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Abstract We study the system of nonisentropic thermoelasticity describing
the motion of thermoelastic nonconductors of heat in two and three spatial
dimensions, where the frame-indifferent constitutive relation generalizes that
for compressible neo-Hookean materials. Thermoelastic contact discontinuities
are characteristic discontinuities for which the velocity is continuous across the
discontinuity interface. Mathematically, this renders a nonlinear multidimen-
sional hyperbolic problem with a characteristic free boundary. We identify a
stability condition on the piecewise constant background states and establish
the linear stability of thermoelastic contact discontinuities in the sense that
the variable coefficient linearized problem satisfies a priori tame estimates in
the usual Sobolev spaces under small perturbations. Our tame estimates for
the linearized problem do not break down when the strength of thermoelastic
contact discontinuities tends to zero. The missing normal derivatives are recov-
ered from the estimates of several quantities relating to physical involutions.
In the estimate of tangential derivatives, there is a significant new difficulty,
namely the presence of characteristic variables in the boundary conditions.
To overcome this difficulty, we explore an intrinsic cancellation effect, which
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reduces the boundary terms to an instant integral. Then we can absorb the in-
stant integral into the instant tangential energy by means of the interpolation
argument and an explicit estimate for the traces on the hyperplane.
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1 Introduction

We study the equations of nonisentropic thermoelasticity in the Eulerian co-
ordinates, governing the evolution of thermoelastic nonconductors of heat in
two and three spatial dimensions. The constitutive relation under considera-
tion generalizes that for compressible neo-Hookean materials (see Ciarlet [13,
p. 189]) and satisfies the necessary frame indifference principle (see Dafer-
mos [18, §2.4]). This system can be reduced to a symmetrizable hyperbolic
system on account of the divergence constraints.

Our main interest concerns the stability of thermoelastic contact disconti-
nuities that are piecewise smooth, weak solutions with the discontinuity inter-
face, across which the mass does not transfer and the velocity is continuous.
The boundary matrix for the free boundary problem of thermoelastic con-
tact discontinuities is always singular on the discontinuity interface. In other
words, thermoelastic contact discontinuities are characteristic discontinuities
to the system of thermoelasticity. As is well-known, characteristic discontinu-
ities, along with shocks and rarefaction waves, are building blocks of general
entropy solutions of multidimensional hyperbolic systems of conservation laws
(see, e.g., Chen–Feldman [4]). Therefore, it is important to analyze the sta-
bility of thermoelastic contact discontinuities when the initial thermodynamic
process and interface are perturbed from the piecewise constant background
state. Mathematically, this renders a nonlinear hyperbolic initial-boundary
value problem with a characteristic free boundary.

Our work is motivated by the results on 3D compressible current-vortex
sheets [6, 28], 2D MHD contact discontinuities [22, 23], and 2D compress-
ible vortex sheets in elastodynamics [8, 9]. For ideal compressible magneto-
hydrodynamics (MHD), there are two types of characteristic discontinuities:
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compressible current-vortex sheets and MHD contact discontinuities, corre-
sponding respectively to H �N |Γ � 0 and H �N |Γ � 0, where H is denoted as
the magnetic field, Γ as the discontinuity interface, and N as the spatial nor-
mal to Γ . Chen–Wang [6, 7] and Trakhinin [28] established the nonlinear
stability of 3D compressible current-vortex sheets independently, indicating
the stabilization effect of non-paralleled magnetic fields to the motion of 3D
compressible vortex sheets. The local existence of 2D MHD contact disconti-
nuities was proved by Morando et al. [22, 23] under the Rayleigh–Taylor
sign condition on the jump of the normal derivative of the pressure through
a series of delicate energy estimates. Notice that the extension of the results
in [22, 23] to 3D MHD contact discontinuities is still a difficult open problem.
For the system of thermoelasticity, Chen et al. [8, 9] recently obtained the
linear stability of the 2D isentropic compressible vortex sheets associated with
the boundary constraint F �N |Γ � 0 for the deformation gradient F , by de-
veloping the methodology in Coulombel–Secchi [15]. Comparing with the
aforementioned two types of characteristic discontinuities in MHD, we natu-
rally introduce and investigate the thermoelastic contact discontinuities that
correspond to F �N |Γ � 0.

The goal of this paper is to explore the stabilizing mechanism in ther-
moelasticity such that the thermoelastic contact discontinuities are stable.
More precisely, we identify a stability condition on the piecewise constant
background states and establish the linear stability of thermoelastic contact
discontinuities in the sense that the variable coefficient linearized problem
satisfies appropriate a priori tame estimates under small perturbations. In
particular, our tame estimates do not break down when the strength of ther-
moelastic contact discontinuities tends to zero. As far as we know, this is the
first rigorous result on the stability of thermoelastic contact discontinuities in
the mathematical theory of thermoelasticity.

In general, for hyperbolic problems with a characteristic boundary, there
is a loss of control on the derivatives (precisely, on the normal derivatives of
the characteristic variables) in a priori energy estimates. To overcome this
difficulty, it is natural to introduce the Sobolev spaces with conormal regu-
larity, where two tangential derivatives count as one normal derivative (see
Secchi [25] and the references therein). However, for our problem, we man-
age to work in the usual Sobolev spaces, since the missing normal derivatives
of the characteristic variables can be recovered from the estimates of several
quantities relating to the physical constraints.

In the estimate of tangential derivatives, there is a significant new difficulty,
namely the presence of characteristic variables in the boundary conditions,
which is completely different from the previous works such as [5–9, 15, 22, 28].
New ideas are required to control the boundary integral term arising in the
estimate of tangential derivatives owing to the complex nature of the boundary
conditions. To address this issue, we utilize a combination of the boundary
conditions and the restriction of the interior equations on the boundary to
exploit an intrinsic cancellation effect. This cancellation enables us to reduce
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the boundary term into the sum of the error term R2 (cf. (7.19)) and the
instant boundary integral term R3 (cf. (7.18)).

To establish the energy estimates uniform in the strength of the ther-
moelastic contact discontinuity for R2 and R3, we cannot use the boundary
conditions for the spatial derivatives of the discontinuity function ψ, owing
to the dependence of the coefficients on the strength (cf. (5.15d)). In order to
overcome this difficulty, we develop an idea from Trakhinin [29, Proposition
5.2] and explore new identities and estimates for the derivatives of ψ with the
aid of the interpolation argument. We make the estimate of R3 differently for
the cases whether it contains a time derivative. More precisely, we first con-
sider the case with at least one time derivative. Thanks to the restriction of
the interior equations on the boundary, the time derivative of the deformation
gradient in R3 can be transformed into the tangential space derivatives of
the velocity (cf. (7.31)). As a result, the estimate of traces on the hyperplane
(cf. Lemma 4.2) can be applied to control the primary term R31 (cf. (7.42)).
Employing the identities and estimates for the normal derivative of the non-
characteristic variables, we can reduce the estimate of the instant tangential
energy into that with one less time derivative and one more tangential spatial
derivative (cf. (7.48)). Then we are led to deal with the case containing the
space derivatives. For this case, we derive estimates (7.62) and (7.68) by means
of the identities and estimates for linearized quantities pη, ζq (cf. (6.29)–(6.32))
and Lemma 4.2. With these estimates in hand, we can finally obtain the de-
sired estimate for all the tangential derivatives under the stability condition
(3.23) on the background state. The methods and techniques developed here
may be also helpful for other problems involving similar difficulties.

It is worth noting that our tame estimates are with a fixed loss of derivatives
with respect to the source terms and coefficients. As such, the local existence
and nonlinearly structural stability of thermoelastic contact discontinuities
could be achieved with resorting to a suitable Nash–Moser iteration scheme
as in [5, 16].

Let us also mention some recent results on the classical solutions and weak–
strong uniqueness for the system of polyconvex thermoelasticity. Christo-
forou et al. [11] enlarge the equations of polyconvex thermoelasticity into a
symmetrizable hyperbolic system, which yields the local existence of classical
solutions of the Cauchy problem by applying the general theory in [18, Theo-
rem 5.4.3]. The convergence in the zero-viscosity limit from thermoviscoelastic-
ity to thermoelasticity is also provided in [11] by virtue of the relative entropy
formulation developed in [10]. Moreover, Christoforou et al. [11, 12] es-
tablish the weak–strong uniqueness property in the classes of entropy weak
and measure-valued solutions.

The rest of this paper is organized as follows: In Sect. 2, we introduce
the system of thermoelasticity in the Eulerian coordinates, which can be sym-
metrizable hyperbolic, via the divergence constraints. Then we formulate the
free boundary problem and the reduced problem in a fixed domain for thermoe-
lastic contact discontinuities. It should be pointed out that no thermoelastic
contact discontinuity is possible for the isentropic process (cf. Proposition 2.1).
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Section 3 is devoted to stating the main theorem of this paper, Theorem 3.1.
Before that, based on an alternative form of the boundary operator, we de-
duce the variable coefficient linearized problem around the basic state (that
is, a small perturbation of the stationary thermoelastic contact discontinuity
satisfying suitable constraints). In Sect. 4, we collect some properties of the
Sobolev functions and notations for later use, including the definitions of frac-
tional Sobolev spaces and norms, the estimates of the traces on the hyperplane,
and the Moser-type calculus inequalities. To show Theorem 3.1, in Sect. 5, we
reduce the effective linear problem to a problem with homogeneous boundary
conditions. Section 6 is dedicated to the proof of Proposition 6.1, i.e., the esti-
mate of normal derivatives. More precisely, we estimate the noncharacteristic
variables Wnc and entropies S� in §6.1–§6.2, recover the missing L2-norm of
B1Dβ

tanW1 and B1Dβ
tanWjd�i�1 for 1 ¤ i ¤ d and 2 ¤ j ¤ d in §6.3–§6.4,

and complete the proof of Proposition 6.1 by finite induction in §6.5. Let us
remark that quantities ς, η, and ζ (cf. definitions (6.18), (6.29), and (6.30))
are introduced and estimated to compensate the loss of the normal deriva-
tives of characteristic variables W1 and Wjd�i�1. In Sect. 7, we deduce the
estimate of tangential derivatives, i.e., Proposition 7.1. For this purpose, we
start with the standard energy estimate to introduce the boundary term Q
(cf. (7.5)) and the instant tangential energy Eβtanptq (cf. (7.8)). We present the
intrinsic cancellation for Q in §7.2. Then the boundary integral term can be
reduced to the sum of R2 (the error term, defined by (7.19)) and R3 (the
instant boundary integral term, cf. (7.18)). After that, we deduce the estimate
of R2 in §7.3 and the estimate of R3 in §7.4–§7.6. Proposition 7.1 is proved,
respectively, for the two- and three-dimensional cases at the end of §7.5 and
§7.6. With Propositions 6.1 and 7.1 in hand, we conclude the proof of the main
theorem in Sect. 8. Propositions 2.1 and 2.2 are shown in “Appendices A and
B”, respectively.

2 Formulation of the Nonlinear Problems

In this section, we introduce the system of thermoelasticity in the Eulerian
coordinates and formulate the nonlinear problems for thermoelastic contact
discontinuities.

2.1 Equations of Motion

In the context of elastodynamics, a body is identified with an open subset
O of the reference space Rd for d � 2, 3. A motion of the body over a time
interval pt1, t2q is a Lipschitz mapping x of pt1, t2q �O to Rd such that xpt, �q
is a bi-Lipschitz homeomorphism of O for each t in pt1, t2q. Every particle X
of body O is deformed to the spatial position xpt,Xq at time t.
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The velocity ṽ P Rd with i-th component ṽi and the deformation gradientrF PMd�d with pi, jq-th entry rFij are defined by

ṽipt,Xq :� Bxi
Bt pt,Xq,

rFijpt,Xq :� Bxi
BXj

pt,Xq,

respectively, where Mm�n stands for the vector space of real m� n matrices.
We assume that map xpt, �q : O Ñ Rd is orientation-preserving so that

det rF pt, �q ¡ 0 in O. (2.1)

The compatibility between fields ṽ and rF is expressed by

B rFij
Bt pt,Xq � Bṽi

BXj
pt,Xq for i, j � 1, . . . , d. (2.2)

We need to append the constraints

B rFij
BXk

� B rFik
BXj

for i, j, k � 1, . . . , d, (2.3)

in order to guarantee that rF is a gradient. We emphasize that constraints (2.3)
are involutions to the system of thermoelasticity, meaning that constraints
(2.3) are preserved by the evolution via relations (2.2), provided that they
hold at the initial time (see Dafermos [17]).

We will work in the Eulerian coordinates pt, xq. For convenience, let us
denote by v � pv1, . . . , vdqT the velocity and by F � pFijq the deformation
gradient in the Eulerian coordinates so that

vipt, xq � ṽipt,Xpt, xqq Fijpt, xq � rFijpt,Xpt, xqq,
where Xpt, xq is the inverse map of xpt,Xq for each fixed t.

The system of thermoelasticity modeling the motion of thermoelastic non-
conductors of heat consists of the kinematic relations

pBt � v`B`qFij � B`viF`j for i, j � 1, . . . , d, (2.4)

and the following conservation laws of mass, linear momentum, and energy
(see [18, §2.3]):$'&'%

Btρ� B`pρv`q � 0,

Btpρviq � B`pρv`viq � B`Ti` for i � 1, . . . , d,

Btpρε� 1
2ρ|v|2q � B`ppρε� 1

2ρ|v|2qv`q � B`pvjTj`q,
(2.5)

where Bt :� B
Bt and B` :� B

Bx`
represent the partial differentials, ρ is the

(spatial) density related with reference density ρref ¡ 0 through

ρ � ρref pdetF q�1, (2.6)
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symbol Tij denotes the pi, jq-th entry of the Cauchy stress tensor T P Md�d,
and ε is the (specific) internal energy. Equations (2.4) are directly from the
compatibility relations (2.2). In the Eulerian coordinates, constraints (2.3) are
reduced to

F`kB`Fij � F`jB`Fik for i, j, k � 1, . . . , d, (2.7)

which are the involutions of system (2.4)–(2.5); see Lei–Liu–Zhou [20, Re-
mark 2] for instance. Throughout this paper, we adopt the Einstein summation
convention whereby a repeated index in a term implies the summation over
all the values of that index.

