
+ + — +

Fin Fig) =2 Fig

Consequently, the boundary matrix Apqy on I'(t) has 2d negative, 2d positive,
and 2(d®> — d + 2) zero eigenvalues. Since one more boundary condition is
needed to determine the unknown interface function ¢, the correct number
of boundary conditions is 2d + 1, according to the well-posedness theory for
hyperbolic problems. Plugging involutions (2.20e) and condition (2.21) into
(2.20d) leads to

F;gv[u]=0 on I'(t), for j =1,...,d.

Then it follows from (2.22) that [v] = 0 on I'(t). We employ (2.20e) and (2.21)
again to rewrite (2.20a)—(2.20d) as

dp=vk, [v]=0, pTF[F]=NI[p] on I'(t). (2.23)

Definition 2.1 A thermoelastic contact discontinuity is a discontinuous weak
solution of form (2.19) of system (2.5) and (2.12)—(2.14) with the boundary
conditions (2.23).

We exclude (2.20e)—(2.20f) from (2.23) in order to prescribe the correct num-
ber of boundary conditions for the well-posedness of the thermoelastic contact
discontinuity problem. On one hand, (2.20e)—(2.20f) are involutions inherited
from the initial data. On the other hand, they prevent any thermoelastic con-
tact discontinuity in the isentropic process. More generally, we have the fol-
lowing physically relevant result whose proof is postponed to “Appendix A”.

Proposition 2.1 If [S] = 0 on I'(t), then [U] = 0 on I'(t) so that no ther-
moelastic contact discontinuity exists.
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If condition (2.1) is ignored on interface I'(t), then there is another type of
characteristic discontinuities for (2.5) and (2.12)—(2.14) with the constitutive
relation (2.9), i.e., the so-called compressible vortex sheets that are associated
with the boundary constraints (FIJLN7 e ,FfN)|p(t) = 0. In this case, the jump
conditions (2.20) are reduced to

Orp — v = dp— vy =[p] =0 on I'(t).
Then the normal velocity and pressure are continuous across front I'(¢), while
the tangential components of the velocity can undergo a jump. See [8, 9] for
the two-dimensional isentropic case in this regard.

In this paper, we focus on the thermoelastic contact discontinuity problem
corresponding to the boundary constraints

Fiy #0, Fjfy=--=F;=0 onI(t). (2.24)

Then the boundary conditions (2.23) on I'(t) become

Orp — vl =0, v] =0,
o ! | (2.25)
pT Fy[Fu1] = [p], [F110;0 + Fi1] =0 fori=2,...,d.
By virtue of (2.24), involutions (2.20f) are equivalent to
[F;]=0  onI(t),for j=2,...,d. (2.26)

Since ¢ describing the discontinuity front I'(t) is one of the unknowns, the
thermoelastic contact discontinuity problem is a free boundary problem.

Taking into account the Galilean invariance of (2.7), (2.12), (2.18), and
(2.20), we choose the following piecewise constant thermoelastic contact dis-
continuity as the background state:

where F* = diag(ﬁf—i, Fa, ..., Fdd) and

pt =p(p*,8%), ptEL[Fi] = [p] for p* := (det F¥)~!, (2.28)

in keeping with (2.6), (2.10), and (2.24)—(2.26). Without loss of generality, we

assume that the principal stretches Ff{, Foo, ..., Fyq are positive constants
with Fy} > F;;. We point out that each of the background deformations is
either a dilation or a simple extension when Fos = -+ = Fyyq (see TRUESDELL—

ToUPIN [30, §43-§44]).
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2.3 Reduced Problem in a Fixed Domain

It is more convenient to convert the free boundary problem for thermoelastic
contact discontinuities into a problem in a fixed domain. To this end, we replace
unknowns U™, being smooth in £2%(t), by

UZ(t,) == Ut, % (t,2), "), (2.29)

where we take the lifting functions ¢+ as in METIVIER [21, p. 70] to have the
form:

DE(t,x) := +x1 + x(£x1)(t, 2'), (2.30)
with x € CiF(R) satisfying that
X = 1 on [_la 1]7 HX/”L‘”(]R) <L (231)

The cut-off function x is introduced as in [21, 23] to avoid the assumption
in the main theorem that the initial perturbations have compact support.
This change of variables is admissible on the time interval [0,7] as long as
Il (0,17 xRe-1) < 3-

The existence of thermoelastic contact discontinuities amounts to con-
structing solutions U,;F, which are smooth in the fixed domain 2 := {z €

R? : 2, > 0}, of the following initial-boundary value problem:

LU*, &%) = LWU*, ") Ut =0  ifz; >0, (2.32a)
BU, U ,¢) =0 if z; =0, (2.32b)
U, U, ¢9) = (Us, Uy, %0) if t =0, (2.32¢)

where index “f” has been dropped for notational simplicity. Thanks to trans-
formation (2.29), operator L(U,®) is given by
N d
L(U,®) := Ag(U)é; + A1 (U, )01 + Y. Ai(U)d;, (2.33)

i=2
where A;(U), for i =0,...,d, are defined by (2.16)—(2.17), and
i 1

Al(U, @) =

d
=33 (Al(U) — 0, PANU) — Z 6i¢Ai(U))~

According to (2.25), the boundary operator B reads as

Oy — v]\L,
[v]
[p] = p* Fyy[Fu1]

+ - —
B(U 7U 790) = [F1162¢+F21]

(2.34)

[F110a¢ + Fa1]
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The boundary matrix diag(—A; (U™, 1), —Ay (U~, &™) for problem (2.32)
has 2d negative eigenvalues (“incoming characteristics”) on boundary 02 :=
{r € R? : z; = 0}. As discussed before, the correct number of boundary
conditions is 2d + 1, which is just the case in (2.32b).

In accordance with (2.6)—(2.7), (2.20e)—(2.20f), and (2.24), we assume that
the initial data (2.32c) satisfy that

p= = (det F*)1 if 1 =0, (2.35)
FRoP FE —FroP Fi=0 forijk=1,...d, ifz;>0,  (236)
[pFin] =0 forj=1,...,d, if z; =0, (2.37)
[kaNFZ] _ijNsz] =0 for i,j7k = 1,...,d, if Iy ZO, (238)
Fy =0 for j =2,...,d, ifz; =0 (2.39)

Here and below, to simplify the notation, we denote the partial differentials
with respect to the lifting function @ by

_ae
01P

1
019

01, oF := ai—a"—@al fori=2,...,d. (2.40)

b . _
0% = 9, 5

(91, 6? =

The following proposition manifests that identities (2.35)—(2.39) are invo-
lutions in the straightened coordinates. See “Appendix B” for the proof.

Proposition 2.2 For each sufficiently smooth solution of problem (2.32) on
the time interval [0,T], if constraints (2.35)—(2.39) are satisfied at the initial
time, then these constraints and

O (EFL) =0 ifei >0, forj=1,....d, (2.41)
hold for all t € [0,T7].

Relations (2.41) are involutions in the straightened coordinates correspond-
ing to the divergence constraints (2.12), from which we can pass from the Eule-
rian to the Lagrangian formulation of the thermoelastic contact discontinuity
problem.

3 Linearized Problem and Main Theorem

In this section we introduce the basic state (U * %) that s a small perturbation
of the stationary thermoelastic contact discontinuity (U*, ) given in (2.27)-
(2.28). Then we perform the linearization and state the main theorem of this
paper.
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3.1 Basic State

We denote (27 := (=0, T) x £2 and wy := (—00,T) x 92 for any real number
T. Let the basic state (UT,¢) with Ut := (pF, 0%, FE, ST be sufficiently
smooth. According to form (2.30), we introduce the notations

ot =+, ¢t = +aq 4+ 0T, Ut = x(Ez1)p(t, '), (3.1)
0% =0t Nt PR = FELNE NT = (1,-000%, . —0,0%)T,
(3.2)

where x € C§°(R) satisfies (2.31), and }%ji are the jth columns of F'~.
Perturbations V* := U% — U% and ¢ are supposed to satisfy that

V= ks () + 12l 15 (wr) < K (3.3)

for a sufficiently small positive constant K < 1, so that

+0,$% > on 2r, (3.4)
thanks to the Sobolev embedding H®(£2r) < W?* (7). We assume further
that the basic state (U*, ) satisfies constraints (2.35), (2.32b), and (2.37)-
(2.39), i.e.,

pE = (det FE)~1 pt = p(pt, §%) ifz; =0,  (3.5a)

B(U*,U™,¢) =0 if 21 =0,  (3.5b)

[pF;n] =0 for j=1,...,d, if z1 =0, (3.5¢)

[pFinEy; — pFjnEFi] =0 ford,jk=1,....d, ifx; =0, (3.5d)

F& =0 for j=2,....d, if #; = 0. (3.5¢)
Under (3.5¢) and (3.5e), relations (3.5d) are equivalent to

[F;]=0 ondfR, forj=2...4d. (3.6)

Moreover, we assume that the basic state satisfies
d o d o
(at + ) ﬁ}ag)Fji M Efoit=0  ono@, forj=2....d, (37)
£=2 £=2

which will play an important role in the estimate of the tangential derivatives,
especially in the proof of Lemma 7.2. As a matter of fact, constraints (3.7) come
from restricting the interior equations for F ji on boundary 02 and utilizing
(3.5b)—(3.5e).

Before performing the linearization, we give an alternative form of the
boundary operator B defined in (2.34), which will be essential for providing the
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cancellation effect in the estimate of the tangential derivatives. More precisely,
by virtue of (2.39), we observe that

det F= = o(F*)"'F,  on 092, (3.8)
where o(F) is the scalar function defined by
Fyy' if d =2,
o(F) := . . (3.9)
(FogFs3 — Fh3F30) if d = 3.