For every given thermoelastic medium, the following constitutive relations
hold (see Coleman–Noll [14]):

ε � εpF , Sq, T � T T � ρ
BεpF , Sq
BF F T, ϑ :� BεpF , Sq

BS ¡ 0,

where S and ϑ represent the (specific) entropy and the (absolute) temperature,
respectively. In this paper, we consider the internal energy functions of the
form

εpF , Sq �
ḑ

i,j�1

aj
2
F 2
ij � epρ, Sq, (2.8)

where aj , for j � 1, . . . , d, are positive constants. In view of (2.6), the internal
energy εpF , Sq depends on the deformation gradient F only through F TF .
Hence, relation (2.8) is frame-indifferent:

εpF , Sq � εpQF , Sq
for all Q PMd�d with QQT � Id and detQ � 1. Here and below, Im denotes
the identity matrix of order m. Moreover, the constitutive relation (2.8) gen-
eralizes that for the compressible neo-Hookean materials (see [13, p. 189]) to
the nonisentropic thermoelasticity. A direct computation gives

T � ρFdiag pa1, . . . , adqF T � pId, (2.9)

with

p :� ρ2 Bepρ, Sq
Bρ , ϑ � Bepρ, Sq

BS ¡ 0, (2.10)

where p � ppρ, Sq is the pressure. The speed of sound c � cpρ, Sq is assumed
to satisfy

cpρ, Sq :�
b
pρpρ, Sq ¡ 0 for ρ ¡ 0. (2.11)

If all of aj are the same, then the material is isotropic; otherwise it is anisotropic
(see [13, §3.4]). In the special case when all of aj are equal to zero, system
(2.5) is reduced to the compressible Euler equations in gas dynamics. Since
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this paper concerns the effect of elasticity to the evolution of materials, we set
without loss of generality that aj � 1 for all j. We refer to [13, Chapters 3–4]
and [18, Chapter 2] for a thorough discussion of the constitutive relations.

For simplicity, the reference density ρref is supposed to be unit, leading to

divpρFjq :� B`pρF`jq � 0 for j � 1, . . . , d, (2.12)

where Fj stands for the j-th column of F ; see, e.g., [20, Remark 1]. By virtue
of the divergence constraints (2.12), we can reformulate (2.4) and (2.7) into
the conservation laws:

BtpρFijq � B`pρFijv` � viρF`jq � 0 for i, j � 1, . . . , d, (2.13)

B`pρF`kFij � ρF`jFikq � 0 for i, j, k � 1, . . . , d. (2.14)

In light of (2.10)–(2.12), for smooth solutions, system (2.4)–(2.5) is equivalent
to

pBt � v`B`qp� ρc2B`v` � 0, (2.15a)

ρpBt � v`B`qvi � Bip� ρF`kB`Fik � 0 for i � 1, . . . , d, (2.15b)

ρpBt � v`B`qFij � ρF`jB`vi � 0 for i, j � 1, . . . , d, (2.15c)

pBt � v`B`qS � 0. (2.15d)

Let us take U � pp, v, F1, . . . , Fd, SqT as the primary unknowns and define the
following symmetric matrices:

A0pUq :� diag
�
1{pρc2q, ρId�d2 , 1

�
, (2.16)

AipUq :�

����������

vi{pρc2q eTi 0 � � � 0 0

ei ρviId �ρFi1Id � � � �ρFidId 0

0 �ρFi1Id 0
...

... ρviId2
...

0 �ρFidId 0

0 0 0 � � � 0 vi

���������
(2.17)

for i � 1, . . . , d, where we denote ei :� pδi,1, . . . , δi,dqT with δi,j being the
Kronecker delta. Then system (2.15) reads as

A0pUqBtU �AipUqBiU � 0, (2.18)

which is symmetric hyperbolic, due to (2.6) and (2.11).
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2.2 Thermoelastic Contact Discontinuities

Let U be smooth on each side of a smooth hypersurface Γ ptq :� tx P Rd :
x1 � ϕpt, x1qu for x1 :� px2, . . . , xdq:

Upt, xq �
#
U�pt, xq in Ω�ptq :� tx P Rd : x1 ¡ ϕpt, x1qu,
U�pt, xq in Ω�ptq :� tx P Rd : x1   ϕpt, x1qu, (2.19)

where U�pt, xq are smooth functions in respective domains Ω�ptq. Then U is
a weak solution of (2.5) and (2.12)–(2.14) if and only if it is a smooth solution
of (2.7), (2.12), and (2.18) in domains Ω�ptq, and the following Rankine–
Hugoniot jump conditions hold at every point of front Γ ptq:

rmN s � 0, (2.20a)

rmNvs � rρF`NF`s � N rps, (2.20b)

rmN pε� 1
2 |v|2qs � rρF`NF` � vs � rpvN s, (2.20c)

rmNFijs � rρFjNvis � 0 for i, j � 1, . . . , d, (2.20d)

rρFjN s � 0 for j � 1, . . . , d, (2.20e)

rρFkNFij � ρFjNFiks � 0 for i, j, k � 1, . . . , d, (2.20f)

where rgs :� pg� � g�q|Γ ptq stands for the jump across Γ ptq, and

v�N :� v� �N, F�
jN :� F�

j �N, m�
N :� ρ�pBtϕ� v�N q

with N :� p1,�B2ϕ, . . . ,�BdϕqT, so that m�
N represent the mass transfer

fluxes. Also see [18, §3.3] for the corresponding jump conditions written in
the Lagrangian description.

We are interested in discontinuous weak solutions U for which the mass
does not transfer across the discontinuity interface Γ ptq:

m�
N � ρ�pBtϕ� v�N q � 0 on Γ ptq. (2.21)

Then the matrix�BtϕA0pUq �N`A`pUq
���
Γ ptq

�

����������

0 �NT 0 � � � 0 0

�N Od ρF1NId � � � ρFdNId 0

0 ρF1NId 0
...

... Od2
...

0 ρFdNId 0

0 0 0 � � � 0 0

���������

��������������
Γ ptq
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has eigenvalues

�
a
|N |2 � ρ2F`NF`N with multiplicity 1,

� ρ
a
F`NF`N with multiplicity d� 1,

0 with multiplicity d2 � d� 2,

where Om denotes the zero matrix of order m. As a result, the boundary
matrix on Γ ptq:

Abdy :� diag
�BtϕA0pU�q �N`A`pU�q,�BtϕA0pU�q �N`A`pU�q���

Γ ptq

is singular, which implies that the free boundary Γ ptq is characteristic. In this
sense, the weak solution U is a characteristic discontinuity.

We now reformulate the jump conditions (2.20) by means of assumption
(2.1). More precisely, from (2.1), we derive���F

�
1N
...

F�
dN

���

���F
�
11
...
F�

1d

��� ḑ

`�2

B`ϕ

���F
�
`1
...
F�
`d

��� 0 on Γ ptq. (2.22)

Consequently, the boundary matrix Abdy on Γ ptq has 2d negative, 2d positive,
and 2pd2 � d � 2q zero eigenvalues. Since one more boundary condition is
needed to determine the unknown interface function ϕ, the correct number
of boundary conditions is 2d � 1, according to the well-posedness theory for
hyperbolic problems. Plugging involutions (2.20e) and condition (2.21) into
(2.20d) leads to

F�
jN rvs � 0 on Γ ptq, for j � 1, . . . , d.

Then it follows from (2.22) that rvs � 0 on Γ ptq. We employ (2.20e) and (2.21)
again to rewrite (2.20a)–(2.20d) as

Btϕ � v�N , rvs � 0, ρ�F�
`N rF`s � N rps on Γ ptq. (2.23)

Definition 2.1 A thermoelastic contact discontinuity is a discontinuous weak
solution of form (2.19) of system (2.5) and (2.12)–(2.14) with the boundary
conditions (2.23).

We exclude (2.20e)–(2.20f) from (2.23) in order to prescribe the correct num-
ber of boundary conditions for the well-posedness of the thermoelastic contact
discontinuity problem. On one hand, (2.20e)–(2.20f) are involutions inherited
from the initial data. On the other hand, they prevent any thermoelastic con-
tact discontinuity in the isentropic process. More generally, we have the fol-
lowing physically relevant result whose proof is postponed to “Appendix A”.

Proposition 2.1 If rSs � 0 on Γ ptq, then rU s � 0 on Γ ptq so that no ther-
moelastic contact discontinuity exists.
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If condition (2.1) is ignored on interface Γ ptq, then there is another type of
characteristic discontinuities for (2.5) and (2.12)–(2.14) with the constitutive
relation (2.9), i.e., the so-called compressible vortex sheets that are associated
with the boundary constraints pF�

1N , . . . , F
�
dN q|Γ ptq � 0. In this case, the jump

conditions (2.20) are reduced to

Btϕ� v�N � Btϕ� v�N � rps � 0 on Γ ptq.

Then the normal velocity and pressure are continuous across front Γ ptq, while
the tangential components of the velocity can undergo a jump. See [8, 9] for
the two-dimensional isentropic case in this regard.

In this paper, we focus on the thermoelastic contact discontinuity problem
corresponding to the boundary constraints

F�
1N � 0, F�

2N � � � � � F�
dN � 0 on Γ ptq. (2.24)

Then the boundary conditions (2.23) on Γ ptq become#Btϕ� v�N � 0, rvs � 0,

ρ�F�
1N rF11s � rps, rF11Biϕ� Fi1s � 0 for i � 2, . . . , d.

(2.25)

By virtue of (2.24), involutions (2.20f) are equivalent to

rFjs � 0 on Γ ptq, for j � 2, . . . , d. (2.26)

Since ϕ describing the discontinuity front Γ ptq is one of the unknowns, the
thermoelastic contact discontinuity problem is a free boundary problem.

Taking into account the Galilean invariance of (2.7), (2.12), (2.18), and
(2.20), we choose the following piecewise constant thermoelastic contact dis-
continuity as the background state:

ϕ̄ � 0, sUpxq � #sU� :� pp̄�, 0, sF�, sS�q if x1 ¡ 0,sU� :� pp̄�, 0, sF�, sS�q if x1   0,
(2.27)

where sF� � diag
� sF�

11,
sF22, . . . , sFdd� and

p̄� � ppρ̄�, sS�q, ρ̄� sF�
11r sF11s � rp̄s for ρ̄� :� pdet sF�q�1, (2.28)

in keeping with (2.6), (2.10), and (2.24)–(2.26). Without loss of generality, we
assume that the principal stretches sF�

11,
sF22, . . . , sFdd are positive constants

with sF�
11 ¡ sF�

11. We point out that each of the background deformations is
either a dilation or a simple extension when sF22 � � � � � sFdd (see Truesdell–
Toupin [30, §43–§44]).
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2.3 Reduced Problem in a Fixed Domain

It is more convenient to convert the free boundary problem for thermoelastic
contact discontinuities into a problem in a fixed domain. To this end, we replace
unknowns U�, being smooth in Ω�ptq, by

U�
7 pt, xq :� Upt, Φ�pt, xq, x1q, (2.29)

where we take the lifting functions Φ� as in Métivier [21, p. 70] to have the
form:

Φ�pt, xq :� �x1 � χp�x1qϕpt, x1q, (2.30)

with χ P C8
0 pRq satisfying that

χ � 1 on r�1, 1s, }χ1}L8pRq   1. (2.31)

The cut-off function χ is introduced as in [21, 23] to avoid the assumption
in the main theorem that the initial perturbations have compact support.
This change of variables is admissible on the time interval r0, T s as long as
}ϕ}L8pr0,T s�Rd�1q ¤ 1

2 .
The existence of thermoelastic contact discontinuities amounts to con-

structing solutions U�
7 , which are smooth in the fixed domain Ω :� tx P

Rd : x1 ¡ 0u, of the following initial-boundary value problem:

LpU�, Φ�q :� LpU�, Φ�qU� � 0 if x1 ¡ 0, (2.32a)

BpU�, U�, ϕq � 0 if x1 � 0, (2.32b)

pU�, U�, ϕq � pU�
0 , U

�
0 , ϕ0q if t � 0, (2.32c)

where index “7” has been dropped for notational simplicity. Thanks to trans-
formation (2.29), operator LpU,Φq is given by

LpU,Φq :� A0pUqBt � rA1pU,ΦqB1 �
ḑ

i�2

AipUqBi, (2.33)

where AipUq, for i � 0, . . . , d, are defined by (2.16)–(2.17), and

rA1pU,Φq :� 1

B1Φ

�
A1pUq � BtΦA0pUq �

ḑ

i�2

BiΦAipUq
	
.

According to (2.25), the boundary operator B reads as

BpU�, U�, ϕq :�

����������

Btϕ� v�N
rvs

rps � ρ�F�
1N rF11s

rF11B2ϕ� F21s
...

rF11Bdϕ� Fd1s

���������
. (2.34)
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The boundary matrix diagp� rA1pU�, Φ�q,� rA1pU�, Φ�qq for problem (2.32)
has 2d negative eigenvalues (“incoming characteristics”) on boundary BΩ :�
tx P Rd : x1 � 0u. As discussed before, the correct number of boundary
conditions is 2d� 1, which is just the case in (2.32b).

In accordance with (2.6)–(2.7), (2.20e)–(2.20f), and (2.24), we assume that
the initial data (2.32c) satisfy that

ρ� � pdetF�q�1 if x1 ¥ 0, (2.35)

F�
`kBΦ

�

` F�
ij � F�

`jBΦ
�

` F�
ik � 0 for i, j, k � 1, . . . , d, if x1 ¡ 0, (2.36)

rρFjN s � 0 for j � 1, . . . , d, if x1 � 0, (2.37)

rρFkNFij � ρFjNFiks � 0 for i, j, k � 1, . . . , d, if x1 � 0, (2.38)

F�
jN � 0 for j � 2, . . . , d, if x1 � 0. (2.39)

Here and below, to simplify the notation, we denote the partial differentials
with respect to the lifting function Φ by

BΦt :� Bt � BtΦ
B1Φ

B1, BΦ1 :� 1

B1Φ
B1, BΦi :� Bi � BiΦ

B1Φ
B1 for i � 2, . . . , d. (2.40)

The following proposition manifests that identities (2.35)–(2.39) are invo-
lutions in the straightened coordinates. See “Appendix B” for the proof.

Proposition 2.2 For each sufficiently smooth solution of problem (2.32) on
the time interval r0, T s, if constraints (2.35)–(2.39) are satisfied at the initial
time, then these constraints and

BΦ�` pρ�F�
`j q � 0 if x1 ¡ 0, for j � 1, . . . , d, (2.41)

hold for all t P r0, T s.

Relations (2.41) are involutions in the straightened coordinates correspond-
ing to the divergence constraints (2.12), from which we can pass from the Eule-
rian to the Lagrangian formulation of the thermoelastic contact discontinuity
problem.

3 Linearized Problem and Main Theorem

In this section we introduce the basic state pŮ�, ϕ̊q that is a small perturbation
of the stationary thermoelastic contact discontinuity psU�, ϕ̄q given in (2.27)–
(2.28). Then we perform the linearization and state the main theorem of this
paper.
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3.1 Basic State

We denote ΩT :� p�8, T q �Ω and ωT :� p�8, T q � BΩ for any real number
T . Let the basic state pŮ�, ϕ̊q with Ů� :� pp̊�, v̊�, F̊�, S̊�qT be sufficiently
smooth. According to form (2.30), we introduce the notations

sΦ� :� �x1, Φ̊� :� �x1 � Ψ̊�, Ψ̊� :� χp�x1qϕ̊pt, x1q, (3.1)

v̊�N :� v̊� � N̊�, F̊�
jN :� F̊�

j � N̊�, N̊� :� p1,�B2Φ̊
�, . . . ,�BdΦ̊�qT,

(3.2)

where χ P C8
0 pRq satisfies (2.31), and F̊�

j are the jth columns of F̊�.