In particular, for the background state (2.27), we have

_ F55t! if d =2,
oF¥) =4 = | . (3.10)
F'Fy if d = 3.
Combine (3.8) with (2.35) and use (2.37) to obtain
pEFL = o(FT)=o(F )  ondf, (3.11)
which yields
Orp — v
[v]
[p] — o(F*)[Fi]
+ - o) =
BUTUT.0) = | [Fo0p + Foi] (3.12)
[F110ap + Fa1]
Furthermore, from (3.5a), (3.5¢), and (3.6), we infer that
PpEEE = o(F*) = o(F~)  on 012, (3.13)

As a result, constraints (3.5)—(3.7) are equivalent to constraints (3.5a)—(3.5b)
and (3.5e)—(3.7).

3.2 Linearization and Main Theorem

Let us now deduce the linearized problem based on identity (3.12). For this
purpose, we consider families (UL, &) = (UE + eV, &* + eW*), where

UE(t,x) = x(+z)v(t, ). (3.14)

The linearized operators are given by

Y GV (Ut oty . D + 5t
L'(U*, %)(VF o) = deL(U6 ’dje)ro’
B’([J‘i’@)(‘/ﬂ/}) = dB(Ue+7UE_7QDE) )
dé e=0
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where V := (V*+, V)T and ¢ := ¢ + e denotes the common trace of @+ on
boundary df2. A standard calculation leads to

L/(U,8)(V, %) = L(U,B)V + C(U, )V — ai@(L(U, HW)U,  (3.15)

where L(U,®) is given in (2.33), and C(U,®) is the zero-th order operator
defined by

aAo( ) 0A1 U@
C(U, PV = s U + VL 01U ZV (3.16)

Thanks to the alternative form (3.12), we compute

(0 + X0, 60) ¢ —vt - N
[v]
[p] — o(F*)[Fi1] - [Fu]aFijg(I?’*)Fg

! ﬁ'i’ 2 ‘/’7 — o 3.].7
(U=.9)(V:v) [Fuadod + P + [Pl (3.17)
[F110a¢ + Fd1] + [F11]0av
with o(F') defined by (3.9).
As in ALINHAC [1], applying the “good unknowns”:
. 1/
VE=VF - onuUT, (3.18)
01P%
we calculate (cf. [21, Proposition 1.3.1])
L'(U*,9%)(VE,u+)
= L(U*, o)Vt + (U, o1V + Py o (L(U*,dT)U*).  (3.19)
N

In view of the nonlinear results obtained in [1, 5, 16], we neglect the zero-th
order terms in ¥+ of (3.19) and consider the effective linear problem

L. VT =f* ifz >0, (3.20a)
B(V,9)=g  ifz1=0, (3.20b)
(V1) =0 if t <0, (3.20¢)
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where we abbreviate V := (V*+, V)T and denote

L., V*:= LU, &5V +C(UF, %)V, (3.21)

(0 + Ty 07 05) Y — 6% - N — drify
[0] +(010F + 0107)
5] = o(F ) [Fn] = [Fn]om, o(F ) Ef + by

B, V,’(/J = . . . .
( ) [F1102¢ + Fo1] + [F11]02% + botp

. (3.22)

[F116a¢ + Far] + [F11]0av + baty
with operators L and C defined by (2.33) and (3.16). In (3.22), we denote

by == 01p" + O™ — o(FT) (01 Fyy + 01Fy) — [Fu]or, Q(F+)alﬁ;‘;7

b = (01 F + 01F)0ip + (O F + 00F;))  fori=2,....,d.
The explicit form (3.22) results from the identity B, (V) = ]B%’(Uo'i, @) (V,1).
We write V := (VV, V)T, & = (@, 0T, LV = (L., V* L, _V )T,

f:=(f*, )7, etc. to avoid overloaded expressions.
We now state the main result of this paper.

Theorem 3.1 Let T' > 0 and s € Ny be fized. Assume that the background

state (2.27)—(2.28) satisfies the stability condition

_ 72 (=2 :

7 F2(F) ifd=2,
[,71:] < (3.23)
i c! if d =3,

with

-~ FQ 1/2 F+ 2 F!Jr 2 Fv
C:= (1 + 7—222) {max(l, ( 35) ) + max(1, ( 3;) )33},
Iy Iy by P

and that perturbations (V,$) € H*V2(Q2r) x H 2(wr) satisfy constraints
(3.3)~(3.7). Then there exist positive constants Ko and Cy, uniformly bounded
even when [Fi1] tends to zero, such that, for all K < Ko and (V¥ 9) €
H*+Y(027) x H*%32(wp) vanishing in the past,

IVl 2r) + 180 o2 or)
< Co{ILLVlm(or + BV, W)l monn ) s=1,  (324)
IVl (0r) + 19| o172 (0o
< Co{ LV = (20) + IBLV ) 74172 )
+ (ILV 3 gr) + IBLV, ) a7 )

< (VEleaion) + 1¢lneewn) - #5238 (3.25)
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Notice that the H2(£27) x H5/?(wr)-estimate of (V) follows from (3.25)
with s = 3. We remark that the tame estimates (3.24)-(3.25) present no loss
of regularity with respect to the interior source term L{V', while there is a
loss of one derivative with respect to the boundary source term B, (V). It
should also be pointed out that estimate (3.25) is with a fized loss of regularity
with respect to the coefficients, which offers a way to establish the nonlinear
stability of thermoelastic contact discontinuities by a suitable Nash—Moser
iteration scheme. The dropped terms in (3.19) will be considered as error terms
at each Nash—Moser iteration step. Moreover, Theorem 3.1 provides the tame
estimates in the usual Sobolev spaces H?® for the solutions and source terms
vanishing in the past, which corresponds to the nonlinear problem with zero
initial data. The case with general initial data is postponed to the nonlinear
analysis that involves the construction of so-called approximate solutions.

4 Sobolev Functions and Notations

In this section, we first state the definitions of some fractional Sobolev spaces
and norms for self-containedness. Then we prove two important estimates for
the traces of HI(RTrl)ffunctions on the hyperplane {y € R"™ : y; = 0}
with Ri“ = {y € R""! : y; > 0}. We also present the Moser-type calculus
inequalities and the notations for later use.

4.1 Fractional Sobolev Spaces and Norms

We first give the definitions of the Sobolev spaces and norms for general do-
mains; see also TARTAR [27] for more details.

Definition 4.1 Let O be an open subset of R” with n € N,. For every non-
negative integer m, the Sobolev space H™(O) is defined by

H™(0) :={ue L*(O) : 0°ue L*(O) for all a € N" with |a| < m},

equipped with the norm

o= (3 [ 10vutwra)”. @)

lo]<m
where « := (aq,...,a,) € N* denotes a multi-index,
N olel
la] i= a1+ + ag, 0%u(y) = Mu(y)

For each real number s > 0 that is not an integer, the fractional Sobolev space
H*(0O) and its norm ||| zr+ (o) can be defined by interpolation between H*/(0O)
and HUIF1(0O) (see [27, §22]), where |s]| denotes the greatest integer less than
or equal to s.
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Next we present an alternative definition of the Sobolev space H*(R"™) via the
Fourier transform.

Definition 4.2 For each real number s > 0, we define
H*(R") := {ue L*(R") : |¢]°Fu(¢) e L*(R™)},

where Fu denotes the Fourier transform of u; in particular,

Fu(§) := J u(y)e 2mvE dy for u e L'(R™).

The negative-order Sobolev spaces H™*(R") are defined by duality as
H™*(R"™) := (H*(R™))’ for all s > 0.
Let us recall that
F(0%u) = (27 &)* Fu for all u € L*(R"), (4.2)
J uwdy = . FuFwdy for all u,w € L*(R"), (4.3)
where w denotes the complex conjugation of w. Using identities (4.2)—(4.3),
we can show that Definition 4.1 is equivalent to Definition 4.2 for s € N and

O = R". Furthermore, we refer to [27] for the equivalence between Definition
4.1 and Definition 4.2 for fractional Sobolev spaces H*(R").

4.2 Traces on the Hyperplane

The following lemma is to characterize the traces of H'(R™*!)-functions on
the hyperplane {y € R"*1:y; = 0}.

Lemma 4.1 Any function u € HI(RZH) has a trace w on the hyperplane
{y e R**1 :y; = 0} such that w belongs to HY/*(R™) and satisfies

1 2
Jn(l + 4772|£/|2)2 |]-'w(§/)| df’ < ||u||i11(R1+1). (44)
Proof We first extend u € H* (RQLH) to be defined in R**! by setting

U(yh yl) if Y1 > 07
U(_yl, y/) if Y1 < Oa

Eu(y1, y) := {
for all y' := (yo2,... ,yYn+1) € R™. In view of [27, Lemma 12.5], we obtain that
Fue HY(R"1). A direct computation yields that

| Bl 21y < V2l 2@y,
* (4.5)
10y Eull 12 a1y < ﬁH%UHLz(RgH)-
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By virtue of (4.5), it suffices to prove that, for all rapidly decreasing C*—
function @ € ./ (R"*1),

J193 1 "2 1,
|| s amem? 1Fu@)P g < Sl e (16)

with w defined by w(y’) := @(0,y’) for ¥’ € R™. According to [27, Lemma
15.11], we have

Fw(g') = JR Fa(&,&)dé for &' € R”,

which, along with the Cauchy—Schwarz inequality, implies that

A&

Fu@) < [ (@ antig?) i, OF a6 | T

Performing the change of variable: &; = (1 4 472|¢'|?)'/2, we obtain that

d& 2 /z—lj dt 1 21 ¢12\—1
— > =1 4 2 - = —(1 4 2
JR1+47T2|§|2 (L +4m71EF) o 1+ 4n2e2 5 (L +4m7IET)

Combine the two estimates above to infer

| aramg i Fueifag < 5 | (e anieP) | Fa e ds

Rn+1

from which we can deduce (4.6) by means of (4.2)—(4.3). O

The next lemma will be crucial for reducing the boundary integrals to the
volume ones in the estimate of tangential derivatives.

Lemma 4.2 Ifne Ny and uy,uy € HY(RL), then

0u2 ’ ’
f ) ulaT/j(O,y ) dy

< ||’LL1HH1 (R1+1)||u2||H1(R1+1) forj=2,....n+1. (4.7)

Proof In light of (4.2)—(4.3), we have

J

0
J ) ulai;(Q y')dy'

Fiiy 271 €5 Fus (0, €") de’
]Rn

< ( [ s amer)t pFuo.f df’) ’
Rn

-

([ ararier)targ Fuo.f a)

which, combined with (4.4), leads to (4.7). O
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4.3 Moser-Type Calculus Inequalities

We present the following Moser-type calculus inequalities that will be repeat-
edly employed in the subsequent analysis.

Lemma 4.3 (Moser-type calculus inequalities) Let O be an open subset
of R™ with Lipschitz boundary for n € Ni. Assume that be C*(R) and u,w €
L*(O) n H™(O) for an integer m > 0.
(a) If |a| + |B] < m and b(0) = 0, then

|0°ud®w| 12 + |uw| g < Clulmmlwlre + Cllull=lwlgm, (4.8)
lo(w) [z < C(Mo)|ull . (4.9)

(b) If |+ B + | < m, then
16107, b(w)]0"w] 2 < C(Mo) (Jw]zrm + [[ulzrm [w] =) (4.10)
Moreover, if ue WH*(0), then
[0°[0°, b(w)] @ w2 < C(My) (] grm=1 + [ul zrm w] ). (4.11)

Here we write |-|1» := | |5y, [-lim = |-l (0)s and |-lwios i= |-lwsr(0)
for notational simplicity, and My and M are positive constants such that
|ulre < My and |u|wi» < My. As usual,

[a,b]c := a(bc) — b(ac)
denotes the notation of commutator.

Proof We refer to STEIN [26, §VI.3-§VI.4] for reducing the analysis of this
lemma to the case when O = R™. See ALINHAC-GERARD [2, pp. 84-89] for
the detailed proof of assertion (a) when O = R™. Here we give the proof of
(4.10)—(4.11) by means of (4.8)—(4.9). It follows from (4.8) that

CHCRIC IRYel YR W Cor Tttt
o'<o0<f'<B

< Clulamlwlze + Clul L= [wll 2, (4.12)

||ao¢[aﬁ7 u]a’YwHLQ <C 2 Z ||aa’aﬁ/_,6// (a,ﬁuu) aa_alaﬁ_ﬂla'ywHLQ
o' <a B’/§ﬂ1§B

18"|=1
< Cllullgm|wlpe + Clullwr.= |w] gm-1. (4.13)

Combining (4.13) with (4.9) yields that
[0°[0%, b(w)]0 w] 22 = 0°[07, b(u) — b(0)]07w]| 2

() = BO)] s 0] = + Cb() = b(O) [y ] s

<C
< C(My)(|wlgm=s + Jullzm [w] ).

Inequality (4.10) can be proved similarly from (4.9) and (4.12). O
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4.4 Notations

For convenience, we collect the following notations.

(i)

(i)

(iii)

We will use letter C' to denote any universal positive constant. Symbol C(-)
denotes any generic positive constant depending only on the quantities
listed in the parenthesis. Notice that constants C' and C(-) may vary at
different occurrence. We denote A < B (or B 2 A) if A < CB holds
uniformly for some universal positive constant C. Symbol A ~ B means
that both A < B and B < A4 hold.

Letter d always denotes the spatial dimension. Both the two and three
dimensional cases (d = 2, 3) are considered. Symbol {2 stands for the half-
space {x € R?: z; > 0}. Boundary 012 := {x € R? : 2; = 0} is identified to
R~ We write §2; := (—00,t) x 2 and w; := (—00,t) x 812.

Symbol D will be used to denote

D:= (é’t, 617 . ~,ad)v

where 0; := é—; and 0y := 3; are the partial differentials. For any multi-
index a = (ag, a1,. .., aq) € N¥T1 we define
D® := g9/ 7" --- 097, la| :==ap + a1 + - + aqg.

For m € N, we denote D™ := {D® : |a| = m}.
Denote D, := (01, ..., 0q) as the gradient vector and Dy := (¢, 02, . .., 04)
as the tangential derivative. We write

D&n:@f"ag?---@gd, 18] := Bo + Bz + -+ + Ba,

for any multi-index 8 = (8o, B2, - . ., Ba) € N©. Denote Dy := (0a,...,04).
For any nonnegative integer m, we introduce

Bl = (3 IDu®lZie) (414)

|laj<m
1/2
Ba®llan, o = (3 IDt®n(er) (4.15)
|Bl<m
Cri=1+ ”(‘O/j’)”%mmﬂv (4.16)

so that our formulas will be much shortened in the calculations.
Recall the partial differentials with respect to functions ®% from the nota-
tions in (2.40) to obtain

bt oAbt .
O +0Fof =0, +wif oy,

where

. . : . , .
Wt = P (0% — 0,0%), wf =0F fori=2,...,d (4.17)
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In view of condition (3.5b), we have
wF =0 on dN. (4.18)

Let us define

d
do:=0r+ Y. 070  onfp, (4.19)

=2

which coincides with &; + W} d, on boundary 012 as a result of (3.5b) and
(4.18).

(vil) For any nonnegative integer m, a generic and smooth matrix-valued func-
tion of {(D*V,DW) : || < m} is denoted by &, and by &,, if it vanishes
at the origin. The exact forms of ¢, and ¢,, may be different at each
occurrence. For instance, the equations for p* in (3.20a) can be written as

o ot o pt o o
(0 + F00)p* + pEEE07 vf = Eof +&,V,

since C(U, ®) are C*—functions of (V, DV, D¥) vanishing at the origin.

5 Partial Homogenization and Reformulation

It is more convenient to reformulate problem (3.20) into the case with ho-
mogeneous boundary conditions. To this end, noting that ¢ = B.(V,v¢) €
Hs+1/2 (wr) vanishes in the past, we employ the trace theorem to find a regu-
lar function V; = (Vﬁ, V[)T € H**1(07) vanishing in the past such that

Bé(%,O)LT =g, ”‘/EHHM(QT) < Hg||Hm71/2(wT) form=1,...,s+1. (51)

Then the new unknowns Vbi = VE - Vhir solve problem (3.20) with zero

boundary source term and new internal source terms f*:

L, VE=f*  ifa; >0, (5.2a)
BL(V,4) =0 if 2, = 0, (5.2b)
(V) =0 if t <0, (5.2¢)

where we have dropped index “0” for simplicity of notation, operators L, .
and B, are defined by (3.21)—(3.22), and

fr o= 5 = LU, 6%5)VE —Cc(U*, 05)VE (5.3)

We introduce new unknowns W¥ in order to distinguish the noncharacter-
istic variables from the others for problem (5.2). More precisely, we define
I/Vlir =pE, WF:=ot. N W;{rl = v;fr,
+ + ettt + 2+ ot +
Wi i=p> —p  FiNFii, Wi 1= 0,97 Fif + Fj
- Fi Wi

Jjb
+ ._ Qf - -
it g Padpe =97 fori=1,....d, j=2,....d,

(5.4)
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where N* and Ff—rN are given in (3.2). Equivalently, we set

ji = J([}i,éi),

Wt = Jy'vE

where J(U, ®) is the C*—function of (U, D®) defined as

1 0 0 0 0 0
0 1 09d 0 0 0
0 0o 1 0 0 0
J(U,®) := ! 0 o0 ——t 0o 0
pFiN pFiN
® ®
_ 0 02 1 0
pFI N pFiN
0 0 0 0 0 I
and
1 0 0 o0 0 0 0 o0
0 1 Ood 030 0 0 0 o0
0 o 1 o 0 0 0 o0
0 o o0 1 0 0 0 o0
1 1
J(U,®) := 0 — 0 0 0
(. 9) PPN PPN
B 02 1 0 o
pFlN pFlN
23P d3®
i 0 0 0 8 0 1 0
PFlN pFlN
0 0 0 o0 0 0o 0 I

ifd =2,

ifd=3.

In terms of the new unknowns W2, we obtain the equivalent formulation

of problem (5.2a) as

d
fl;{@tWi + Z fi;iajwi + AIWJ_F = jlfi

in QT, (55)
j=1
where A:—r = A,(U*, %), for i =0,...,d, with
Ay(U, @) = J(U, )T A, (U, 0).J (U, D),
Aj(U, @) = J(U,®)"A;(U)J(U,®)  for j=0,2,....d, (5.6)
AU, @) := J(U, &) (L(U, ) J(U,d) + C(U,®)J (U, P)).
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Note that the coefficient matrices Aji, for j = 0,...,d, are symmetric, and
fi;{ are positive definite. In particular, a straightforward calculation gives
1 1 1

SR — . — 0 0
prey  pE(FY)? P (FY)?
0 prI, 0 0 0
Ao(U*,8%) = —— L - 0 — L - 0 o | (6.7
pE(Fi1) p=(Fi1)
0 0 0 ptIe 0
0 0 0 0 1
0 el 0 0 0
o e (0F] Oy —pEFxnl; O
Ay (UF, %)= o 04 , (5.8)
0 —ﬁiFggId 0d2+1
0 0
and, for the three-dimensional case,
0 el 0 0 0 0
e3 O3 O3 O3 —pEFssls 0
— . = 0 O O O o 0
'A3(Ui7¢i) = ’ ° ° ° ) (59)
0 O3 O3 O3 O3 0
0 —ptFl; O3 O3 O3 0
0 0 0 0 0 0

where p* := (det F*)~! are the background densities, and ¢.. := p,(pt, S*)1/2
are the background speeds of sound. The explicit expressions (5.7)—(5.9) will
be used in the estimate of tangential derivatives.