Perturbations V̊ � :� Ů� � sU� and ϕ̊ are supposed to satisfy that

}V̊ �}H6pΩT q � }ϕ̊}H6pωT q ¤ K (3.3)

for a sufficiently small positive constant K ¤ 1, so that

�B1Φ̊
� ¥ 1

2
on ΩT, (3.4)

thanks to the Sobolev embedding H6pΩT q ãÑ W 3,8pΩT q. We assume further
that the basic state pŮ�, ϕ̊q satisfies constraints (2.35), (2.32b), and (2.37)–
(2.39), i.e.,

ρ̊� � pdet F̊�q�1, p̊� � ppρ̊�, S̊�q if x1 ¥ 0, (3.5a)

B
�
Ů�, Ů�, ϕ̊

� � 0 if x1 � 0, (3.5b)

rρ̊F̊jN s � 0 for j � 1, . . . , d, if x1 � 0, (3.5c)

rρ̊F̊kN F̊ij � ρ̊F̊jN F̊iks � 0 for i, j, k � 1, . . . , d, if x1 � 0, (3.5d)

F̊�
jN � 0 for j � 2, . . . , d, if x1 � 0. (3.5e)

Under (3.5c) and (3.5e), relations (3.5d) are equivalent to

rF̊js � 0 on BΩ, for j � 2, . . . , d. (3.6)

Moreover, we assume that the basic state satisfies

�
Bt �

ḑ

`�2

v̊�` B`
	
F̊�
j �

ḑ

`�2

F̊�
`jB`v̊� � 0 on BΩ, for j � 2, . . . , d, (3.7)

which will play an important role in the estimate of the tangential derivatives,
especially in the proof of Lemma 7.2. As a matter of fact, constraints (3.7) come
from restricting the interior equations for F�

j on boundary BΩ and utilizing
(3.5b)–(3.5e).

Before performing the linearization, we give an alternative form of the
boundary operator B defined in (2.34), which will be essential for providing the
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cancellation effect in the estimate of the tangential derivatives. More precisely,
by virtue of (2.39), we observe that

detF� � %pF�q�1F�
1N on BΩ, (3.8)

where %pF q is the scalar function defined by

%pF q :�
#
F�1

22 if d � 2,

pF22F33 � F23F32q�1 if d � 3.
(3.9)

In particular, for the background state (2.27), we have

%p sF�q �
#sF�1

22 if d � 2,sF�1
22

sF�1
33 if d � 3.

(3.10)

Combine (3.8) with (2.35) and use (2.37) to obtain

ρ�F�
1N � %pF�q � %pF�q on BΩ, (3.11)

which yields

BpU�, U�, ϕq �

����������

Btϕ� v�N
rvs

rps � %pF�qrF11s
rF11B2ϕ� F21s

...
rF11Bdϕ� Fd1s

���������
. (3.12)

Furthermore, from (3.5a), (3.5e), and (3.6), we infer that

ρ̊�F̊�
1N � %pF̊�q � %pF̊�q on BΩ. (3.13)

As a result, constraints (3.5)–(3.7) are equivalent to constraints (3.5a)–(3.5b)
and (3.5e)–(3.7).

3.2 Linearization and Main Theorem

Let us now deduce the linearized problem based on identity (3.12). For this
purpose, we consider families pU�

ε , Φ
�
ε q � pŮ� � εV �, Φ̊� � εΨ�q, where

Ψ�pt, xq :� χp�x1qψpt, x1q. (3.14)

The linearized operators are given by$''&''%
L1
�
Ů�, Φ̊�

�pV �, Ψ�q :� d

dε
L
�
U�
ε , Φ

�
ε

�����
ε�0

,

B1
�
Ů�, ϕ̊

�pV, ψq :� d

dε
BpU�

ε , U
�
ε , ϕεq

����
ε�0

,
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where V :� pV �, V �qT, and ϕε :� ϕ̊� εψ denotes the common trace of Φ�ε on
boundary BΩ. A standard calculation leads to

L1pU,ΦqpV, Ψq � LpU,ΦqV � CpU,ΦqV � 1

B1Φ

�
LpU,ΦqΨ�B1U, (3.15)

where LpU,Φq is given in (2.33), and CpU,Φq is the zero-th order operator
defined by

CpU,ΦqV :� V`
BA0pUq
BU` BtU � V`

B rA1pU,Φq
BU` B1U �

ḑ

i�2

V`
BAipUq
BU` BiU. (3.16)

Thanks to the alternative form (3.12), we compute

B1
�
Ů�, ϕ̊

�pV, ψq �
����������

�Bt �°d
i�2 v̊

�
i Bi

�
ψ � v� � N̊

rvs
rps � %pF̊�qrF11s � rF̊11sBFij%pF̊�qF�

ij

rF11B2ϕ̊� F21s � rF̊11sB2ψ
...

rF11Bdϕ̊� Fd1s � rF̊11sBdψ

���������
(3.17)

with %pF q defined by (3.9).

As in Alinhac [1], applying the “good unknowns”:

9V � :� V � � Ψ�

B1Φ̊�
B1Ů

�, (3.18)

we calculate (cf. [21, Proposition 1.3.1])

L1pŮ�, Φ̊�qpV �, Ψ�q

� LpŮ�, Φ̊�q 9V � � CpŮ�, Φ̊�q 9V � � Ψ�

B1Φ̊�
B1

�
LpŮ�, Φ̊�qŮ�

�
. (3.19)

In view of the nonlinear results obtained in [1, 5, 16], we neglect the zero-th
order terms in Ψ� of (3.19) and consider the effective linear problem

L1e,� 9V � � f� if x1 ¡ 0, (3.20a)

B1ep 9V , ψq � g if x1 � 0, (3.20b)

p 9V , ψq � 0 if t   0, (3.20c)
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where we abbreviate 9V :� p 9V �, 9V �qT and denote

L1
e,�

9V � :� LpŮ�, Φ̊�q 9V � � CpŮ�, Φ̊�q 9V �, (3.21)

B1
ep 9V , ψq :�

�����������

�Bt �°d
i�2 v̊

�
i Bi

�
ψ � 9v� � N̊� � B1v̊

�
Nψ

r 9vs � ψpB1v̊
� � B1v̊

�q
r 9ps � %pF̊�qr 9F11s � rF̊11sBFij%pF̊�q 9F�

ij � b̊1ψ

r 9F11B2ϕ̊� 9F21s � rF̊11sB2ψ � b̊2ψ
...

r 9F11Bdϕ̊� 9Fd1s � rF̊11sBdψ � b̊dψ

����������
, (3.22)

with operators L and C defined by (2.33) and (3.16). In (3.22), we denote

b̊1 :� B1p̊
� � B1p̊

� � %pF̊�qpB1F̊
�
11 � B1F̊

�
11q � rF̊11sBFij%pF̊�qB1F̊

�
ij ,

b̊i :� pB1F̊
�
11 � B1F̊

�
11qBiϕ̊� pB1F̊

�
i1 � B1F̊

�
i1 q for i � 2, . . . , d.

The explicit form (3.22) results from the identity B1
ep 9V , ψq � B1

�
Ů�, ϕ̊

�pV, ψq.
We write V̊ :� pV̊ �, V̊ �qT, Ψ̊ :� pΨ̊�, Ψ̊�qT, L1

e
9V :� pL1

e,�
9V �,L1

e,�
9V �qT,

f :� pf�, f�qT, etc. to avoid overloaded expressions.
We now state the main result of this paper.

Theorem 3.1 Let T ¡ 0 and s P N� be fixed. Assume that the background
state (2.27)–(2.28) satisfies the stability condition

r sF11ssF�
11

 
#sF 2

22p sF�
11q�2 if d � 2,sC�1 if d � 3,

(3.23)

with

sC :�
�

1�
sF 2
22sF 2
33

	1{2
"

maxp1, p
sF�
11q2sF 2
22

q �maxp1, p
sF�
11q2sF 2
33

q
sF33sF22

*
,

and that perturbations pV̊ �, ϕ̊q P Hs�2pΩT q � Hs�2pωT q satisfy constraints
(3.3)–(3.7). Then there exist positive constants K0 and C0, uniformly bounded
even when r sF11s tends to zero, such that, for all K ¤ K0 and p 9V �, ψq P
Hs�1pΩT q �Hs�3{2pωT q vanishing in the past,

} 9V }H1pΩT q � }ψ}H3{2pωT q

¤ C0

!
}L1e 9V }H1pΩT q � }B1ep 9V , ψq}H3{2pωT q

)
if s � 1, (3.24)

} 9V }HspΩT q � }ψ}Hs�1{2pωT q

¤ C0

!
}L1e 9V }HspΩT q � }B1

ep 9V , ψq}Hs�1{2pωT q

�
�
}L1

e
9V }H3pΩT q � }B1ep 9V , ψq}H7{2pωT q

	
�
�
}V̊ �}Hs�2pΩT q � }ϕ̊}Hs�2pωT q

	)
if s ¥ 3. (3.25)
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Notice that the H2pΩT q�H5{2pωT q–estimate of p 9V , ψq follows from (3.25)
with s � 3. We remark that the tame estimates (3.24)–(3.25) present no loss
of regularity with respect to the interior source term L1

e
9V , while there is a

loss of one derivative with respect to the boundary source term B1
ep 9V , ψq. It

should also be pointed out that estimate (3.25) is with a fixed loss of regularity
with respect to the coefficients, which offers a way to establish the nonlinear
stability of thermoelastic contact discontinuities by a suitable Nash–Moser
iteration scheme. The dropped terms in (3.19) will be considered as error terms
at each Nash–Moser iteration step. Moreover, Theorem 3.1 provides the tame
estimates in the usual Sobolev spaces Hs for the solutions and source terms
vanishing in the past, which corresponds to the nonlinear problem with zero
initial data. The case with general initial data is postponed to the nonlinear
analysis that involves the construction of so-called approximate solutions.

4 Sobolev Functions and Notations

In this section, we first state the definitions of some fractional Sobolev spaces
and norms for self-containedness. Then we prove two important estimates for
the traces of H1pRn�1

� q–functions on the hyperplane ty P Rn�1 : y1 � 0u
with Rn�1

� :� ty P Rn�1 : y1 ¡ 0u. We also present the Moser-type calculus
inequalities and the notations for later use.

4.1 Fractional Sobolev Spaces and Norms

We first give the definitions of the Sobolev spaces and norms for general do-
mains; see also Tartar [27] for more details.

Definition 4.1 Let O be an open subset of Rn with n P N�. For every non-
negative integer m, the Sobolev space HmpOq is defined by

HmpOq :� tu P L2pOq : Bαu P L2pOq for all α P Nn with |α| ¤ mu,
equipped with the norm

}u}HmpOq :�
� ¸
|α|¤m

»
O
|Bαupyq|2dy

	 1
2

, (4.1)

where α :� pα1, . . . , αnq P Nn denotes a multi-index,

|α| :� α1 � � � � � αn, Bαupyq :� B|α|
Byα1

1 � � � Byαnn upyq.

For each real number s ¥ 0 that is not an integer, the fractional Sobolev space
HspOq and its norm }�}HspOq can be defined by interpolation between HtsupOq
and Htsu�1pOq psee [27, §22]q, where tsu denotes the greatest integer less than
or equal to s.
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Next we present an alternative definition of the Sobolev space HspRnq via the
Fourier transform.

Definition 4.2 For each real number s ¥ 0, we define

HspRnq :�  
u P L2pRnq : |ξ|sFupξq P L2pRnq( ,

where Fu denotes the Fourier transform of u; in particular,

Fupξq :�
»
Rn
upyqe�2πi y�ξ dy for u P L1pRnq.

The negative-order Sobolev spaces H�spRnq are defined by duality as

H�spRnq :� pHspRnqq1 for all s ¥ 0.

Let us recall that

FpBαuq � p2πi ξqαFu for all u P L2pRnq, (4.2)»
Rn
uwdy �

»
Rn

FuFwdy for all u,w P L2pRnq, (4.3)

where w denotes the complex conjugation of w. Using identities (4.2)–(4.3),
we can show that Definition 4.1 is equivalent to Definition 4.2 for s P N and
O � Rn. Furthermore, we refer to [27] for the equivalence between Definition
4.1 and Definition 4.2 for fractional Sobolev spaces HspRnq.

4.2 Traces on the Hyperplane

The following lemma is to characterize the traces of H1pRn�1
� q–functions on

the hyperplane ty P Rn�1 : y1 � 0u.
Lemma 4.1 Any function u P H1pRn�1

� q has a trace w on the hyperplane

ty P Rn�1 : y1 � 0u such that w belongs to H1{2pRnq and satisfies»
Rn
p1� 4π2|ξ1|2q 1

2

��Fwpξ1q��2 dξ1 ¤ }u}2
H1pRn�1

� q
. (4.4)

Proof We first extend u P H1pRn�1
� q to be defined in Rn�1 by setting

Eupy1, y
1q :�

#
upy1, y

1q if y1 ¡ 0,

up�y1, y
1q if y1   0,

for all y1 :� py2, . . . , yn�1q P Rn. In view of [27, Lemma 12.5], we obtain that
Eu P H1pRn�1q. A direct computation yields that$&%}Eu}L2pRn�1q ¤

?
2}u}L2pRn�1

� q,

}ByEu}L2pRn�1q ¤
?

2}Byu}L2pRn�1
� q.

(4.5)
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By virtue of (4.5), it suffices to prove that, for all rapidly decreasing C8–
function ũ P S pRn�1q,»

Rn
p1� 4π2|ξ1|2q 1

2

��Fwpξ1q��2 dξ1 ¤ 1

2
}ũ}2H1pRn�1q (4.6)

with w defined by wpy1q :� ũp0, y1q for y1 P Rn. According to [27, Lemma
15.11], we have

Fwpξ1q �
»
R
F ũpξ1, ξ1qdξ1 for ξ1 P Rn,

which, along with the Cauchy–Schwarz inequality, implies that

|Fwpξ1q|2 ¤
»
R
p1� 4π2|ξ|2q ��F ũpξ1, ξ1q��2 dξ1

»
R

dξ1
1� 4π2|ξ|2 .

Performing the change of variable: ξ1 � tp1� 4π2|ξ1|2q1{2, we obtain that»
R

dξ1
1� 4π2|ξ|2 � p1� 4π2|ξ1|2q� 1

2

»
R

dt

1� 4π2t2
� 1

2
p1� 4π2|ξ1|2q� 1

2 .

Combine the two estimates above to infer»
Rn
p1� 4π2|ξ1|2q 1

2

��Fwpξ1q��2 dξ1 ¤ 1

2

»
Rn�1

p1� 4π2|ξ|2q ��F ũpξ1, ξ1q��2 dξ,

from which we can deduce (4.6) by means of (4.2)–(4.3). l

The next lemma will be crucial for reducing the boundary integrals to the
volume ones in the estimate of tangential derivatives.