We now compute the exact form of Ai—r on boundary 0f2, which is necessary
for deriving the energy estimate of tangential derivatives. We first infer from
(3.5b) and (3.5¢) that matrices A, (UT,$F) satisfy

0 (NH)T 0 0
~ o e N o e § 0
A (U=, %) =+ ! PrTINTd (5.10)
21=0 0 —pTFE I, 04 0
0 0 0 Od27d+l 1‘1:()
In light of (5.10), we can decompose the boundary matrices Af as
Af = JTA (U, %) ] = AL, + Af,  with AT =0, (5.11)
=
where
0 0 0 0
: 0 o) AU, ¢ 0
Al == Os A ) . (512)
0 AU o1 Oy 0
0 0 0 Og2_gi1
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with
AU, D) :=diag (1, —pFinI4_1). (5.13)

The explicit expression of ./Zlfb is of no interest. According to the kernels of
matrices AT, we denote by

WE=Ws, ... oW, )7 (5.14)
the noncharacteristic parts of unknowns W+, and by

+ .t vt + T
WC T (Wl 7W2d+2""’Wd2+d+2)

the characteristic parts of W=*.
We reformulate the boundary conditions (5.2b) for unknowns W= into

dot = Wit + &9 on wr, (5.15a)
[Wit1] = &0 fori=1,...,d, on wp, (5.15b)
[Waia] = [F11]0r,, o(F ") F5 + &9 on wp,  (5.15¢)
[Warjs1] = —[F11]0;4 + &, forj=2,...,d, on wp, (5.15d)

where o(F') and 0y are defined by (3.9) and (4.19), respectively. Here we re-
call that symbol ¢,, denotes a generic and smooth matrix-valued function
of {(D*V, DY) : |a| < m} vanishing at the origin. It is worth mentioning
that the boundary conditions (5.15) depend upon the traces of W+ not only
through the noncharacteristic variables W= but also through the character-
istic variables FZJ]r for 4,5 = 2,...,d, which is a different situation from the
standard one (see, e.g., [3, §4.1]).

6 Estimate of the Normal Derivatives
This section is devoted to the proof of the following proposition.
Proposition 6.1 If the assumptions in Theorem 3.1 are satisfied, then

W @E < MW Ollzan.s + 1 W) T2 + Coral (P Ty (6.1)

where || - s, I - lltan,s, and Coyo are defined by (4.14)~(4.16), respectively. In
addition,

WO < MW O WFan + 1) 1 209 (6.2)
In this section, we let 3 = (8o, B2,...,B4) € N? be a multi-index with

|B] < s — 1. The proof of this proposition is divided into the following five
subsections.
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6.1 Estimate of the Noncharacteristic Variables

In view of (5.5) and (5.11)—(5.12), we have that

0 d
(Wi | = - BYAFowt - Y BrATowt
0 j=2
B AR WE - BEAWE L BETFE (63)
where B := +B(U*,9%), and B(U, ®) is defined by
0 0 0 0
0 0, AU®P) ' 0
B(U,®) := , 6.4
U.2) 0 AU ®)! Oy 0 (6.4)
0 0 0 Op a1

with A(U, ®) given in (5.13).
Noting that B(U,®) and .A-(U, @) are C*—functions of (U,D®) for j =
,d, we apply operator D, := 0/°95> - 9% to identity (6.3) and deduce
101D8a Wl Z2(2) < IDfan (é1Dean W)l 72 () + [Dfan (BA W) 22
+ IDfn(BAW) 72y + IDian (BT T )2y (6.5)

Here we recall that ¢,;, denotes a generic and smooth matrix-valued function
of {(D*V, D) : |a| < m}.
We integrate by parts to obtain that

le@ll7- s ), f ID%u(, )||0:Du(7, z)|dzdT < |ulFm(o,)-  (6.6)
|a|<m—1

By virtue of (6.6) and the Moser-type calculus inequality (4.11), we have

HDtan(ClDtaHW)H%2(Q < ”élD'?anDtaHW +[ tans € :l]:)tamw/vHL2
S IW 2an,s + IDfns &1 W31 0
SIWIans + W 2y + CosalWlZe (g, (6.7)

Since B(U,®) and J(U,®) are C*—functions of (U, D®), and A4 (U, ®P) is
a C*—function of (U, D@, DU, D?®), we use (6.6) and the Moser-type calculus
inequality (4.10) to obtain that

IDfn (BAW) 32y + [Din (BT )20
S €W i3 () + 161 Fli3zs ()
S, + Corall (F W72 0, (6.8)
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Notice from (3.1) and (3.3) that the W2* (£27)-norm of (V, ¥) is bounded
by CK for some positive constant C' depending only on x. In view of (5.11),
we have

|01 (BEAY L (20) < le2lr (20 S 1, BRAY |, =0

Then we integrate by parts to obtain that
oL ey
” (Bi“‘lfb)("xl7 ')”L‘T([O,T]de*l) S o(a1) for 21 2 0, (6.9)
where ¢ is an increasing function of x; satisfying

T1 for 0 <z <1,

(6.10)
2 for 1 > 4.

o=o(r1) e C*”(R), o(xy) = {

Utilizing the estimate above along with (6.6) and (4.11), we infer

IDGn (BALAW) 20

tan

< |BAWDLL W + D, BAl W7 0

tan
s 2 Y 2
S oDt W12 () + [[Dtans BAwIOW 11,
S HUalDtﬁanWH%Q(Q) + Wk + Coral W7 (0, (6.11)

Apply operator a[)’{"Df;n with k + || < s to system (5.5) and employ the

standard arguments of the energy method to deduce

led DE W B2 < I W) 3y for k+18 <1, (6.12)
loBt D W (D)72(0y S 1(Fs W)z () + Conal(Fs W7,y for b+ 18| < s.
(6.13)

Plugging (6.7)—(6.8), (6.11), and (6.13) into (6.5) implies that

Z HalDtﬁaanc(t)“%Q(Q)

|Bl<s—1

I (Olfans + 15, W)

Hegan + Cor2l(FW)Te (o). (6.14)
Moreover, from (6.5) with 5 =0, (6.9), and (6.12), we have

101 Wae (D12 (2 S MW @) 2an 1 + 15 W) 771 (,)- (6.15)
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6.2 Estimate of the Characteristic Variables ST

The next lemma gives the estimate of the characteristic variables WCZ—Q d42
that are entropies S¥.

Lemma 6.1 If the assumptions in Theorem 3.1 are satisfied, then

(Fs W) e () + Corall (F, W) 209 (6.16)
(s W)l (2. (6.17)

IS=@lz < |
IS @l <1
Proof Since matrices C(UT,$%) are C*—functions of (V,DV,D¥) vanishing
at the origin, we can write the equations for ST in (5.2a) as

(0r +0F0,)ST =eof +&W  in £,

where wF, £ = 1,...,d, are given in (4.17). Let a := (ap, a1, ..., qq) € NI+
be any multi-index with || := ag + a1 + -+ - + ag < s. Apply operator D¢ :=
070 07" - -+ 09" to the equations above and multiply the resulting identities by
DS respectively to find

2| DS ® + 0y (wf [DSE[?) — dpv DS
= 2D*S*(D¥(¢o f) + D*(e1 W) — [D?, wF]0,5%).
Note that the W2*(£27)-norm of (V, ¥) is bounded by CK for some positive
constant C' depending only on x. By virtue of (4.18), we can obtain (6.16)—

(6.17) by integrating the last identities over {2, and applying the Moser-type
calculus inequalities (4.10)—(4.11). O

6.3 Estimate of the Characteristic Variables W;"

To compensate the loss of the normal derivatives of the characteristic variables

W1i = pT, inspired by involutions (2.41), we introduce linearized divergences
+

¢ by

t= (&2 Fip* + 57 F7), (6.18)

where 6?i, i=1,...,d, are defined by (2.40), and é4 := p,(p*, §i)1/2 are the
basic speeds of sound. See TRAKHININ [29] for a slightly different definition of
the linearized divergences.

Then we obtain the following estimate for ¢*.

Lemma 6.2 If the assumptions in Theorem 3.1 are satisfied, then

It ONE_1 S 1) ey + Conal (F W) 720y, (6.19)
[s=Ollz2) < (£, W) a1, (6.20)
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Proof The equations for F* and p* in (5.2a) read

(0 +wF o) Fit — ﬁgaf%i = &of +&,W, (6.21)
2 .
(0y + wiEde)p™ + prédof Ue =¢of +&,W. (6.22)

In view of these last equations, we compute
(00 +f00) (652 Fip™ + 5P F ) = pEFEOF of = pTF50P of +a0f + .
Performing operators 6‘?& to the identities above and using
+FZa¢+ aqs— Z+ _ p+F:1r aq>+ aqs— +
— pEEE[0F, 077 Jot = DV = &D(JW) = &DW + &, W,
we have
(0 +0Fdp)sT = &xDf + &1 f + DWW + & W. (6.23)

Apply operator D“ with |a| < s—1 to equations (6.23), multiply the resulting
identities by D% respectively, and take the integration over {2, to obtain

ID*F (D) 72(0) S (1 + D] (0)) [D*sF 20, + [P, @07 10T 720,
+ DY (EDf + &1 f + EDW + W) Lo, - (6.24)
Since
¢t =& W 4 ¢, DW, (6.25)
we have
DY 2(2,) < [D¥(EDW + &W)|L2(0,),

IID*, 5E10es*t 1200 S | ([D®, &]W, [D*, &]DW, [D%, &1D2W)] 2, -

Estimate (6.20) follows by plugging these last inequalities into (6.24) with
a = 0. Apply the Moser-type calculus inequality (4.10) and use || < s—1 to
derive

|(D*(é1Df), D*(é1/)) H%z(m
< [(@DDFf,e1DYf)| 22 (g, + (D%, &1IDS, DY, 1) Z2(q,)
S F e 0y + Cortl 70 0r)-
By virtue of (4.10)—(4.11), we obtain that
[([DY, &2]W, [D?, &]DW)[Z2(q,) + [[DY, &]D*W[72(g,
S IW ke + Coral Wi w0

Inserting the estimates above into (6.24) yields (6.19). This completes the
proof. O
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Thanks to (6.19), we can obtain the estimate of the characteristic variables
Wi = p*. More precisely, according to (5.4) and (5.14), we have

Ni.Fi_|Ni|2(Wi_Wi Z@@* ] i|2Wi+éW
1 7 oyt 1 d+2 d+j+1 T i gx 1" ne-
PEFTN Py

Combining the last identity with (6.18) and recalling (2.40), we calculate

ot — g, (CRF £pt 4+ pENE . F*) + Z 0, (01¢+ (62 EZpt +p+F+))
c | F 2 + N2
_ Gl IN];L V] AWt + &0, Whe + & DianW + & W,
1IN

which implies that
HWE = é16F + 60 Wae + &1 DganW + W, (6.26)

In light of (6.26), we utilize (6.6), (6.14), (6.19), (6.25), and the Moser-type
calculus inequalities (4.10)—(4.11) to obtain

> |61D7,, Wi ()72

|B]<s—1
< Z ||(Dtan<7 tanaanc,DtanDtaHW)”%z(Q)
|Bl<s—1
p 2
+ Z tan? W [Dtﬁanv ]DW Dtun(CQW)) HHl(Qt)
|Bl<s—1
S MW OWan,s + 1o () + Cot2l (£, W)L () (6.27)
Furthermore, we plug (6.15) and (6.20) into (6.26) to obtain
[OWi(O1Z2(2) < MW OWEans + I W) a0 (6.28)

6.4 Estimate of the Remaining Characteristic Variables

To recover the normal derivatives of the characteristic variables W] dgicl = FJ

fori=1,...,dand j = 2,...,d, motivated by constraints (2.36), we introduce
quantities n* := (ni,...,nT) with

nE = FEOP FE — FEof P (6.29)
In addition, for d = 3, we introduce quantities ¢* := (¢, ¢F, ¢F) with

(= FEOP FE - FEOPFE. (6.30)

We have the following estimates for n* and (.
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Lemma 6.3 If the assumptions in Theorem 3.1 are satisfied, then

=, CENIEy S 1 W) + Coral (F, W)IE (2 (6.31)
[, Czzcy < 1CF W)l (.- (6.32)

Proof Thanks to (6.21), we deduce the equations for n* and ¢+ as follows:

(0 + 00T = &Df + & f + DWW + & W, (6.33)
(0r +WF )¢t = &1 Df + &1 f + EaDW + & W, (6.34)

where we have used that
St ot AdT AdE ot Pt AdT AdTE St ot [AdT Adt o

Noting that n* = ¢, DV and (¥ = ¢;DV, we perform the same analysis as ¢*
in Lemma 6.2 to deduce (6.31)—(6.32). This completes the proof. O

According to (2.40), we compute

d
1 . . . .
nii = Py (f'le_rNal}'ﬁii - inNalF;Tr) + Z (Fe%alFiJir - FeizaZFiJTr)a (6.35)
== =2
d
1 o o o o
Cii = 0, (FliNalFiiB_ - ngNalFiilr) + Z (F;—{(?KF;—?: - FeigafFiilr)a (6.36)
1= £=2

which, combined with (5.4) and (5.14), imply that

61F£ = (031772i + ¢101Whe + ¢101W1 + ¢1Dian W + éQW, (637)
O1F% = &1 + 6101 Whe + &AW1 + & DeanW + W, (6.38)

In view of (6.37)—(6.38), we utilize (6.14)—(6.15), (6.27)—(6.28), (6.31)(6.32),
the Moser-type calculus inequalities (4.10)—(4.11), and (6.6) to obtain

101 Wiasisr ) Z2(e) < MW OWans + 1 W) 0y (6.39)

and

Z HalDtﬁanWjdHH(t)Hi%(z)

|8l<s—1

SNV Olfans + 15, W)

%{s(nt) +Caral (f, W)H%D(Qt)’ (6.40)

fori=1,...,d,and 7 =2,...,d.
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6.5 Proof of Proposition 6.1

Estimate (6.2) follows by applying (6.6) and combining estimates (6.15), (6.17),
(6.28), and (6.39). Thanks to (6.3), (6.26), and (6.37)—(6.38), we can combine
estimates (6.13), (6.16), (6.19), (6.31), and (6.40) to prove by induction in
£=1,...,s that

I4
> D DLW Dz

k=1|8|<s—k
SV OWans + 1 W) 7 ) + Cor2|(F )T, (6.41)

Estimate (6.1) follows from (6.41) with ¢ = s. Then the proof of Proposition
6.1 is complete.

7 Estimate of the Tangential Derivatives

In this section, we establish the estimate for the tangential derivatives of so-
lutions of the linearized problem (5.2).

Proposition 7.1 If the assumptions in Theorem 3.1 are satisfied, then
W () Fan,s S Ms(®) + €113 o) IW O (7.1)
for any constant € > 0, where ¥ is given in (3.14) and

{II(W,W,J;)Hip(Qt) ifs=1,

M, (t) := _ . - )
IW 2, D2, + Conal W, @, sy if 52 2.

(7.2)

The rest of this section is concerned with the proof of Proposition 7.1.

7.1 Prelude
Applying operator D2 | := 650652 . --6gd with |B] < s to system (5.5), we
obtain
Ao, DL W* + AFo;DL, W* = R, (7.3)
where
R* = D0 (JLF) = DEn(ATW) = DL, AF1W* = [Dfn, A710, W

Take the scalar product of (7.3) with D2 W¥ to obtain

tan

Zf ATDE, WE DL WE =Ry + | Q, (7.4)
+ J

wt
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where

R ;=ZJ Dl Wt (2Ri + (8,AF + 0, A)D] Wi),
+

tan
Q :=Z"i%—aDtﬁanWi ’ DtﬁamI/Vi = 2[DtﬁanW2Dtﬁaan+21 +Q27 (75)
* @
with
- 2/5+FI+N [DtﬁanWBDtﬁanW5] ifd=2,
Q2 = (76)

— 25"y [DEn WaDp We + Do WD We] - if d = 3.
Here and hereafter, for simplicity, we omit the differential symbol of the vari-

ables of integration when no confusion arises.

A standard computation with an application of the Moser-type calculus in-
equalities (4.10)—(4.11) and the Sobolev embedding H?3(§2;) — L™ (£2;) yields

We introduce the instant tangential energy &2 (t) as
)= [ AU, 87 DLW DL,
T Jo

where Ay is given in (5.6). Thanks to (5.7), we have that

1 + 1 + +
Efn(t) :Zi: {p.t,-chDtﬁanWI I720) + WHDE&H(Wf ~Wii)lia e

d®+d+1

+ Z ﬁi ”DtﬁanW]iH%ﬁ(Q) + HDfanSiniz(_Q) }7 (78)
§=2, j#d+2

where pt := (det F£)~! and ¢4 := p,(pt, ST)1/2.
Since AT — Ao(UE, #%) are smooth functions of {(D*V, D*¥) : |a| < 1}
and vanish at the origin, we plug (7.7) into (7.4) to infer

ELn () SOM(t) + Cl&y | o am WO + | @, (7.9)

wt

where M(t) and @ are defined by (7.2) and (7.5), respectively.
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7.2 Cancellation

We are going to show a cancellation for the last term in (7.9). By virtue of the
boundary conditions (5.15b)—(5.15¢), we find

Ql = 2ijan [Wd+2]DtﬁanW2+ + 2Dtﬁan [WQ]Dtﬁaan_+2
= Q1o + [DL,,, €]WDL W5 +DP (&1)D2,. W on a2 (7.10)

tan tan

with

Qla = 2[1311]6FUQ(13‘+)DB F+DB

tan® ¢j —tan

Similarly, it follows from (3.13), (5.15b), and (5.15d) that

d

Q2 = —20(F*) )] (Dfan[Wd-‘rj-‘rl]Dfanthl + D?an[Wj+1]Dfaan_+j+l)
j=2
= Q?a + éo [D'tgan’ éO]DtanthﬁanW + &ODfan (élw)DtﬁanW on 02 (711)

with

d
Qo4 = 2Q(F+)[F11] Z DtﬁanaijtﬁanW]ﬁ:i-l'

=2
We decompose (Q2, further as
d o o
QZa = QQb + Z aj (2Q(F+)[Fll]DtﬂanthﬁanWj-:l) + élDf‘anWDtBanw (712)
=2

with
° o d
Qap := —20(FT)[F11] Z DfanqﬁDfanajWﬁl'
j=2

In order to deduce the cancellation between terms 1, and Qop, we need
the following lemma.

Lemma 7.1 Ifi=1,...,d, and j = 2,...,d, then
d
QFE =Y Frowt +eof +5,W on 892, (7.13)
; k=2
DLWy = —o(FT) o, o(FT )00 Fy; + cof +&W on 082, (7.14)
j=2

where 0y is defined by (4.19).
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Proof Considering the restriction of equations (6.21) on boundary 012, we
utilize (4.18) and (3.5¢) to deduce identities (7.13). In the two-dimensional
case (d = 2), relation (7.14) follows directly from (7.13). If d = 3, then we
obtain from (7.13) that

oot Gevt\ [EE B doFs5 0oFs
(22 32)(022 023 _ [ Y0F22 Cota3 +C0f+01W on 002.