Lemma 4.2 If n P N� and u1, u2 P H1pRn�1
� q, then����»

Rn
u1
Bu2

Byj p0, y
1q dy1

����
¤ }u1}H1pRn�1

� q}u2}H1pRn�1
� q for j � 2, . . . , n� 1. (4.7)

Proof In light of (4.2)–(4.3), we have����»
Rn
u1
Bu2

Byj p0, y
1q dy1

���� � ����»
Rn

Fsu12πi ξjFu2p0, ξ1qdξ1
����

¤
�»

Rn
p1� 4π2|ξ1|2q 1

2

��Fu1p0, ξ1q
��2 dξ1


 1
2

�
�»

Rn
p1� 4π2|ξ1|2q� 1

2 4π2ξ2
j

��Fu2p0, ξ1q
��2 dξ1


 1
2

,

which, combined with (4.4), leads to (4.7). l
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4.3 Moser-Type Calculus Inequalities

We present the following Moser-type calculus inequalities that will be repeat-
edly employed in the subsequent analysis.

Lemma 4.3 (Moser-type calculus inequalities) Let O be an open subset
of Rn with Lipschitz boundary for n P N�. Assume that b P C8pRq and u,w P
L8pOq XHmpOq for an integer m ¡ 0.
(a) If |α| � |β| ¤ m and bp0q � 0, then

}BαuBβw}L2 � }uw}Hm ¤ C}u}Hm}w}L8 � C}u}L8}w}Hm , (4.8)

}bpuq}Hm ¤ CpM0q}u}Hm . (4.9)

(b) If |α� β � γ| ¤ m, then

}BαrBβ , bpuqsBγw}L2 ¤ CpM0q
�}w}Hm � }u}Hm}w}L8

�
. (4.10)

Moreover, if u PW 1,8pOq, then

}BαrBβ , bpuqsBγw}L2 ¤ CpM1q
�}w}Hm�1 � }u}Hm}w}L8

�
. (4.11)

Here we write }�}Lp :� }�}LppOq, }�}Hm :� }�}HmpOq, and }�}W 1,8 :� }�}W 1,8pOq

for notational simplicity, and M0 and M1 are positive constants such that
}u}L8 ¤M0 and }u}W 1,8 ¤M1. As usual,

ra, bsc :� apbcq � bpacq
denotes the notation of commutator.

Proof We refer to Stein [26, §VI.3–§VI.4] for reducing the analysis of this
lemma to the case when O � Rn. See Alinhac–Gérard [2, pp. 84–89] for
the detailed proof of assertion (a) when O � Rn. Here we give the proof of
(4.10)–(4.11) by means of (4.8)–(4.9). It follows from (4.8) that��BαrBβ , usBγw��

L2 ¤ C
¸
α1¤α

¸
0 β1¤β

��Bα1Bβ1u Bα�α1Bβ�β1Bγw��
L2

¤ C}u}Hm}w}L8 � C}u}L8}w}Hm , (4.12)��BαrBβ , usBγw��
L2 ¤ C

¸
α1¤α

¸
β2¤β1¤β
|β2|�1

��Bα1Bβ1�β2�Bβ2u� Bα�α1Bβ�β1Bγw��
L2

¤ C}u}Hm}w}L8 � C}u}W 1,8}w}Hm�1 . (4.13)

Combining (4.13) with (4.9) yields that

}BαrBβ , bpuqsBγw}L2 � }BαrBβ , bpuq � bp0qsBγw}L2

¤ C}bpuq � bp0q}Hm}w}L8 � C}bpuq � bp0q}W 1,8}w}Hm�1

¤ CpM1qp}w}Hm�1 � }u}Hm}w}L8q.
Inequality (4.10) can be proved similarly from (4.9) and (4.12). l
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4.4 Notations

For convenience, we collect the following notations.

(i) We will use letter C to denote any universal positive constant. Symbol Cp�q
denotes any generic positive constant depending only on the quantities
listed in the parenthesis. Notice that constants C and Cp�q may vary at
different occurrence. We denote A À B (or B Á A) if A ¤ CB holds
uniformly for some universal positive constant C. Symbol A � B means
that both A À B and B À A hold.

(ii) Letter d always denotes the spatial dimension. Both the two and three
dimensional cases (d � 2, 3) are considered. Symbol Ω stands for the half-
space tx P Rd : x1 ¡ 0u. Boundary BΩ :� tx P Rd : x1 � 0u is identified to
Rd�1. We write Ωt :� p�8, tq �Ω and ωt :� p�8, tq � BΩ.

(iii) Symbol D will be used to denote

D :� pBt, B1, . . . , Bdq,
where Bt :� B

Bt and B` :� B
Bx`

are the partial differentials. For any multi-

index α � pα0, α1, . . . , αdq P Nd�1, we define

Dα :� Bα0
t Bα1

1 � � � Bαdd , |α| :� α0 � α1 � � � � � αd.

For m P N, we denote Dm :� tDα : |α| � mu.
(iv) Denote Dx :� pB1, . . . , Bdq as the gradient vector and Dtan :� pBt, B2, . . . , Bdq

as the tangential derivative. We write

Dβ
tan :� Bβ0

t Bβ2

2 � � � Bβdd , |β| :� β0 � β2 � � � � � βd,

for any multi-index β � pβ0, β2, . . . , βdq P Nd. Denote Dx1 :� pB2, . . . , Bdq.
(v) For any nonnegative integer m, we introduce

|||uptq|||m :�
� ¸
|α|¤m

}Dαuptq}2L2pΩq

	1{2

, (4.14)

|||uptq|||tan,m :�
� ¸
|β|¤m

}Dβ
tanuptq}2L2pΩq

	1{2

, (4.15)

C̊m :� 1� }pV̊ , Ψ̊q}2HmpΩT q
, (4.16)

so that our formulas will be much shortened in the calculations.
(vi) Recall the partial differentials with respect to functions Φ̊� from the nota-

tions in (2.40) to obtain

BΦ̊�t � v̊�` BΦ̊
�

` � Bt � ẘ�
` B`,

where

ẘ�
1 :� 1

B1Φ̊�
p̊v�N � BtΦ̊�q, ẘ�

i :� v̊�i for i � 2, . . . , d. (4.17)
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In view of condition (3.5b), we have

ẘ�
1 � 0 on BΩ. (4.18)

Let us define

B0 :� Bt �
ḑ

i�2

v̊�i Bi on ΩT, (4.19)

which coincides with Bt � ẘ�
` B` on boundary BΩ as a result of (3.5b) and

(4.18).
(vii) For any nonnegative integer m, a generic and smooth matrix-valued func-

tion of tpDαV̊ ,DαΨ̊q : |α| ¤ mu is denoted by c̊m, and by c̊m if it vanishes
at the origin. The exact forms of c̊m and c̊m may be different at each
occurrence. For instance, the equations for p� in (3.20a) can be written as

pBt � ẘ�
` B`qp� � ρ̊�c̊2�BΦ̊

�

` v�` � c̊0f � c̊1V,

since CpŮ , Φ̊q are C8–functions of pV̊ ,DV̊ ,DΨ̊q vanishing at the origin.

5 Partial Homogenization and Reformulation

It is more convenient to reformulate problem (3.20) into the case with ho-
mogeneous boundary conditions. To this end, noting that g � B1

ep 9V , ψq P
Hs�1{2pωT q vanishes in the past, we employ the trace theorem to find a regu-
lar function V6 � pV �

6 , V
�
6 qT P Hs�1pΩT q vanishing in the past such that

B1
epV6, 0q

��
ωT

� g, }V6}HmpΩT q À }g}Hm�1{2pωT q for m � 1, . . . , s� 1. (5.1)

Then the new unknowns V �
5 :� 9V � � V �

6 solve problem (3.20) with zero

boundary source term and new internal source terms f̃�:

L1e,�V � � f̃� if x1 ¡ 0, (5.2a)

B1epV, ψq � 0 if x1 � 0, (5.2b)

pV, ψq � 0 if t   0, (5.2c)

where we have dropped index “5” for simplicity of notation, operators L1
e,�

and B1
e are defined by (3.21)–(3.22), and

f̃� :� f� � LpŮ�, Φ̊�qV �
6 � CpŮ�, Φ̊�qV �

6 . (5.3)

We introduce new unknowns W� in order to distinguish the noncharacter-
istic variables from the others for problem (5.2). More precisely, we define$''&''%

W�
1 :� p�, W�

2 :� v� � N̊�, W�
j�1 :� v�j ,

W�
d�2 :� p� � ρ̊�F̊�

1NF
�
11, W�

d�j�1 :� BjΦ̊�F�
11 � F�

j1,

W�
jd�i�1 :� F�

ij , W�
d2�d�2 :� S� for i � 1, . . . , d, j � 2, . . . , d,

(5.4)
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where N̊� and F̊�
1N are given in (3.2). Equivalently, we set

W� :� J̊�1
� V �, J̊� :� JpŮ�, Φ̊�q,

where JpU,Φq is the C8–function of pU,DΦq defined as

JpU,Φq :�

�������������

1 0 0 0 0 0

0 1 B2Φ 0 0 0

0 0 1 0 0 0

1

ρF1N
0 0 �

1

ρF1N
0 0

�
B2Φ

ρF1N
0 0

B2Φ

ρF1N
1 0

0 0 0 0 0 I3

������������
if d � 2,

and

JpU,Φq :�

��������������������

1 0 0 0 0 0 0 0

0 1 B2Φ B3Φ 0 0 0 0

0 0 1 0 0 0 0 0

0 0 0 1 0 0 0 0

1

ρF1N
0 0 0 �

1

ρF1N
0 0 0

�
B2Φ

ρF1N
0 0 0

B2Φ

ρF1N
1 0 0

�
B3Φ

ρF1N
0 0 0

B3Φ

ρF1N
0 1 0

0 0 0 0 0 0 0 I7

�������������������

if d � 3.

In terms of the new unknowns W�, we obtain the equivalent formulation
of problem (5.2a) as

Å�
0 BtW� �

ḑ

j�1

Å�
j BjW� � Å�

4 W
� � J̊T

�f̃
� in ΩT , (5.5)

where Å�
i :� AipŮ�, Φ̊�q, for i � 0, . . . , d, with

$'''&'''%
A1pU,Φq :� JpU,ΦqT rA1pU,ΦqJpU,Φq,
AjpU,Φq :� JpU,ΦqTAjpUqJpU,Φq for j � 0, 2, . . . , d,

A4pU,Φq :� JpU,ΦqTpLpU,ΦqJpU,Φq � CpU,ΦqJpU,Φqq .
(5.6)
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Note that the coefficient matrices Å�
j , for j � 0, . . . , d, are symmetric, and

Å�
0 are positive definite. In particular, a straightforward calculation gives

A0psU�, sΦ�q �

�����������

1

ρ̄�c̄2
�

�
1

ρ̄�p sF�11q
2

0 �
1

ρ̄�p sF�11q
2

0 0

0 ρ̄�Id 0 0 0

�
1

ρ̄�p sF�11q
2

0
1

ρ̄�p sF�11q
2

0 0

0 0 0 ρ̄�Id2�1 0

0 0 0 0 1

����������
, (5.7)

A2psU�, sΦ�q �
������

0 eT2 0 0 0

e2 Od Od �ρ̄� sF22Id 0

0 Od

0 �ρ̄� sF22Id Od2�1

0 0

�����, (5.8)

and, for the three-dimensional case,

A3psU�, sΦ�q �
��������

0 eT3 0 0 0 0

e3 O3 O3 O3 �ρ̄� sF33I3 0

0 O3 O3 O3 O3 0

0 O3 O3 O3 O3 0

0 �ρ̄� sF33I3 O3 O3 O3 0

0 0 0 0 0 0

�������, (5.9)

where ρ̄� :� pdet sF�q�1 are the background densities, and c̄� :� pρpρ̄�, sS�q1{2
are the background speeds of sound. The explicit expressions (5.7)–(5.9) will
be used in the estimate of tangential derivatives.

We now compute the exact form of Å�
1 on boundary BΩ, which is necessary

for deriving the energy estimate of tangential derivatives. We first infer from
(3.5b) and (3.5e) that matrices rA1pŮ�, Φ̊�q satisfy

rA1pŮ�, Φ̊�q
���
x1�0

� �

�����
0 pN̊�qT 0 0

N̊� Od �ρ̊�F̊�1NId 0

0 �ρ̊�F̊�1NId Od 0

0 0 0 Od2�d�1

����
���������
x1�0

. (5.10)

In light of (5.10), we can decompose the boundary matrices Å�
1 as

Å�
1 � J̊T

�
rA1pŮ�, Φ̊�qJ̊� � Å�

1a � Å�
1b with Å�

1b

���
x1�0

� 0, (5.11)

where

Å�
1a :� �

������
0 0 0 0

0 Od ApŮ�, Φ̊�q 0

0 ApŮ�, Φ̊�q Od 0

0 0 0 Od2�d�1

�����, (5.12)
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with

ApU,Φq :� diag p1, �ρF1NId�1q. (5.13)

The explicit expression of Å�
1b is of no interest. According to the kernels of

matrices Å�
1a, we denote by

W�
nc :� pW�

2 , . . . ,W
�
2d�1qT (5.14)

the noncharacteristic parts of unknowns W�, and by

W�
c :� pW�

1 ,W
�
2d�2, . . . ,W

�
d2�d�2qT

the characteristic parts of W�.
We reformulate the boundary conditions (5.2b) for unknowns W� into

B0ψ �W�
2 � c̊1ψ on ωT , (5.15a)

rWi�1s � c̊1ψ for i � 1, . . . , d, on ωT , (5.15b)

rWd�2s � rF̊11sBFij%pF̊�qF�
ij � c̊1ψ on ωT , (5.15c)

rWd�j�1s � �rF̊11sBjψ � c̊1ψ for j � 2, . . . , d, on ωT , (5.15d)

where %pF q and B0 are defined by (3.9) and (4.19), respectively. Here we re-
call that symbol c̊m denotes a generic and smooth matrix-valued function
of tpDαV̊ , DαΨ̊q : |α| ¤ mu vanishing at the origin. It is worth mentioning
that the boundary conditions (5.15) depend upon the traces of W� not only
through the noncharacteristic variables W�

nc but also through the character-
istic variables F�

ij for i, j � 2, . . . , d, which is a different situation from the
standard one (see, e.g., [3, §4.1]).

6 Estimate of the Normal Derivatives

This section is devoted to the proof of the following proposition.