62’0:;_'_ 63’01;_'_ Fg:% F3ig)) 60F32 00F33
Then we can deduce (7.14) by virtue of W™ = v, W} = vJ, and
OF,; ‘Q(F*)OOFJr . . . .
T = FhooFyh — Foh00F5y — Fihoo Foh, + Fih 0o Fyh.
This completes the proof. O

Thanks to identity (7.14), we find
Qo = 20(F ") [F11]D, Dy, (o(FF) ™ 0r, o(F )20 FyY )
Q2c

— 20(F ") [Fi1]Dg DL (G0 f + e W) on 012. (7.15)
Term Q5. can be decomposed further as

Q?C = Q[Fll]aFi_j ‘Q(ﬁ'Jr) tanw aODB F+ + CODtanw [Dtﬁanv O]DtanW

tan® 45

= CODmﬂ/’[ tan) © ]DtanW + Z a { Fll]aF Q(FJr) +DtﬁanthﬁanFJ}
j=2

+ at {2[F11]6Fi_7‘ Q(I%Jr) tanthﬁaan-;} + ClDtanw Dtan

_2[}%‘11]6}7’“ Q(ﬁ‘Jr)Dfaanthﬁanaow +C0DtanW[ tan> € ]Dtand}- (716)

«

QZd
In view of condition (5.15a), we derive the following desired cancellation:
Qua + Q2a = 2[F11]0p,, o(F*)D{, Fi D}, (¢19)  on 002 (7.17)
Combine (7.10)—(7.12) and (7.15)—(7.17) to obtain
Q =Ra+2 | [Filon, o FIDLODLE].  (T1)
Wi N4 7‘2’3 _

where

j [ tans € WDfanW+f CODtan(Clw) tan

J CO tam Dtan¢DtanW+f CODtanTZJ[Dtﬁana ]DtanW

Wt

+ f &DE yDP W+ f &DL L WDE (&0 f +EW). (7.19)
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7.3 Estimate of Term Ro

In this subsection, we deduce the estimate of term Ro defined by (7.19).
By virtue of assumption (3.3) and the Sobolev embedding, there exists
some positive constant K7 depending on [Fi1] such that, if K < K, then

[}07'11] > >0 on 012.

It follows from the boundary condition (5.15d) that
1
6_7’17[} = [F ][Wd+J+1] + C1¢ on (9(), fOI' ] = 2, e ,d. (720)
11

If we utilize (7.20) to control terms Ry and Rs, then the energy estimates
break down when [Fy1] tends to zero. Hence, identity (7.20) cannot be used
in the subsequent analysis for the proof of Theorem 3.1. Then we need to
exploit new identities and estimates for D,.1. For this purpose, we apply the
interpolation argument to deduce the following lemma, which is motivated by
[29, Proposition 5.2].

Lemma 7.2 If the assumptions in Theorem 3.1 are satisfied, then
o d o
R; = FjJr -N — Z Fi-;aﬂﬁ defined on wr, for j =2,...,d, (7.21)
i=2

satisfies
”Dtan '(t)”zS—\’Yl—l/?(f}Q) S Ms(t)v (7'22)
for all t € [0,T] and v € N% with |y| < s — 1, where M(t) is defined by (7.2).

Proof Thanks to (3.5¢) and (7.13), we have

d d
00F; N = Fonwt - N)+ Y of Fhoiop + & f +&W
k=2 k,i=2
d
Z + C1f + e W.
Since, for k= 2,...,d,
0o0rp = Op (0T N) +9; t0;01p = 0p0T - N on 02, (7.23)

we have

ZF+6 +C1f+C1W
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It follows from (3.7) and (5.15a) that

d d d
DN R WA ) B W At
i=2 =2

i,0=2

—anF o))

Z vt N)+C16¢)+CQ’¢

Thanks to (7.23), we have
GoRj + 1Ry =& f +&W + &t on 00
Using the standard arguments of the energy method yields that
IDLn Ry ()l rm 20) < IE1f + E1W + €29 ome 1t () for m e N.

Applying the interpolation property (see [27, Lemma 22.3]), the trace theorem,
and the Moser-type calculus inequality, we have

”Dtan ( )|

Hs—l=1/2(60) S < ||C1f+C1W+CQ’(/J”Hs 1/2(wy)
< ||C1f +C1W+02¥7HH5(_Qt) < A/ M(t),

where we utilize |62 |1 (0,) < K and (W, @, )=, < [(W, @, F)lae0,
by the Sobolev embedding theorem. This completes the proof. O

By virtue of (7.21), from (2.27) and (3.10), we obtain the following asser-
tions:

— If d = 2, then
Ootp = (F3p) TN (Ffy — 029F55 — Ra) = o(FV)Fy + & W + ¢oRp. (7.24)

— If d = 3, then

Q) () Ff —F3)\ (Ff N —Rsy
o)~ ° —F3 B, J\Ff -N-Rs)

which implies
0ytp = o(F ") Fag Fily + & W + &Ry + &0 Rs, (7.25)
631p = Q(F+)F22F£ + §1W + éORQ + 60R3. (726)

Identities (7.24)—(7.26) and estimate (7.22) enable us to control term Ro. More
precisely, from (7.24)—(7.26) and (5.15a), we have

d
Dianth = W + > &R;  on 092, (7.27)
j=2
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where coefficients ¢; and ¢y are independent of [F’n]. Assume without loss of
generality that 0 < 5/ < 8, |8'| = 1, and |B]| < s. For the last term in Ro, we
employ (7.27) to obtain

f EODfanthﬁan(&Of'*_élW)

d
< Héona_nﬂ ((031W + Z (ojoRj) H HDtan Cof + (031W) H
=2

H2 () H=1/2(wy)
d ~
< HC1W + ;C()Rj HH 2) Cof + ClWHHS Qt (728)
where Efj is the extension of R; from wr to {27 satisfying
”Rj”Hm(Qt) < ||RjHHm71/2(UJf,) for m = 1, ceey S (729)

Applying the Moser-type calculus inequality to (7.28) and using estimates
(7.22) and (7.29), we obtain

f éDE DL (60 + W) < Mu().

As the other terms in (7.19) can be handled similarly, we omit the details and
conclude

Ra < M,(t). (7.30)

7.4 Estimate of Term R3 with the Time Derivative

This subsection is devoted to deriving the estimate of term R3 given in (7.18)

for B = (Bo, B2, - - -, Ba) satistying Bp = 1 and 8] < 5.
Recalling the definition of background state (U+, &%) in (2.27) and using
identity (7.13), we have

O F = Fj;00f +&DoW + W +&f ondf, fori,j=2,....d, (7.31)
where Dy := (0a,...,04). In light of (7.31), we compute

[F11]0r, o(F )DL FiF

tan® 47

[F11]0r, o(FH)DE (F 007 + eDo W + &, W + & f)

—Z [Fii]o(F*)D{ 007 + oD (éoDar W)

+ coDﬁmel (cDeW + &, W +¢&f)  on 0% (7.32)
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Noting from (5.15a) that

o) = Wi +&Dpth + &% on 82, (7.33)
we have
Rs = QJ [ﬁll]aFij Q(ﬁ’+)DtﬁanFi_;Dtﬁanw = Z R3i7 (734)
o8 i=1
where
d — —
Roti=— ) 2[Fulo(F) f DEze Wi DEe 07,
j=2 ofn
d —
Razi= = 32 AFule(F*) [ DL @Dot) D050,
j=2 0N
d — —
Rai= = 3} AFule(F) [ DL @) DL 050,
j=2 o

Raa = f é0]:)53;161 (éODf'W) + éOD?a:l61 DII(EOW)) Dtﬁanwv
o8

Rss := J (OZQD’tBa;el (QIW + éof)Dfanw.
o
Let us first estimate R3o as

|Raz| <

J' éODtﬁa_nEl Dtan/l’[}Dtﬁa_HEI Dxl W+ f [Dtﬁa;El ’ éO]Dx’d}Dﬁf;lEl Dac’ w
o0 o0

J

~~ ~~

R§2 Rgz
In view of (7.27), we employ the classical product estimate

HUU||H1/2(Rd—1) S HUHHW?(Rd—l)”U”Hl/Q(Rd—l)

to obtain
B : B
a < o —eq (o o . —eq ,
IRl = HQDDtaH (@ + ;CORJ)HHlm(ﬁQ) HD“"“ Da WHH—m(m)
d
S [0l ‘Dfﬂ:‘m CUSD) éORj)HH1/2(6Q) H o HHuz(m)'
j=2
(7.35)

Utilize the trace theorem, (6.6), and the Moser-type calculus inequality (4.11)
to obtain

2
DL @w)]

< e Dﬂ—elWH2 +| i ]W‘Q
)~ 1Ytan Hl(.Q) tan %1

H1/2(202 H2(2,)

S IWOIE + M. (1) (7.36)
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It follows from (7.22), the trace theorem, (6.6), and (7.29) that

o o 2

o B—e1 B—e1 o )
tan HY/2(002) s HCODta“ B HH1/2 + H [Dan™ ol HHl/‘Z(m)

< M(t) + D0 ol B;

< M (t). (7.37
) SMaD. (737)

Plugging (7.36)—(7.37) into (7.35) yields
[RSal < ol 5 () IW@IIT + M. (1). (7.38)
For Rj,, we find

RgQ - J‘Q Dm, [DtﬁaEEI’§O]DI'¢Dtﬁan61W
0

- a{ooie i), (7.39)

Hence, it follows from (7.22), (7.27), and (7.29) that
izl

tan

Rl < 0D, [D&:a:o]Dw/wH

H=1/2(w,) HY/2(wy)

+ DD oDt

B—e1
H1/2 (we) Dtan WH

< Wiy, ‘D [Dfn o] (élW +JZ2(°;0]TBJ-) HHl(Q )

S M,(1). (7.40)

H=1/2(w,)

We decompose R34 as
f C()]:)tanw]:)tﬁane1 DI'W
on

+ J DLt (€0[DEn €0lDu W + &0 [DY Dar, 0] )
o

The first term in this decomposition can be estimated in the same way as R4,
and the second term in this decomposition along with terms R33 and R35 can
be controlled as Rj,. In conclusion, we arrive at

5
20 Rail < ol gy IW O + M) (7.41)

i=2
Let us deduce the estimate of term Rs;y. In view of (4.7), we infer

d
Ra1| <2[Fu1]o(FH) D0 Wi i) Y. 1D v] |

tan tan
Jj=2

[Fia]le(FH)IDELE (W5, Wahll3 o) if d =2,

< S (7.42)
\/§[F11]Q(F+)HDtﬁanel (W2+7 W‘;v W4+)||§{1(.Q) if d = 3.
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We now make the estimate for the term on the right-hand side of (7.42). Since
|8] < s, we apply inequality (6.6) to obtain

d+1
D IDGE W Gy S (W]
j=2

e (20)- (7.43)

According to definition (7.8) for the instant tangential energy £- (t), we have

d d+1 e . gg;51+82(t) if d =2,
S IO W By < T
55 gh-ertex(yy 4 ghertesryy g3,

As for the normal derivatives in (7.42), we utilize (6.3) to derive

0 d
HWE | = FBA(UE, 05)0,W* T ). BA;(U*, 05)9;W* + & DyanW
0 j=2

- BEALLWE - BEATWE + BT (7.45)

where B(U, @) is defined by (6.4). By virtue of identities (5.8)—(5.9), we can
compute the following assertions:

— For d = 2, the second and third components of
BA(U*, @Yo, W™ + BA (U™, dT)o, W
are ——y=0;(W,” — W) and — 20, W;', respectively.
11

pH(FY)
— For d = 3, the second, third, and fourth components of

BAUT, @M)W+ + BAy(UT, @7)0. Wt + BA3(UT, 1) W™

are oW —wih), —Fiﬂatwg , and —F%rl@tW; , respectively.

1
pr(FT)?
)s

Using (7.8), (7.45), and the assertions above, we conclude
d+1

DD W22 < D (- BAw&W + BAW + BJT f) 17, @
j=2

B—e1 Etin(t)

+|D &, Dian W)||2 4+ —tama 7.46
” tan (91 t )HL2(Q) ﬁJr(FlJ,i)Q ( )

Employ (6.6) and the Moser-type calculus inequality (4.10) to derive

IDE (& Dean W) (D7) S €110 () IW (OIZ + M (0). (7.47)
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Plug (6.8)—(6.9), (6.11)—(6.13), and (7.47) into (7.46), insert the resulting es-
timate and (7.43)(7.44) into (7.42), and use (7.9), (7.18), (7.30), (7.34), and
(7.41) to obtain

ELL(1) S CM(E) + Cl&y s (am W (D)1
[Fi1]

i EP (1) + C&lmetez(yy if d =2,
11
[Fll] Ié; B—ei+es B—eit+es :
V2 ok gL L) +CEL (t)+C&L (t) ifd=3.
11

Since Fy} > Fy; > 0, we always see that [F11]/F}] < 1. Moreover, it follows
from (3.23) that [F1]/F}; < & for dimension d = 3. Thus, we can obtain

Elun(t) S M (1) + &1 L s o IW (DI

glere () if d =2,
+ (7.48)
5&;61"1‘62 (t) 4 ggi;el-i-eg(t) lf d _ 37

for all B = (Bo, Ba,---,B4) € N? with |3] < s and By > 1. Inequality (7.48)
reduces the estimate of each instant tangential energy to that with one less
time derivative. Therefore, we are led to estimate Rg3 for the case containing
at least one space derivative.

7.5 Estimate of Term R3 with the xo-Derivative

In this subsection, we make the estimate of Rg defined in (7.18) for the case
when fo > 1 and |5] < s.
Computing from (3.9) that

Or, 0 F)DL Fit

an~ ij

- Q(F+)2DfanF2J5 ifd= 27

= _ _ B (7.49)
— o(F*)? (F33Dﬁ Fj + FQQD{;HF:,;) ifd =3,

tan

and using (7.24)—(7.25), we deduce

Rs = 2J’ [Fll]aFij Q(FJF)DfanFi;Dfanw +J éODfanFi;Dfanw7 (750)
o 00

" "

7%31 +7%32 7%33
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where
(AR E) | Dl REDLE
R31 — a8 F

_ _ e 33

- Z[Fll]Q(FJr)zf Dfan 2F1J5 (DtﬂanFi’:g + FiDtﬁanF22>
a0 22
N d
Rzo := f éODtﬂa;ez (§1W + Z EORZ)DfanFiJ;'
o8 =2

Similar to the derivation of estimates (7.35)—(7.38), we can obtain
Rl + Rl < 4] o IV + M. ()
Utilizing inequality (4.7) leads to

tan tan

[Fulo(F*)? D™ (Fih, i)l q) ifd=2.

tan

[Ra1| < 2[Fui]o(F ) [D5n Fib i (o) D6 Fih 11 1)
<

Moreover, for d = 3, we have

|7€31| < 2[F11]Q(F+)2HDB_eQFfEHHl(Q)

tan

—e F33 —e
X HDtBan ZFS—EHHl(Q) + = ”Dtﬁan 2F‘Z—EHHl(Q)
Fo

_ _ FZ\1/2 _
< [FII]Q(F+)2(1 + %) ”])tﬁane2 (FlngQng F.‘;%)H%Il(ﬂ)
22

if d =2,

if d =3,

(7.51)

(7.52)

(7.53)

To estimate the terms on the right-hand side of (7.52)—(7.53), we compute

from (6.35)—(6.36) that
7711_ = iﬁﬁalﬂg - F2262F£ +é1DzW + &QWa
(it =+F01F5 — F3303F7 +&DW + & W.

By virtue of identities (7.54)—(7.55), estimates (6.31)—(6.32), and

1 .
F = W(WF —Wi,) +W,
P

we obtain the following two assertions:
— If d = 2, then
ID Do (Fh, Fb) 720
F3

< DG (Fib, Fib)F2(0) + (M )2(F)*
11

tan

”Df}an(WlJr - W4+)||%2(Q)

F3 .
+ =125 IDfanF5i 22 () + Clés o @n IWIE + CM(2),

tan

(F1)?
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which, combined with (7.52), leads to

[Ra1| < Co€inn(t) + Cléy | Lnan W2 + C M. (1), (7.57)
where
3 2 [
Cp := max(1, ( 3;) )[71_:] (7.58)
F5y © F
— If d = 3, then

tan

IDE D (Fih, Fly, Fh)| 720

< IDfan (Fihy Foy, F35)72() + D™ ™ (Fihy, Foby F5)l 720

tan
F2 F2 .
+ (7_;'_)2?%4») HDtan( Wr )HL2 (£2) + (Fi‘S) HDtﬂan 2+83F3:’1H%2(Q)
11
F222 + 2 ° 2
+ S IDGuFs 720 + Clé | L (o W2 + CM,(8),
(Fy)? <

which, along with (7.53), yields

Ra1| < CLé0n(t) + Collin® T3 (1)

+ Cléy L= (o W2 + CM(t), (7.59)
where
_ F2.N 1/2 F2, Fi[F
y =( +€—?;) max(1, =2 Fulful (7.60)
Fs, (F11)?" Faalss
_ F2\1/2 F2,  Ft[Fu]
Coi=(14+=2 1, =3 )=l 7.61
’ ( +F222) max( (Fih)? )F22F33 (7.61)

Plugging estimates (7.51), (7.57), and (7.59) into (7.50), and using (7.9), (7.18),
and (7.30), we deduce

Eont) < C|&y || s o W (O]I? + CM,(2)

{CO gl () ifd =2, (7.6

CLEL (1) + Oy ELe2Te (1) if d = 3.

For d = 3, it follows from (3.23) that C; < 1, so that estimate (7.62)
implies that

gfl-extesyy  (7.63)

ELLt) < Cley | s om W ()12 + CM,(t) +
1-— C
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for all B € N3 with |3| < s and 2 > 1.

Proof of Proposition 7.1 for d = 2. In the two-dimensional case, if (3.23)
holds, then Cy < 1. From (7.62), we have

Ebun(®) < € 13 (o IW (DIIZ + M (8), (7.64)

for all 3 € N? with |3] < s and 2 > 1. Combining (7.64) and (7.48), we
can conclude (7.64) for all 8 € N? with |3| < s. The proof for case d = 2 is
complete. O

7.6 Estimate of Term R3 with the x3-Derivative

For the three-dimensional case (d = 3), in order to prove (7.1), it suffices to
obtain the estimate of R3 defined in (7.18) for 83 > 1 and || < s. For this
purpose, we utilize (7.26) and (7.49) to deduce

Rs = 2J [Fll]aFij Q(FJF)DtﬁanFi;Dfand) +f éODtﬁanFi—;Dtﬁanwa (765)
o8 o0

(.

~ ~~

ﬁ31 +7€32 7%33

where

3 = o — FQQ
R31 = _Q[Fll]Q(F+)2J D?aneBFlg (FiDtﬁanF?jg + DfanF;E)v
o082 33

d
Rgg = l[ (03()]:)53;163 (élw + Z é0}25) DtﬁanFi;'
82 =2

Similar to the derivation of estimates (7.35)—(7.38), we can deduce
Raal + [Rasl < [ o IW U2 + M. (0). (7.66)
In view of inequality (4.7), we have

Ra1] < 2[F11]e(F*)?|DEn Pl o)

tan

F22 —es —es
* (FoIDZRe Bl o + DL Ff )

_ _ FINY2 5.
< [Fule(F*)? (1+22)  IDG (B, s By (7:67)
33
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Use identities (7.54)—(7.56) and estimates (6.31)—(6.32) to derive

IDFn™Da (Fi, Fih )72 (0)

tan

< DG (i, Fab Fb)3200) + D0 (F, F3by Fib) 720

tan tan

F 5 F? _
3 D W+ _ W+ 2 + 722 Dﬁ 53+€2F+ 2
(ﬁ+)2(FlJ,i)4 H tan( 1 5 )HLQ(Q) (Fl-l,i)QH tan 21||L2(.Q)
F323 B +112 2
T Fe IDtanF51 1 22(2) + Clléy |2 WIS + CMis(2),
11

which, along with (7.9), (7.18), (7.30), (7.65), and (7.67)—(7.68), yields

Sgan(t) < 63 gtﬁan(t) + 6‘4 gtﬁageerez (t)

+ Cléy |z @ IV + C M, (1), (7.68)
where
~ F2\1/2 F2, Fr[F
3= (1 + 7—222) max(1, _13 5 M, (7.69)
Fi3 (F11)?° Fookis
_ F2\1/2 F% Fr[F
Cy:= (1 + —7222) max(1, %)M (7.70)
F33 (Fy7)?" FaolF3s

Noting from (3.23) that C3 < 1, we have

& & —eészTez
Epn () < Cleallzrs (W O + CM. (1) + 1_4@Sé’éin rew, (@)

for all B € N with 83 > 1 and |3] < s.