Proposition 6.1 If the assumptions in Theorem 3.1 are satisfied, then

|||W ptq|||2s À |||W ptq|||2tan,s � }pf̃ ,W q}2HspΩtq � C̊s�2}pf̃ ,W q}2L8pΩtq, (6.1)

where ||| � |||s, ||| � |||tan,s, and C̊s�2 are defined by (4.14)–(4.16), respectively. In
addition,

|||W ptq|||21 À |||W ptq|||2tan,1 � }pf̃ ,W q}2H1pΩtq
. (6.2)

In this section, we let β � pβ0, β2, . . . , βdq P Nd be a multi-index with
|β| ¤ s � 1. The proof of this proposition is divided into the following five
subsections.
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6.1 Estimate of the Noncharacteristic Variables

In view of (5.5) and (5.11)–(5.12), we have that�� 0
B1W

�
nc

0

�� � B̊�Å�
0 BtW� �

ḑ

j�2

B̊�Å�
j BjW�

� B̊�Å�
1bB1W

� � B̊�Å�
4 W

� � B̊�J̊T
�f̃

�, (6.3)

where B̊� :� �BpŮ�, Φ̊�q, and BpU,Φq is defined by

BpU,Φq :�

�����
0 0 0 0

0 Od ApU,Φq�1 0

0 ApU,Φq�1 Od 0

0 0 0 Od2�d�1

����, (6.4)

with ApU,Φq given in (5.13).
Noting that BpU,Φq and AjpU,Φq are C8–functions of pU,DΦq for j �

0, . . . , d, we apply operator Dβ
tan :� Bβ0

t Bβ2

2 � � � Bβdd to identity (6.3) and deduce

}B1Dβ
tanWnc}2L2pΩq À }Dβ

tanp̊c1DtanW q}2L2pΩq � }Dβ
tanpB̊Å1bB1W q}2L2pΩq

� }Dβ
tanpB̊Å4W q}2L2pΩq � }Dβ

tanpB̊J̊Tf̃q}2L2pΩq. (6.5)

Here we recall that c̊m denotes a generic and smooth matrix-valued function
of tpDαV̊ ,DαΨ̊q : |α| ¤ mu.

We integrate by parts to obtain that

|||uptq|||2m�1 À
¸

|α|¤m�1

»
Ωt

|Dαupτ, xq||BtDαupτ, xq|dxdτ À }u}2HmpΩtq
. (6.6)

By virtue of (6.6) and the Moser-type calculus inequality (4.11), we have

}Dβ
tanp̊c1DtanW q}2L2pΩq À }̊c1Dβ

tanDtanW � rDβ
tan, c̊1sDtanW }2L2pΩq

À |||W |||2tan,s � }rDβ
tan, c̊1sDtanW }2H1pΩtq

À |||W |||2tan,s � }W }2HspΩtq � C̊s�2}W }2L8pΩtq. (6.7)

Since BpU,Φq and JpU,Φq are C8–functions of pU,DΦq, and A4pU,Φq is
a C8–function of pU,DΦ,DU,D2Φq, we use (6.6) and the Moser-type calculus
inequality (4.10) to obtain that

}Dβ
tanpB̊Å4W q}2L2pΩq � }Dβ

tanpB̊J̊Tf̃q}2L2pΩq

À }̊c2W }2HspΩtq � }̊c1f̃}2HspΩtq
À }pf̃ ,W q}2HspΩtq � C̊s�2}pf̃ ,W q}2L8pΩtq. (6.8)
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Notice from (3.1) and (3.3) that the W 2,8pΩT q–norm of pV̊ , Ψ̊q is bounded
by CK for some positive constant C depending only on χ. In view of (5.11),
we have

}B1pB̊�Å�
1bq}L8pΩT q À }̊c2}L8pΩT q À 1, B̊�Å�

1b

��
x1�0

� 0.

Then we integrate by parts to obtain that

���B̊�Å�
1b

�p�, x1, �q
��
L8pr0,T s�Rd�1q

À σpx1q for x1 ¥ 0, (6.9)

where σ is an increasing function of x1 satisfying

σ � σpx1q P C8pRq, σpx1q �
#
x1 for 0 ¤ x1 ¤ 1,

2 for x1 ¥ 4.
(6.10)

Utilizing the estimate above along with (6.6) and (4.11), we infer

}Dβ
tanpB̊Å1bB1W q}2L2pΩq

À ��B̊Å1bD
β
tanB1W � rDβ

tan, B̊Å1bsB1W
��2

L2pΩq

À ��σDβ
tanB1W

��2

L2pΩq
� ��rDβ

tan, B̊Å1bsB1W
��2

H1pΩtq

À }σB1Dβ
tanW }2L2pΩq � }W }2HspΩtq � C̊s�2}W }2L8pΩtq. (6.11)

Apply operator σBk1 Dβ1

tan with k � |β1| ¤ s to system (5.5) and employ the
standard arguments of the energy method to deduce

}σBk1 Dβ1

tanW ptq}2L2pΩq À }pf̃ ,W q}2H1pΩtq
for k � |β1| ¤ 1, (6.12)

}σBk1 Dβ1

tanW ptq}2L2pΩq À }pf̃ ,W q}2HspΩtq � C̊s�2}pf̃ ,W q}2L8pΩtq for k � |β1| ¤ s.

(6.13)

Plugging (6.7)–(6.8), (6.11), and (6.13) into (6.5) implies that

¸
|β|¤s�1

}B1Dβ
tanWncptq}2L2pΩq

À |||W ptq|||2tan,s � }pf̃ ,W q}2HspΩtq � C̊s�2}pf̃ ,W q}2L8pΩtq. (6.14)

Moreover, from (6.5) with β � 0, (6.9), and (6.12), we have

}B1Wncptq}2L2pΩq À |||W ptq|||2tan,1 � }pf̃ ,W q}2H1pΩtq
. (6.15)
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6.2 Estimate of the Characteristic Variables S�

The next lemma gives the estimate of the characteristic variables W�
d2�d�2

that are entropies S�.

Lemma 6.1 If the assumptions in Theorem 3.1 are satisfied, then

|||S�ptq|||2s À }pf̃ ,W q}2HspΩtq � C̊s�2}pf̃ ,W q}2L8pΩtq, (6.16)

|||S�ptq|||1 À }pf̃ ,W q}H1pΩtq. (6.17)

Proof Since matrices CpŮ�, Φ̊�q are C8–functions of pV̊ ,DV̊ ,DΨ̊q vanishing
at the origin, we can write the equations for S� in (5.2a) as

pBt � ẘ�
` B`qS� � c̊0f̃ � c̊1W in Ω,

where ẘ�
` , ` � 1, . . . , d, are given in (4.17). Let α :� pα0, α1, . . . , αdq P Nd�1

be any multi-index with |α| :� α0 � α1 � � � � � αd ¤ s. Apply operator Dα :�
Bα0
t Bα1

1 � � � Bαdd to the equations above and multiply the resulting identities by
DαS� respectively to find

Bt
��DαS�

��2 � B`
�
ẘ�
`

��DαS�
��2�� B`ẘ�

`

��DαS�
��2

� 2DαS�
�
Dαp̊c0f̃q �Dαp̊c1W q � rDα, ẘ�

` sB`S�
�
.

Note that the W 2,8pΩT q–norm of pV̊ , Ψ̊q is bounded by CK for some positive
constant C depending only on χ. By virtue of (4.18), we can obtain (6.16)–
(6.17) by integrating the last identities over Ωt and applying the Moser-type
calculus inequalities (4.10)–(4.11). l

6.3 Estimate of the Characteristic Variables W�
1

To compensate the loss of the normal derivatives of the characteristic variables
W�

1 � p�, inspired by involutions (2.41), we introduce linearized divergences
ς� by

ς� :� BΦ̊�i
�̊
c�2
� F̊�

i1p
� � ρ̊�F�

i1

�
, (6.18)

where BΦ̊�i , i � 1, . . . , d, are defined by (2.40), and c̊� :� pρpρ̊�, S̊�q1{2 are the
basic speeds of sound. See Trakhinin [29] for a slightly different definition of
the linearized divergences.

Then we obtain the following estimate for ς�.

Lemma 6.2 If the assumptions in Theorem 3.1 are satisfied, then

|||ς�ptq|||2s�1 À }pf̃ ,W q}2HspΩtq � C̊s�2}pf̃ ,W q}2L8pΩtq, (6.19)

}ς�ptq}L2pΩq À }pf̃ ,W q}H1pΩtq. (6.20)
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Proof The equations for F� and p� in (5.2a) read

pBt � ẘ�
` B`qF�

ij � F̊�
`jBΦ̊

�

` v�i � c̊0f̃ � c̊1W, (6.21)

pBt � ẘ�
` B`qp� � ρ̊�c̊2�BΦ̊

�

` v�` � c̊0f̃ � c̊1W. (6.22)

In view of these last equations, we compute

pBt � ẘ�
` B`q

�̊
c�2
� F̊�

i1p
� � ρ̊�F�

i1

	
� ρ̊�F̊�

`1BΦ̊
�

` v�i � ρ̊�F̊�
i1BΦ̊

�

` v�` � c̊0f̃ � c̊1W.

Performing operators BΦ̊�i to the identities above and using

ρ̊�F̊�
`1BΦ̊

�

i BΦ̊�` v�i � ρ̊�F̊�
i1BΦ̊

�

i BΦ̊�` v�`

� ρ̊�F̊�
i1

�BΦ̊�` , BΦ̊�i
�
v�` � c̊2DV � c̊2DpJ̊W q � c̊2DW � c̊2W,

we have

pBt � ẘ�
` B`qς� � c̊1Df̃ � c̊1f̃ � c̊2DW � c̊2W. (6.23)

Apply operator Dα with |α| ¤ s�1 to equations (6.23), multiply the resulting
identities by Dας� respectively, and take the integration over Ωt to obtain

}Dας�ptq}2L2pΩq À
�
1� }Dẘ}L8pΩtq

� }Dας�}2L2pΩtq
� }rDα, ẘ�

` sB`ς�}2L2pΩtq

� ��Dα
�̊
c1Df̃ � c̊1f̃ � c̊2DW � c̊2W

���2

L2pΩtq
. (6.24)

Since

ς� � c̊1W � c̊1DW, (6.25)

we have

}Dας�}L2pΩtq ¤ }Dαp̊c2DW � c̊2W q}L2pΩtq,

}rDα, ẘ�
` sB`ς�}L2pΩtq À

���rDα, c̊2sW, rDα, c̊2sDW, rDα, c̊1sD2W
���
L2pΩtq

.

Estimate (6.20) follows by plugging these last inequalities into (6.24) with
α � 0. Apply the Moser-type calculus inequality (4.10) and use |α| ¤ s� 1 to
derive

}pDαp̊c1Df̃q,Dαp̊c1f̃qq}2L2pΩtq

À }p̊c1DαDf̃ , c̊1Dαf̃q}2L2pΩtq
� }prDα, c̊1sDf̃ , rDα, c̊1sf̃q}2L2pΩtq

À }f̃}2HspΩtq � C̊s�1}f̃}2L8pΩtq.
By virtue of (4.10)–(4.11), we obtain that

}prDα, c̊2sW, rDα, c̊2sDW q}2L2pΩtq
� }rDα, c̊1sD2W }2L2pΩtq

À }W }2HspΩtq � C̊s�2}W }2L8pΩtq.
Inserting the estimates above into (6.24) yields (6.19). This completes the
proof. l
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Thanks to (6.19), we can obtain the estimate of the characteristic variables
W�

1 � p�. More precisely, according to (5.4) and (5.14), we have

N̊� � F�
1 � |N̊�|2

ρ̊�F̊�
1N

pW�
1 �W�

d�2q �
ḑ

j�2

BjΦ̊�W�
d�j�1 �

|N̊�|2
ρ̊�F̊�

1N

W�
1 � c̊1Wnc.

Combining the last identity with (6.18) and recalling (2.40), we calculate

B1Φ̊
�ς� � B1

�̊
c�2
� F̊�

1Np
� � ρ̊�N̊� � F�

1

	
�

d°
i�2

Bi
�
B1Φ̊

�
�̊
c�2
� F̊�

i1p
� � ρ̊�F�

i1

�	
� c̊�2

� |F̊�
1N |2 � |N̊�|2
F̊�

1N

B1W
�
1 � c̊1B1Wnc � c̊1DtanW � c̊2W,

which implies that

B1W
�
1 � c̊1ς

� � c̊1B1Wnc � c̊1DtanW � c̊2W. (6.26)

In light of (6.26), we utilize (6.6), (6.14), (6.19), (6.25), and the Moser-type
calculus inequalities (4.10)–(4.11) to obtain¸

|β|¤s�1

}B1Dβ
tanW1ptq}2L2pΩq

À
¸

|β|¤s�1

}pDβ
tanς,D

β
tanB1Wnc,D

β
tanDtanW q}2L2pΩq

�
¸

|β|¤s�1

���rDβ
tan, c̊1sW, rDβ

tan, c̊1sDW,Dβ
tanp̊c2W q���2

H1pΩtq

À |||W ptq|||2tan,s � }pf̃ ,W q}2HspΩtq � C̊s�2}pf̃ ,W q}2L8pΩtq. (6.27)

Furthermore, we plug (6.15) and (6.20) into (6.26) to obtain

}B1W1ptq}2L2pΩq À |||W ptq|||2tan,1 � }pf̃ ,W q}2H1pΩtq
. (6.28)

6.4 Estimate of the Remaining Characteristic Variables

To recover the normal derivatives of the characteristic variables W�
jd�i�1 � F�

ij

for i � 1, . . . , d and j � 2, . . . , d, motivated by constraints (2.36), we introduce
quantities η� :� pη�1 , . . . , η�d q with

η�i :� F̊�
k1BΦ̊

�

k F�
i2 � F̊�

k2BΦ̊
�

k F�
i1 . (6.29)

In addition, for d � 3, we introduce quantities ζ� :� pζ�1 , ζ�2 , ζ�3 q with

ζ�i :� F̊�
k1BΦ̊

�

k F�
i3 � F̊�

k3BΦ̊
�

k F�
i1 . (6.30)

We have the following estimates for η� and ζ�.



32 Gui-Qiang G. Chen et al.

Lemma 6.3 If the assumptions in Theorem 3.1 are satisfied, then

|||pη�, ζ�q|||2s�1 À }pf̃ ,W q}2HspΩtq � C̊s�2}pf̃ ,W q}2L8pΩtq, (6.31)

}pη�, ζ�q}L2pΩq À }pf̃ ,W q}H1pΩtq. (6.32)

Proof Thanks to (6.21), we deduce the equations for η� and ζ� as follows:

pBt � ẘ�
` B`qη� � c̊1Df̃ � c̊1f̃ � c̊2DW � c̊2W, (6.33)

pBt � ẘ�
` B`qζ� � c̊1Df̃ � c̊1f̃ � c̊2DW � c̊2W, (6.34)

where we have used that

F̊�
kiF̊

�
`jBΦ̊

�

k BΦ̊�` � F̊�
kjF̊

�
`i BΦ̊

�

k BΦ̊�` � F̊�
`i F̊

�
kj

�BΦ̊�` , BΦ̊�k
� � c̊2D.