Proof of Proposition 7.1 for d =3. Combine (7.63) and (7.71) to infer
CCi op
(1-Cy)(1—Cs) ™

Etan (D) S CIes s (or) IV @IZ + OM, (1) + ®),

which yields
E8u®) < 1o om IV (I + Mo (1) (772)
for all B € N with 83 > 1 and |3| < s, provided
6264 < (1 — él)(l — 63)

This last condition is equivalent to (3.23) because of C,Cy = CyCy. Combin-
ing (7.48), (7.63), and (7.72), we deduce (7.72) for all 3 € N3 with |3| < s.
Therefore, we complete the proof for d = 3. O



48 GUI-QIANG G. CHEN ET AL.

8 Proof of Theorem 3.1

This subsection is dedicated to the proof of the main theorem of this paper,
Theorem 3.1.
Combine estimates (6.1)—(6.2) and (7.1) to obtain

W@ < ez (@ IW @I+ Ma(),

where M(t) is defined by (7.2). Thanks to (3.3), we apply the Moser-type
calculus inequality (4.9) and take K > 0 sufficiently small to obtain

WO < Ma(2). (8.1)
It follows from definitions (3.14)—(4.14) that
=3 f 12X +x1|2dxlj‘ IDE it ') [Pda,
k+|Bl<s Rz

which, along with (2.31), leads to

IZ@NZ ~ >} DGt )220 (8.2)
|8l<s

Integrate (8.2) over (—oo,T') to obtain

1] 5 20y ~ 9] B2 (wr)- (8.3)
Similarly, we see from (3.1) that

1] e 2y ~ 12l Eo () (8.4)
In view of (6.6), (7.22), (7.27), and (8.1), we have that

2

3 IPt O o0y € Wy + 2 WM@W+Z%)
|B|<s |Bl=s—1

S MW O + M (t) £ M (8), (8.5)
which, along with (8.2), yields

L2(802)

(W 2))IF < J' NV, 2)OIE A7 + 117 ()

W, #) @)z < ,[ NV, &) OIIZ AT + 1%,

IV, D) G2 | (W, @, Plfraa,)  for s = 3.

Applying Gronwall’s inequality to the estimates above implies that
W 2)YONT < 11 20 (8.6)

IOV, BYONZ < 1F13e 0y + 1OV 0 sz | (W, @, PlFrs g,y for s > 3.
(8.7)
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Since W and 4 vanish in the past, we integrate (8.6)—(8.7) over [0, T] to deduce

W 9) 320y S 1F 130 (209 (8.8)
WV, 9) e 00y S 1F 1302y + 1OV ) [ Fros2 0 (W2, )5 gy for s = 3,
(8.9)

Utilizing (8.9) with s = 3 and (3.3), we take K > 0 sufficiently small to derive
(W, 9) 35 20y S 1F s (52 (8.10)

Insert (8.10) into (8.9) to find

W) e 20y < CE0 DI Bty + 1V ) By 1 s oy -
(8.11)

Recalling VE = Joi W+ (cf. (5.4)), we employ the Moser-type calculus in-
equality (4.10), (6.6), and the Sobolev embedding theorem to obtain

VEom < 2 (WD WIaq, + 1D, JIWI32(qy)

|| <s

S W s (ap) + 1V, )]

o (oo W s (0, (8.12)
Combining (8.3) with (8.10)—(8.12) yields

VI 0z + 191 o)
< CEo, T){ 1By + 1V, D ez 1 rsgam |- (8:13)

Thanks to (7.22), (7.27), and (8.13), we can obtain

Ve (my + 1002 o)
< C(Eo, T){ 1 Bie(my + 1V, D s | rsgam |- (8:14)
It follows from (5.3) that
||f~||?qm(QT) SN lrm 2z + 1€DVal Frm oy + 1€1V5 7m0

By virtue of (5.1), we employ the Moser-type calculus inequality (4.10) and
the Sobolev embedding theorem to obtain

17 c2my S 151220y + 1982 oy + 17 D o 9] 2z

Insert the estimate with m = s and m = 3 above into (8.14) and use (8.4) to
deduce the tame estimate (3.25). Moreover, we can easily derive (3.24) from
(8.8). This completes the proof of Theorem 3.1.
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Appendix A Proof of Proposition 2.1

Assume that [S] = 0 on I'(t). Taking the scalar product of the last identity
in (2.23) with N and utilizing (2.20e) yield that

INI? (p(p™, S*) —p(p~,S7))

= [N[’[p] = p" F )y [Fen] = [pEin Fin] = Zd: (P EN? I
j=1
Then we infer from (2.11) and (2.22) that
[p] = [p] = 0,
which, combined with (2.23), gives
Fy[F] =0, (A1)
Plug (2.20e) into (2.20f) to obtain
Fiv[Fiy] — Fiy[Fil = 0 fori,5,k =1,....,d. (A.2)

For d = 2, from (A.1)-(A.2), we have
(FiN)?[Fi2] + (Fyy)[Fia] = Fyy (Fiy[Ful + Fiy[Fi2]) = 0,

which, along with (2.22), yields [Fj3] = 0 for ¢ = 1,2. Then we utilize (A.2)
again to obtain [F'] =0 on I'(t).
For d = 3, relations (A.2) are equivalent to

(Fiys Ffye F)T x ([Ful, [Fiol, [Fis])T =0 fori=1,2,3,
which implies that
[F,L]] = wiF;}V (Ag)

for some scalar functions w; and for all 4,5 = 1,2,3. We plug (A.3) into (A.1)
and utilize (2.22) to deduce that w; = 0 for all ¢ = 1,...,d. Then it follows
from (A.3) that [F] =0 on I'(%).

In view of the second condition in (2.23), we find that [U] = 0 on I'(?),
i.e., solution U is continuous across front I'(t). Therefore, there is no thermoe-
lastic contact discontinuity for the case [S] = 0. This completes the proof of
Proposition 2.1.
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Appendix B Proof of Proposition 2.2

We omit indices + in several places below to avoid overloaded expressions.
1: Proof of (2.35). In the original variables, we see from (2.15c) that
odet F'
0Fij
= det F(Sg,iaﬂ}i = det F0;v;,

(6t + ’Ugag) det F = (6t + Ugag)Fij = det F(F_l)jingagUi
which, combined with the first equation in (2.5), yields

(01 + ve0p)(pdet F) = 0.
After transformation (2.29), we find

(0 + wede)(pdet F) = 0,

where

d
1 )
wy = EX (v1 — 0P —jg2vj8jq5), w;=v; fori=2,---,d.

Since w1 |4, =0 = 0 resulting from (2.32b), we can obtain identity (2.35) by the
standard energy method.

2: Proof of (2.36). A straightforward calculation shows that solutions of (2.18)
satisfy (see, e.g., the proof of QIAN—ZHANG [24, Proposition 1])

(0r +000)(Fu 0o Fij — Fyj0¢Fi) = Omvi(Fer0eFing — FojOFoni)-
After transformation (2.29), we have
(6t + wgag)M]m'?j = aflviMhm’j

with My ; ; := ngafFij - ng&’fFik. Here we recall the differentials with re-
spect to (2.29) from definition (2.40). Similar to the proof of Hu—WANG [19,
Lemma A.2], we can use integration by parts and w1 |,,—o = 0 to obtain (2.36).

3: Proof of (2.37) and (2.39). In the original variables, system (2.15) gives
(0¢ +v000) (pFij) + pFij0eve — pFrjOpv; = 0. (B.1)
After transformation (2.29), equation (B.1) becomes
(8¢ + wedy)(pFy;) + pFij0F v — pFj0fv; = 0. (B.2)
By virtue of (2.32b), we have

(Ot + wedy)0ip = Ov - N on 012, fori=2,...,d.
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Then it follows from the restriction of (B.2) on 02 that

(6t + wga()(p N + pF. iN Z Opvp =0 on 0f2. (BS)

Since w1z, =0 = 0 and [v] = 0, we can derive (2.37) and (2.39) by employing
the method of characteristics.

4: Proof of (2.38). It follows from (B.3) that

(0r + wede)(pFunFij — pFjnFir) — pEFrn(0¢ 4+ wi0¢) Fij

d
ijN(at + we0) Fip, + Z 6€U€(PFkNFij - PFjNFik) =0 on 012.
£=2
Since
01v; <
(6t + Wgag) ij = Fe]ag Vi = 51¢ jN T ;Fejagvi,
we have

d
(6t +w, 65 Ik z,g Z 6511 J ¢, k Z (%vzr[lk’i,j] =0 on 0f2,
=2

for Iy ; := pFynFij — pFjnFi. Since (2.38) holds at the initial time, i.e.,
[{x: ;] =0att=0ford,jk=1,...,d, we employ the standard argument of
the energy method to derive that (2.38) is satisfied for all ¢ € [0, T].

5: Proof of (2.41). It suffices to prove (2.12) in the original variables. We note
that (2.6)—(2.7) hold in virtue of (2.35)—(2.36) so that

Oe(pFux) = 0o((det F) ™' Fyy,)

ddet F
6Fij

= (det F)™" (0o Fpe — (F~1)iFor 0o Fij)

= (det F) ! (0eFup, — (F 1) ;iFy;0,Fy)

= (det F) ™" (0¢Fur, — 60,100 F1,) = 0.

= (det F) "0, Fyy — (det F) 2 Fy,——— 0, Fy;

This completes the proof of Proposition 2.2.
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