Noting that η� � c̊1DV and ζ� � c̊1DV , we perform the same analysis as ς�

in Lemma 6.2 to deduce (6.31)–(6.32). This completes the proof. l

According to (2.40), we compute

η�i � 1

B1Φ̊�

�
F̊�

1NB1F
�
i2 � F̊�

2NB1F
�
i1

�� ḑ

`�2

�
F̊�
`1B`F�

i2 � F̊�
`2B`F�

i1

�
, (6.35)

ζ�i � 1

B1Φ̊�

�
F̊�

1NB1F
�
i3 � F̊�

3NB1F
�
i1

�� ḑ

`�2

�
F̊�
`1B`F�

i3 � F̊�
`3B`F�

i1

�
, (6.36)

which, combined with (5.4) and (5.14), imply that

B1F
�
i2 � c̊1η

�
i � c̊1B1Wnc � c̊1B1W1 � c̊1DtanW � c̊2W, (6.37)

B1F
�
i3 � c̊1ζ

�
i � c̊1B1Wnc � c̊1B1W1 � c̊1DtanW � c̊2W. (6.38)

In view of (6.37)–(6.38), we utilize (6.14)–(6.15), (6.27)–(6.28), (6.31)–(6.32),
the Moser-type calculus inequalities (4.10)–(4.11), and (6.6) to obtain

}B1Wjd�i�1ptq}2L2pΩq À |||W ptq|||2tan,1 � }pf̃ ,W q}2H1pΩtq
, (6.39)

and ¸
|β|¤s�1

}B1Dβ
tanWjd�i�1ptq}2L2pΩq

À |||W ptq|||2tan,s � }pf̃ ,W q}2HspΩtq � C̊s�2}pf̃ ,W q}2L8pΩtq, (6.40)

for i � 1, . . . , d, and j � 2, . . . , d.
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6.5 Proof of Proposition 6.1

Estimate (6.2) follows by applying (6.6) and combining estimates (6.15), (6.17),
(6.28), and (6.39). Thanks to (6.3), (6.26), and (6.37)–(6.38), we can combine
estimates (6.13), (6.16), (6.19), (6.31), and (6.40) to prove by induction in
` � 1, . . . , s that

`̧

k�1

¸
|β|¤s�k

}Bk1 Dβ
tanW ptq}2L2pΩq

À |||W ptq|||2tan,s � }pf̃ ,W q}2HspΩtq � C̊s�2}pf̃ ,W q}2L8pΩtq. (6.41)

Estimate (6.1) follows from (6.41) with ` � s. Then the proof of Proposition
6.1 is complete.

7 Estimate of the Tangential Derivatives

In this section, we establish the estimate for the tangential derivatives of so-
lutions of the linearized problem (5.2).

Proposition 7.1 If the assumptions in Theorem 3.1 are satisfied, then

|||W ptq|||2tan,s ÀMsptq � }̊c1}H3pΩT q|||W ptq|||2s (7.1)

for any constant ε ¡ 0, where Ψ is given in (3.14) and

Msptq :�
#}pW,Ψ, f̃q}2H1pΩtq

if s � 1,

}pW,Ψ, f̃q}2HspΩtq � C̊s�2}pW, Ψ, f̃q}2H3pΩtq
if s ¥ 2.

(7.2)

The rest of this section is concerned with the proof of Proposition 7.1.

7.1 Prelude

Applying operator Dβ
tan :� Bβ0

t Bβ2

2 � � � Bβdd with |β| ¤ s to system (5.5), we
obtain

Å�
0 BtDβ

tanW
� � Å�

j BjDβ
tanW

� � R�, (7.3)

where

R� :� Dβ
tanpJ̊T

�f̃
�q �Dβ

tanpÅ�
4 W

�q � rDβ
tan, Å�

0 sBtW� � rDβ
tan, Å�

j sBjW�.

Take the scalar product of (7.3) with Dβ
tanW

� to obtain¸
�

»
Ω

Å�
0 Dβ

tanW
� �Dβ

tanW
� � R1 �

»
ωt

Q, (7.4)
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where

R1 :�
¸
�

»
Ωt

Dβ
tanW

� �
�

2R� � �BtÅ�
0 � BjÅ�

j

�
Dβ

tanW
�
	
,

Q :�
¸
�

Å�
1aDβ

tanW
� �Dβ

tanW
� � 2rDβ

tanW2Dβ
tanWd�2sloooooooooooomoooooooooooon

Q1

�Q2, (7.5)

with

Q2 :�
$&%� 2ρ̊�F̊�

1N

�
Dβ

tanW3Dβ
tanW5

�
if d � 2,

� 2ρ̊�F̊�
1N

�
Dβ

tanW3Dβ
tanW6 �Dβ

tanW4Dβ
tanW7

�
if d � 3.

(7.6)

Here and hereafter, for simplicity, we omit the differential symbol of the vari-
ables of integration when no confusion arises.

A standard computation with an application of the Moser-type calculus in-
equalities (4.10)–(4.11) and the Sobolev embedding H3pΩtq ãÑ L8pΩtq yields

R1 ÀMsptq. (7.7)

We introduce the instant tangential energy Eβtanptq as

Eβtanptq :�
¸
�

»
Ω

A0psU�, sΦ�qDβ
tanW

� �Dβ
tanW

�,

where A0 is given in (5.6). Thanks to (5.7), we have that

Eβtanptq �
¸
�

#
1

ρ̄�c̄2�
}Dβ

tanW
�
1 }2L2pΩq �

1

ρ̄�p sF�
11q2

}Dβ
tanpW�

1 �W�
d�2q}2L2pΩq

�
d2�d�1¸

j�2, j�d�2

ρ̄�}Dβ
tanW

�
j }2L2pΩq � }Dβ

tanS
�}2L2pΩq

+
, (7.8)

where ρ̄� :� pdet sF�q�1 and c̄� :� pρpρ̄�, sS�q1{2.

Since Å�
0 � A0psU�, sΦ�q are smooth functions of tpDαV̊ , DαΨ̊q : |α| ¤ 1u

and vanish at the origin, we plug (7.7) into (7.4) to infer

Eβtanptq ¤CMsptq � C }̊c1}L8pΩT q|||W ptq|||2s �
»
ωt

Q, (7.9)

where Msptq and Q are defined by (7.2) and (7.5), respectively.
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7.2 Cancellation

We are going to show a cancellation for the last term in (7.9). By virtue of the
boundary conditions (5.15b)–(5.15c), we find

Q1 � 2Dβ
tanrWd�2sDβ

tanW
�
2 � 2Dβ

tanrW2sDβ
tanW

�
d�2

�Q1a � rDβ
tan, c̊0sWDβ

tanW
�
2 �Dβ

tanp̊c1ψqDβ
tanW on BΩ (7.10)

with

Q1a :� 2rF̊11sBFij%pF̊�qDβ
tanF

�
ijDβ

tanW
�
2 .

Similarly, it follows from (3.13), (5.15b), and (5.15d) that

Q2 � � 2%pF̊�q
ḑ

j�2

�
Dβ

tanrWd�j�1sDβ
tanW

�
j�1 �Dβ

tanrWj�1sDβ
tanW

�
d�j�1

	
�Q2a � c̊0rDβ

tan, c̊0sDtanψDβ
tanW � c̊0Dβ

tanp̊c1ψqDβ
tanW on BΩ (7.11)

with

Q2a :� 2%pF̊�qrF̊11s
ḑ

j�2

Dβ
tanBjψDβ

tanW
�
j�1.

We decompose Q2a further as

Q2a �Q2b �
ḑ

j�2

Bj
�
2%pF̊�qrF̊11sDβ

tanψDβ
tanW

�
j�1

�� c̊1Dβ
tanWDβ

tanψ (7.12)

with

Q2b :� �2%pF̊�qrF̊11s
ḑ

j�2

Dβ
tanψDβ

tanBjW�
j�1.

In order to deduce the cancellation between terms Q1a and Q2b, we need
the following lemma.

Lemma 7.1 If i � 1, . . . , d, and j � 2, . . . , d, then

B0F
�
ij �

ḑ

k�2

F̊�
kjBkv�i � c̊0f̃ � c̊1W on BΩ, (7.13)

ḑ

j�2

BjW�
j�1 � �%pF̊�q�1BFij%pF̊�qB0F

�
ij � c̊0f̃ � c̊1W on BΩ, (7.14)

where B0 is defined by (4.19).



36 Gui-Qiang G. Chen et al.

Proof Considering the restriction of equations (6.21) on boundary BΩ, we
utilize (4.18) and (3.5e) to deduce identities (7.13). In the two-dimensional
case (d � 2), relation (7.14) follows directly from (7.13). If d � 3, then we
obtain from (7.13) that�

B2v
�
2 B3v

�
2

B2v
�
3 B3v

�
3

��
F̊�

22 F̊�
23

F̊�
32 F̊�

33

�
�

�
B0F

�
22 B0F

�
23

B0F
�
32 B0F

�
33

�
� c̊0f̃ � c̊1W on BΩ.

Then we can deduce (7.14) by virtue of W�
3 � v�2 , W�

4 � v�3 , and

�BFij%pF̊
�qB0F

�
ij

%pF̊�q2 � F̊�
22B0F

�
33 � F̊�

23B0F
�
32 � F̊�

32B0F
�
23 � F̊�

33B0F
�
22.

This completes the proof. l

Thanks to identity (7.14), we find

Q2b � 2%pF̊�qrF̊11sDβ
tanψDβ

tan

�
%pF̊�q�1BFij%pF̊�qB0F

�
ij

�looooooooooooooooooooooooooooooooomooooooooooooooooooooooooooooooooon
Q2c

� 2%pF̊�qrF̊11sDβ
tanψDβ

tan

�̊
c0f̃ � c̊1W

�
on BΩ. (7.15)

Term Q2c can be decomposed further as

Q2c � 2rF̊11sBFij%pF̊�qDβ
tanψ B0Dβ

tanF
�
ij � c̊0Dβ

tanψ rDβ
tan, c̊0sDtanW

� c̊0Dβ
tanψrDβ

tan, c̊0sDtanW �
ḑ

j�2

Bj
!

2rF̊11sBFij%pF̊�q̊v�j Dβ
tanψDβ

tanF
�
ij

)
� Bt

!
2rF̊11sBFij%pF̊�qDβ

tanψDβ
tanF

�
ij

)
� c̊1Dβ

tanψDβ
tanW

�2rF̊11sBFij%pF̊�qDβ
tanF

�
ijDβ

tanB0ψloooooooooooooooooooooomoooooooooooooooooooooon
Q2d

�̊c0Dβ
tanW rDβ

tan, c̊0sDtanψ. (7.16)

In view of condition (5.15a), we derive the following desired cancellation:

Q1a �Q2d � 2rF̊11sBFij%pF̊�qDβ
tanF

�
ijDβ

tanp̊c1ψq on BΩ. (7.17)

Combine (7.10)–(7.12) and (7.15)–(7.17) to obtain»
ωt

Q � R2 � 2

»
BΩ

rF̊11sBFij%pF̊�qDβ
tanψDβ

tanF
�
ijloooooooooooooooooooooomoooooooooooooooooooooon

R3

, (7.18)

where

R2 :�
»
ωt

rDβ
tan, c̊0sWDβ

tanW �
»
ωt

c̊0Dβ
tanp̊c1ψqDβ

tanW

�
»
ωt

c̊0rDβ
tan, c̊0sDtanψDβ

tanW �
»
ωt

c̊0Dβ
tanψrDβ

tan, c̊0sDtanW

�
»
ωt

c̊1Dβ
tanψDβ

tanW �
»
ωt

c̊0Dβ
tanψDβ

tan

�̊
c0f̃ � c̊1W

�
. (7.19)
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7.3 Estimate of Term R2

In this subsection, we deduce the estimate of term R2 defined by (7.19).
By virtue of assumption (3.3) and the Sobolev embedding, there exists

some positive constant K1 depending on r sF11s such that, if K ¤ K1, then

rF̊11s ¥ r sF11s
2

¡ 0 on BΩ.

It follows from the boundary condition (5.15d) that

Bjψ � � 1

rF̊11s
rWd�j�1s � c̊1ψ on BΩ, for j � 2, . . . , d. (7.20)

If we utilize (7.20) to control terms R2 and R3, then the energy estimates
break down when r sF11s tends to zero. Hence, identity (7.20) cannot be used
in the subsequent analysis for the proof of Theorem 3.1. Then we need to
exploit new identities and estimates for Dx1ψ. For this purpose, we apply the
interpolation argument to deduce the following lemma, which is motivated by
[29, Proposition 5.2].

Lemma 7.2 If the assumptions in Theorem 3.1 are satisfied, then

Rj :� F�
j � N̊ �

ḑ

i�2

F̊�
ij Biψ defined on ωT , for j � 2, . . . , d, (7.21)

satisfies

}Dγ
tanRjptq}2Hs�|γ|�1{2pBΩq ÀMsptq, (7.22)

for all t P r0, T s and γ P Nd with |γ| ¤ s� 1, where Msptq is defined by (7.2).

Proof Thanks to (3.5e) and (7.13), we have

B0F
�
j � N̊ �

ḑ

k�2

F̊�
kjBkpv� � N̊q �

ḑ

k,i�2

v�i F̊
�
kjBiBkϕ̊� c̊1f̃ � c̊1W

�
ḑ

i�2

F̊�
ij Bipv� � N̊q � c̊1f̃ � c̊1W.

Since, for k � 2, . . . , d,

B0Bkϕ̊ � Bk p̊v� � N̊q � v̊�i BiBkϕ̊ � Bkv̊� � N̊ on BΩ, (7.23)

we have

B0pF�
j � N̊q �

ḑ

i�2

F̊�
ij Bipv� � N̊q � c̊1f̃ � c̊1W.
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It follows from (3.7) and (5.15a) that

�
ḑ

i�2

B0pF̊�
ij Biψq � �

ḑ

i�2

F̊�
ij

�
BiB0ψ �

ḑ

`�2

Biv̊�` B`ψ
	
�

ḑ

i,`�2

F̊�
`jB`v̊�i Biψ

� �
ḑ

i�2

F̊�
ij

�Bipv� � N̊q � c̊1Biψ
�� c̊2ψ.

Thanks to (7.23), we have

B0Rj � c̊1Rj � c̊1f̃ � c̊1W � c̊2ψ on BΩ.

Using the standard arguments of the energy method yields that

}Dγ
tanRjptq}HmpBΩq À }̊c1f̃ � c̊1W � c̊2ψ}Hm�|γ|pωtq for m P N.

Applying the interpolation property (see [27, Lemma 22.3]), the trace theorem,
and the Moser-type calculus inequality, we have

}Dγ
tanRjptq}Hs�|γ|�1{2pBΩq À }̊c1f̃ � c̊1W � c̊2ψ}Hs�1{2pωtq

À }̊c1f̃ � c̊1W � c̊2Ψ}HspΩtq À
a
Msptq,

where we utilize }̊c2}W 1,8pΩtq À K and }pW, Ψ, f̃q}L8pΩtq À }pW, Ψ, f̃q}H3pΩtq

by the Sobolev embedding theorem. This completes the proof. l

By virtue of (7.21), from (2.27) and (3.10), we obtain the following asser-
tions:

– If d � 2, then

B2ψ � pF̊�
22q�1pF�

12 � B2ϕ̊F
�
22 �R2q � %p sF�qF�

12 � c̊1W � c̊0R2. (7.24)

– If d � 3, then�
B2ψ

B3ψ

�
� %pF̊�q

�
F̊�

33 �F̊�
32

�F̊�
23 F̊�

22

��
F�

2 � N̊ �R2

F�
3 � N̊ �R3

�
,

which implies

B2ψ � %p sF�q sF33F
�
12 � c̊1W � c̊0R2 � c̊0R3, (7.25)

B3ψ � %p sF�q sF22F
�
13 � c̊1W � c̊0R2 � c̊0R3. (7.26)

Identities (7.24)–(7.26) and estimate (7.22) enable us to control term R2. More
precisely, from (7.24)–(7.26) and (5.15a), we have

Dtanψ � c̊1W �
ḑ

j�2

c̊0Rj on BΩ, (7.27)
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where coefficients c̊1 and c̊0 are independent of r sF11s. Assume without loss of
generality that 0   β1 ¤ β, |β1| � 1, and |β| ¤ s. For the last term in R2, we
employ (7.27) to obtain»

ωt

c̊0Dβ
tanψDβ

tan

�̊
c0f̃ � c̊1W

�
À

���̊c0Dβ�β1

tan

�̊
c1W �

ḑ

j�2

c̊0Rj
����
H1{2pωtq

���Dβ
tan

�̊
c0f̃ � c̊1W

����
H�1{2pωtq

À
���̊c1W �

ḑ

j�2

c̊0
rRj���

HspΩtq

���̊c0f̃ � c̊1W
���
HspΩtq

, (7.28)

where rRj is the extension of Rj from ωT to ΩT satisfying

} rRj}HmpΩtq À }Rj}Hm�1{2pωtq for m � 1, . . . , s. (7.29)

Applying the Moser-type calculus inequality to (7.28) and using estimates
(7.22) and (7.29), we obtain»

ωt

c̊0Dβ
tanψDβ

tan

�̊
c0f̃ � c̊1W

� ÀMsptq.

As the other terms in (7.19) can be handled similarly, we omit the details and
conclude

R2 ÀMsptq. (7.30)

7.4 Estimate of Term R3 with the Time Derivative

This subsection is devoted to deriving the estimate of term R3 given in (7.18)
for β � pβ0, β2, . . . , βdq satisfying β0 ¥ 1 and |β| ¤ s.

Recalling the definition of background state psU�, sΦ�q in (2.27) and using
identity (7.13), we have

BtF�
ij � sFjjBjv�i � c̊0Dx1W � c̊1W � c̊0f̃ on BΩ, for i, j � 2, . . . , d, (7.31)

where Dx1 :� pB2, . . . , Bdq. In light of (7.31), we compute

rF̊11sBFij%pF̊�qDβ
tanF

�
ij

� rF̊11sBFij%pF̊�qDβ�e1

tan

� sFjjBjv�i � c̊0Dx1W � c̊1W � c̊0f̃
	

� �
ḑ

j�2

r sF11s%p sF�qDβ�e1

tan Bjv�j � c̊0Dβ�e1

tan p̊c0Dx1W q

� c̊0Dβ�e1

tan

�̊
c0Dx1W � c̊1W � c̊0f̃

�
on BΩ. (7.32)
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Noting from (5.15a) that

Btψ �W�
2 � c̊0Dx1ψ � c̊1ψ on BΩ, (7.33)

we have

R3 � 2

»
BΩ

rF̊11sBFij%pF̊�qDβ
tanF

�
ijDβ

tanψ �
5̧

i�1

R3i, (7.34)

where

R31 :� �
ḑ

j�2

2r sF11s%p sF�q
»
BΩ

Dβ�e1

tan W�
2 Dβ�e1

tan Bjv�j ,

R32 :� �
ḑ

j�2

2r sF11s%p sF�q
»
BΩ

Dβ�e1

tan p̊c0Dx1ψqDβ�e1

tan Bjv�j ,

R33 :� �
ḑ

j�2

2r sF11s%p sF�q
»
BΩ

Dβ�e1

tan p̊c1ψqDβ�e1

tan Bjv�j ,

R34 :�
»
BΩ

�̊
c0Dβ�e1

tan p̊c0Dx1W q � c̊0Dβ�e1

tan Dx1 p̊c0W q
	

Dβ
tanψ,

R35 :�
»
BΩ

c̊0Dβ�e1

tan

�̊
c1W � c̊0f̃

�
Dβ

tanψ.

Let us first estimate R32 as

|R32| À
���� »

BΩ

c̊0Dβ�e1

tan DtanψDβ�e1

tan Dx1Wlooooooooooooooooooomooooooooooooooooooon
Ra

32

�
»
BΩ

rDβ�e1

tan , c̊0sDx1ψDβ�e1

tan Dx1Wloooooooooooooooooooomoooooooooooooooooooon
Rb

32

����.
In view of (7.27), we employ the classical product estimate

}uv}H1{2pRd�1q À }u}H3{2pRd�1q}v}H1{2pRd�1q

to obtain

|Ra
32| À

���̊c0Dβ�e1

tan

�̊
c1W �

ḑ

j�2

c̊0Rj
����
H1{2pBΩq

���Dβ�e1

tan Dx1W
���
H�1{2pBΩq

À }̊c0}H3pΩtq

���Dβ�e1

tan

�̊
c1W �

ḑ

j�2

c̊0Rj
����
H1{2pBΩq

���Dβ�e1

tan W
���
H1{2pBΩq

.

(7.35)

Utilize the trace theorem, (6.6), and the Moser-type calculus inequality (4.11)
to obtain���Dβ�e1

tan p̊c1W q
���2

H1{2pBΩq
À

���̊c1Dβ�e1

tan W
���2

H1pΩq
�
���rDβ�e1

tan , c̊1sW
���2

H2pΩtq

À |||W ptq|||2s �Msptq. (7.36)
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It follows from (7.22), the trace theorem, (6.6), and (7.29) that���Dβ�e1

tan p̊c0Rjq
���2

H1{2pBΩq
À

���̊c0Dβ�e1

tan Rj

���2

H1{2pBΩq
�
���rDβ�e1

tan , c̊0sRj
���2

H1{2pBΩq

ÀMsptq �
���rDβ�e1

tan , c̊0s rRj���2

H2pΩtq
ÀMsptq. (7.37)

Plugging (7.36)–(7.37) into (7.35) yields

|Ra
32| À }̊c0}H3pΩtq

|||W ptq|||2s �Msptq. (7.38)

For Rb
32, we find

Rb
32 � �

»
BΩ

Dx1rDβ�e1

tan , c̊0sDx1ψDβ�e1

tan W

� �
»
ωt

Bt
!

Dx1rDβ�e1

tan , c̊0sDx1ψDβ�e1

tan W
)
. (7.39)

Hence, it follows from (7.22), (7.27), and (7.29) that

|Rb
32| À

���BtDx1rDβ�e1

tan , c̊0sDx1ψ
���
H�1{2pωtq

���Dβ�e1

tan W
���
H1{2pωtq

�
���Dx1rDβ�e1

tan , c̊0sDx1ψ
���
H1{2pωtq

���BtDβ�e1

tan W
���
H�1{2pωtq

À }W }HspΩtq
���DrDβ�e1

tan , c̊0s
�̊

c1W �
ḑ

j�2

c̊0
rRj	���

H1pΩtq

ÀMsptq. (7.40)

We decompose R34 as»
BΩ

c̊0Dβ
tanψDβ�e1

tan Dx1W

�
»
BΩ

Dβ
tanψ

�̊
c0rDβ�e1

tan , c̊0sDx1W � c̊0rDβ�e1

tan Dx1 , c̊0sW
	
.

The first term in this decomposition can be estimated in the same way as Ra
32,

and the second term in this decomposition along with terms R33 and R35 can
be controlled as Rb

32. In conclusion, we arrive at

5̧

i�2

|R3i| À }̊c0}H3pΩtq
|||W ptq|||2s �Msptq. (7.41)

Let us deduce the estimate of term R31. In view of (4.7), we infer

|R31| ¤ 2r sF11s%p sF�q}Dβ�e1

tan W�
2 }H1pΩq

ḑ

j�2

}Dβ�e1

tan v�j }H1pΩq

¤
$&%r

sF11s%p sF�q}Dβ�e1

tan pW�
2 , W

�
3 q}2H1pΩq if d � 2,

?
2r sF11s%p sF�q}Dβ�e1

tan pW�
2 , W

�
3 , W

�
4 q}2H1pΩq if d � 3.

(7.42)
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We now make the estimate for the term on the right-hand side of (7.42). Since
|β| ¤ s, we apply inequality (6.6) to obtain

d�1̧

j�2

}Dβ�e1

tan W�
j }2L2pΩq À }W }2HspΩtq. (7.43)

According to definition (7.8) for the instant tangential energy Eβtanptq, we have

ḑ

`�2

d�1̧

j�2

}B`Dβ�e1

tan W�
j }2L2pΩq À

$&%Eβ�e1�e2

tan ptq if d � 2,

Eβ�e1�e2

tan ptq � Eβ�e1�e3

tan ptq if d � 3.
(7.44)

As for the normal derivatives in (7.42), we utilize (6.3) to derive�� 0
B1W

�
nc

0

�� 	BA0psU�, sΦ�qBtW� 	
ḑ

j�2

BAjpsU�, sΦ�qBjW� � c̊1DtanW

� B̊�Å�
1bB1W

� � B̊�Å�
4 W

� � B̊�J̊T
�f̃

�, (7.45)

where BpU,Φq is defined by (6.4). By virtue of identities (5.8)–(5.9), we can
compute the following assertions:

– For d � 2, the second and third components of

BA0psU�, sΦ�qBtW� �BA2psU�, sΦ�qB2W
�

are 1
ρ̄�p sF�11q

2
BtpW�

4 �W�
1 q and � 1

sF�11
BtW�

5 , respectively.

– For d � 3, the second, third, and fourth components of

BA0psU�, sΦ�qBtW� �BA2psU�, sΦ�qB2W
� �BA3psU�, sΦ�qB3W

�

are 1
ρ̄�p sF�11q

2
BtpW�

5 �W�
1 q, � 1

sF�11
BtW�

6 , and � 1
sF�11
BtW�

7 , respectively.

Using (7.8), (7.45), and the assertions above, we conclude

d�1̧

j�2

}B1Dβ�e1

tan W�
j }2L2pΩq ¤

��Dβ�e1

tan

�� B̊Å1bB1W � B̊Å4W � B̊J̊Tf̃
���2

L2pΩq

� }Dβ�e1

tan p̊c1DtanW q}2L2pΩq �
Eβtanptq
ρ̄�p sF�

11q2
. (7.46)

Employ (6.6) and the Moser-type calculus inequality (4.10) to derive

}Dβ�e1

tan p̊c1DtanW qptq}2L2pΩq À }̊c1}L8pΩT q|||W ptq|||2s �Msptq. (7.47)
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Plug (6.8)–(6.9), (6.11)–(6.13), and (7.47) into (7.46), insert the resulting es-
timate and (7.43)–(7.44) into (7.42), and use (7.9), (7.18), (7.30), (7.34), and
(7.41) to obtain

Eβtanptq ¤ CMsptq � C }̊c1}H3pΩT q|||W ptq|||2s

�

$'''&'''%
r sF11ssF�

11

Eβtanptq � CEβ�e1�e2

tan ptq if d � 2,

?
2
r sF11ssF�

11

Eβtanptq � CEβ�e1�e2

tan ptq � CEβ�e1�e3

tan ptq if d � 3.

Since sF�
11 ¡ sF�

11 ¡ 0, we always see that r sF11s{ sF�
11   1. Moreover, it follows

from (3.23) that r sF11s{ sF�
11   1

2 for dimension d � 3. Thus, we can obtain

Eβtanptq ÀMsptq � }̊c1}H3pΩT q|||W ptq|||2s

�
$&%Eβ�e1�e2

tan ptq if d � 2,

Eβ�e1�e2

tan ptq � Eβ�e1�e3

tan ptq if d � 3,
(7.48)

for all β � pβ0, β2, . . . , βdq P Nd with |β| ¤ s and β0 ¥ 1. Inequality (7.48)
reduces the estimate of each instant tangential energy to that with one less
time derivative. Therefore, we are led to estimate R3 for the case containing
at least one space derivative.

7.5 Estimate of Term R3 with the x2-Derivative

In this subsection, we make the estimate of R3 defined in (7.18) for the case
when β2 ¥ 1 and |β| ¤ s.

Computing from (3.9) that

BFij%p sF�qDβ
tanF

�
ij

�
$&%� %p sF�q2Dβ

tanF
�
22 if d � 2,

� %p sF�q2
� sF33Dβ

tanF
�
22 � sF22Dβ

tanF
�
33

	
if d � 3,

(7.49)

and using (7.24)–(7.25), we deduce

R3 � 2

»
BΩ

r sF11sBFij%p sF�qDβ
tanF

�
ijDβ

tanψloooooooooooooooooooooomoooooooooooooooooooooon
rR31� rR32

�
»
BΩ

c̊0Dβ
tanF

�
ijDβ

tanψloooooooooooomoooooooooooon
rR33

, (7.50)
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where

rR31 :�

$''&''%
�2r sF11s%p sF�q3

»
BΩ

Dβ�e2

tan F�
12Dβ

tanF
�
22 if d � 2,

� 2r sF11s%p sF�q2
»
BΩ

Dβ�e2

tan F�
12

�
Dβ

tanF
�
33 �

sF33sF22

Dβ
tanF

�
22

	
if d � 3,

rR32 :�
»
BΩ

c̊0Dβ�e2

tan

�̊
c1W �

ḑ

`�2

c̊0R`

	
Dβ

tanF
�
ij .

Similar to the derivation of estimates (7.35)–(7.38), we can obtain

| rR32| � | rR33| À
��̊c1

��
H3pΩtq

|||W |||2s �Msptq. (7.51)

Utilizing inequality (4.7) leads to

| rR31| ¤ 2r sF11s%p sF�q3}Dβ�e2

tan F�
12}H1pΩq}Dβ�e2

tan F�
22}H1pΩq

¤ r sF11s%p sF�q3}Dβ�e2

tan pF�
12, F

�
22q}2H1pΩq if d � 2. (7.52)

Moreover, for d � 3, we have

| rR31| ¤ 2r sF11s%p sF�q2}Dβ�e2

tan F�
12}H1pΩq

�
�
}Dβ�e2

tan F�
33}H1pΩq �

sF33sF22

}Dβ�e2

tan F�
22}H1pΩq

	
¤ r sF11s%p sF�q2

�
1�

sF 2
33sF 2
22

	1{2

}Dβ�e2

tan pF�
12, F

�
22, F

�
33q}2H1pΩq. (7.53)

To estimate the terms on the right-hand side of (7.52)–(7.53), we compute
from (6.35)–(6.36) that

η�i � � sF�
11B1F

�
i2 � sF22B2F

�
i1 � c̊1DxW � c̊2W, (7.54)

ζ�i � � sF�
11B1F

�
i3 � sF33B3F

�
i1 � c̊1DxW � c̊2W. (7.55)

By virtue of identities (7.54)–(7.55), estimates (6.31)–(6.32), and

F�
11 �

1

ρ̄� sF�
11

pW�
1 �W�

d�2q � c̊1W, (7.56)

we obtain the following two assertions:

– If d � 2, then

}Dβ�e2

tan DxpF�
12, F

�
22q}2L2pΩq

¤ }Dβ
tanpF�

12, F
�
22q}2L2pΩq �

sF 2
22

pρ̄�q2p sF�
11q4

}Dβ
tanpW�

1 �W�
4 q}2L2pΩq

�
sF 2
22

p sF�
11q2

}Dβ
tanF

�
21}2L2pΩq � C }̊c1}L8pΩT q|||W |||2s � CMsptq,
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which, combined with (7.52), leads to

| rR31| ¤ sC0Eβtanptq � C }̊c1}L8pΩT q|||W |||2s � CMsptq, (7.57)

where

sC0 :� maxp1, p
sF�
11q2sF 2
22

q r
sF11ssF�
11

. (7.58)

– If d � 3, then

}Dβ�e2

tan DxpF�
12, F

�
22, F

�
33q}2L2pΩq

¤ }Dβ
tanpF�

12, F
�
22, F

�
33q}2L2pΩq � }Dβ�e2�e3

tan pF�
12, F

�
22, F

�
33q}2L2pΩq

�
sF 2
22

pρ̄�q2p sF�
11q4

}Dβ
tanpW�

1 �W�
5 q}2L2pΩq �

sF 2
33

p sF�
11q2

}Dβ�e2�e3

tan F�
31}2L2pΩq

�
sF 2
22

p sF�
11q2

}Dβ
tanF

�
21}2L2pΩq � C }̊c1}L8pΩT q|||W |||2s � CMsptq,

which, along with (7.53), yields

| rR31| ¤ sC1Eβtanptq � sC2Eβ�e2�e3

tan ptq
� C }̊c1}L8pΩT q|||W |||2s � CMsptq, (7.59)

where

sC1 :�
�

1�
sF 2
33sF 2
22

	1{2

maxp1,
sF 2
22

p sF�
11q2

q
sF�
11r sF11ssF22

sF33

, (7.60)

sC2 :�
�

1�
sF 2
33sF 2
22

	1{2

maxp1,
sF 2
33

p sF�
11q2

q
sF�
11r sF11ssF22

sF33

. (7.61)

Plugging estimates (7.51), (7.57), and (7.59) into (7.50), and using (7.9), (7.18),
and (7.30), we deduce

Eβtanptq ¤C }̊c1}H3pΩT q|||W ptq|||2s � CMsptq

�
#sC0 Eβtanptq if d � 2,sC1 Eβtanptq � sC2 Eβ�e2�e3

tan ptq if d � 3.
(7.62)

For d � 3, it follows from (3.23) that sC1   1, so that estimate (7.62)
implies that

Eβtanptq ¤ C }̊c1}H3pΩT q|||W ptq|||2s � CMsptq �
sC2

1� sC1

Eβ�e2�e3

tan ptq (7.63)
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for all β P N3 with |β| ¤ s and β2 ¥ 1.

Proof of Proposition 7.1 for d � 2. In the two-dimensional case, if (3.23)
holds, then sC0   1. From (7.62), we have

Eβtanptq À }̊c1}H3pΩT q|||W ptq|||2s �Msptq, (7.64)

for all β P N2 with |β| ¤ s and β2 ¥ 1. Combining (7.64) and (7.48), we
can conclude (7.64) for all β P N2 with |β| ¤ s. The proof for case d � 2 is
complete. l

7.6 Estimate of Term R3 with the x3-Derivative

For the three-dimensional case (d � 3), in order to prove (7.1), it suffices to
obtain the estimate of R3 defined in (7.18) for β3 ¥ 1 and |β| ¤ s. For this
purpose, we utilize (7.26) and (7.49) to deduce

R3 � 2

»
BΩ

r sF11sBFij%p sF�qDβ
tanF

�
ijDβ

tanψloooooooooooooooooooooomoooooooooooooooooooooon
pR31� pR32

�
»
BΩ

c̊0Dβ
tanF

�
ijDβ

tanψloooooooooooomoooooooooooon
pR33

, (7.65)

where

pR31 :� �2r sF11s%p sF�q2
»
BΩ

Dβ�e3

tan F�
13

� sF22sF33

Dβ
tanF

�
33 �Dβ

tanF
�
22

	
,

pR32 :�
»
BΩ

c̊0Dβ�e3

tan

�̊
c1W �

ḑ

`�2

c̊0R`

	
Dβ

tanF
�
ij .

Similar to the derivation of estimates (7.35)–(7.38), we can deduce

| pR32| � | pR33| À
��̊c1

��
H3pΩtq

|||W ptq|||2s �Msptq. (7.66)

In view of inequality (4.7), we have

| pR31| ¤ 2r sF11s%p sF�q2}Dβ�e3

tan F�
13}H1pΩq

�
� sF22sF33

}Dβ�e3

tan F�
33}H1pΩq � }Dβ�e3

tan F�
22}H1pΩq

	
¤ r sF11s%p sF�q2

�
1�

sF 2
22sF 2
33

	1{2

}Dβ�e3

tan pF�
13, F

�
22, F

�
33q}2H1pΩq. (7.67)
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Use identities (7.54)–(7.56) and estimates (6.31)–(6.32) to derive

}Dβ�e3

tan DxpF�
13, F

�
22, F

�
33q}2L2pΩq

¤ }Dβ
tanpF�

13, F
�
22, F

�
33q}2L2pΩq � }Dβ�e3�e2

tan pF�
13, F

�
22, F

�
33q}2L2pΩq

�
sF 2
33

pρ̄�q2p sF�
11q4

}Dβ
tanpW�

1 �W�
5 q}2L2pΩq �

sF 2
22

p sF�
11q2

}Dβ�e3�e2

tan F�
21}2L2pΩq

�
sF 2
33

p sF�
11q2

}Dβ
tanF

�
31}2L2pΩq � C }̊c1}L8pΩtq|||W |||2s � CMsptq,

which, along with (7.9), (7.18), (7.30), (7.65), and (7.67)–(7.68), yields

Eβtanptq ¤ sC3 Eβtanptq � sC4 Eβ�e3�e2

tan ptq
� C }̊c1}L8pΩT q|||W |||2s � CMsptq, (7.68)

where

sC3 :�
�

1�
sF 2
22sF 2
33

	1{2

maxp1,
sF 2
33

p sF�
11q2

q
sF�
11r sF11ssF22

sF33

, (7.69)

sC4 :�
�

1�
sF 2
22sF 2
33

	1{2

maxp1,
sF 2
22

p sF�
11q2

q
sF�
11r sF11ssF22

sF33

. (7.70)

Noting from (3.23) that sC3   1, we have

Eβtanptq ¤ C }̊c1}H3pΩT q|||W ptq|||2s � CMsptq �
sC4

1� sC3

Eβ�e3�e2

tan ptq, (7.71)

for all β P N3 with β3 ¥ 1 and |β| ¤ s.

Proof of Proposition 7.1 for d � 3. Combine (7.63) and (7.71) to infer

Eβtanptq ¤C }̊c1}H3pΩT q|||W ptq|||2s � CMsptq �
sC2

sC4

p1� sC1qp1� sC3q
Eβtanptq,

which yields

Eβtanptq À }̊c1}H3pΩT q|||W ptq|||2s �Msptq (7.72)

for all β P N3 with β3 ¥ 1 and |β| ¤ s, provided

sC2
sC4   p1� sC1qp1� sC3q.

This last condition is equivalent to (3.23) because of sC1
sC3 � sC2

sC4. Combin-
ing (7.48), (7.63), and (7.72), we deduce (7.72) for all β P N3 with |β| ¤ s.
Therefore, we complete the proof for d � 3. l
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8 Proof of Theorem 3.1

This subsection is dedicated to the proof of the main theorem of this paper,
Theorem 3.1.

Combine estimates (6.1)–(6.2) and (7.1) to obtain

|||W ptq|||2s À }̊c1}H3pΩT q|||W ptq|||2s �Msptq,
where Msptq is defined by (7.2). Thanks to (3.3), we apply the Moser-type
calculus inequality (4.9) and take K ¡ 0 sufficiently small to obtain

|||W ptq|||2s ÀMsptq. (8.1)

It follows from definitions (3.14)–(4.14) that

|||Ψptq|||2s �
¸

k�|β|¤s

» 8

0

|Bk1χp�x1q|2dx1

»
Rd�1

|Dβ
tanψpt, x1q|2dx1,

which, along with (2.31), leads to

|||Ψptq|||2s �
¸
|β|¤s

}Dβ
tanψptq}2L2pBΩq. (8.2)

Integrate (8.2) over p�8, T q to obtain

}Ψ}HspΩT q � }ψ}HspωT q. (8.3)

Similarly, we see from (3.1) that

}Ψ̊}HspΩT q � }ϕ̊}HspωT q. (8.4)

In view of (6.6), (7.22), (7.27), and (8.1), we have that

¸
|β|¤s

}Dβ
tanψptq}2L2pBΩq À }ψ}2Hspωtq �

¸
|β|�s�1

���Dβ
tan

�̊
c1W �

ḑ

j�2

c̊0Rj

	���2

L2pBΩq

À |||W ptq|||2s �Msptq ÀMsptq, (8.5)

which, along with (8.2), yields

|||pW,Ψqptq|||21 À
» t

0

|||pW,Ψqpτq|||21 dτ � }f̃}2H1pΩtq
,

|||pW,Ψqptq|||2s À
» t

0

|||pW,Ψqpτq|||2s dτ � }f̃}2HspΩtq
� }pV̊ , Ψ̊q}2Hs�2pΩT q

}pW, Ψ, f̃q}2H3pΩtq
for s ¥ 3.

Applying Grönwall’s inequality to the estimates above implies that

|||pW,Ψqptq|||21 À }f̃}2H1pΩtq
, (8.6)

|||pW,Ψqptq|||2s À }f̃}2HspΩtq � }pV̊ , Ψ̊q}2Hs�2pΩT q
}pW, Ψ, f̃q}2H3pΩtq

for s ¥ 3.

(8.7)
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Since W and ψ vanish in the past, we integrate (8.6)–(8.7) over r0, T s to deduce

}pW,Ψq}2H1pΩT q
À }f̃}2H1pΩT q

, (8.8)

}pW,Ψq}2HspΩT q À }f̃}2HspΩT q � }pV̊ , Ψ̊q}2Hs�2pΩT q
}pW,Ψ, f̃q}2H3pΩT q

for s ¥ 3.

(8.9)

Utilizing (8.9) with s � 3 and (3.3), we take K ¡ 0 sufficiently small to derive

}pW,Ψq}2H3pΩT q
À }f̃}2H3pΩT q

. (8.10)

Insert (8.10) into (8.9) to find

}pW,Ψq}2HspΩT q ¤ CpK0, T q
!
}f̃}2HspΩT q � }pV̊ , Ψ̊q}2Hs�2pΩT q

}f̃}2H3pΩT q

)
.

(8.11)

Recalling V � � J̊�W
� (cf. (5.4)), we employ the Moser-type calculus in-

equality (4.10), (6.6), and the Sobolev embedding theorem to obtain

}V }2HspΩT q À
¸
|α|¤s

�
}J̊DαW }2L2pΩT q

� }rDα, J̊sW }2L2pΩT q

	
À }W }2HspΩT q � }pV̊ , Ψ̊q}2Hs�1pΩT q

}W }2H3pΩT q
. (8.12)

Combining (8.3) with (8.10)–(8.12) yields

}V }2HspΩT q � }ψ}2HspωT q
¤ CpK0, T q

!
}f̃}2HspΩT q � }pV̊ , Ψ̊q}2Hs�2pΩT q

}f̃}2H3pΩT q

)
. (8.13)

Thanks to (7.22), (7.27), and (8.13), we can obtain

}V }2HspΩT q � }ψ}2Hs�1{2pωT q

¤ CpK0, T q
!
}f̃}2HspΩT q � }pV̊ , Ψ̊q}2Hs�2pΩT q

}f̃}2H3pΩT q

)
. (8.14)

It follows from (5.3) that

}f̃}2HmpΩT q
À }f}2HmpΩT q

� }̊c1DV6}2HmpΩT q
� }̊c1V6}2HmpΩT q

.

By virtue of (5.1), we employ the Moser-type calculus inequality (4.10) and
the Sobolev embedding theorem to obtain

}f̃}2HmpΩT q
À }f}2HmpΩT q

� }g}2Hm�1{2pωT q
� }pV̊ , Ψ̊q}2Hm�1pΩT q

}g}2H7{2pωT q
.

Insert the estimate with m � s and m � 3 above into (8.14) and use (8.4) to
deduce the tame estimate (3.25). Moreover, we can easily derive (3.24) from
(8.8). This completes the proof of Theorem 3.1.
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Appendix A Proof of Proposition 2.1

Assume that rSs � 0 on Γ ptq. Taking the scalar product of the last identity
in (2.23) with N and utilizing (2.20e) yield that

|N |2 �ppρ�, S�q � ppρ�, S�q�
� |N |2rps � ρ�F�

`N rF`N s � rρF`NF`N s �
ḑ

j�1

pρ�F�
`N q2rρ�1s.

Then we infer from (2.11) and (2.22) that

rρs � rps � 0,

which, combined with (2.23), gives

F�
`N rF`s � 0. (A.1)

Plug (2.20e) into (2.20f) to obtain

F�
kN rFijs � F�

jN rFiks � 0 for i, j, k � 1, . . . , d. (A.2)

For d � 2, from (A.1)–(A.2), we have

pF�
1N q2rFi2s � pF�

2N q2rFi2s � F�
2N

�
F�

1N rFi1s � F�
2N rFi2s

� � 0,

which, along with (2.22), yields rFi2s � 0 for i � 1, 2. Then we utilize (A.2)
again to obtain rF s � 0 on Γ ptq.

For d � 3, relations (A.2) are equivalent to

pF�
1N , F

�
2N , F

�
3N qT � prFi1s, rFi2s, rFi3sqT � 0 for i � 1, 2, 3,

which implies that

rFijs � ωiF
�
jN (A.3)

for some scalar functions ωi and for all i, j � 1, 2, 3. We plug (A.3) into (A.1)
and utilize (2.22) to deduce that ωi � 0 for all i � 1, . . . , d. Then it follows
from (A.3) that rF s � 0 on Γ ptq.

In view of the second condition in (2.23), we find that rU s � 0 on Γ ptq,
i.e., solution U is continuous across front Γ ptq. Therefore, there is no thermoe-
lastic contact discontinuity for the case rSs � 0. This completes the proof of
Proposition 2.1.
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Appendix B Proof of Proposition 2.2

We omit indices � in several places below to avoid overloaded expressions.

1: Proof of (2.35). In the original variables, we see from (2.15c) that

pBt � v`B`q detF � B detF

BFij pBt � v`B`qFij � detF pF�1qjiF`jB`vi
� detF δ`,iB`vi � detF Bivi,

which, combined with the first equation in (2.5), yields

pBt � v`B`qpρ detF q � 0.

After transformation (2.29), we find

pBt � w`B`qpρdetF q � 0,

where

w1 :� 1

B1Φ

�
v1 � BtΦ�

ḑ

j�2

vjBjΦ
	
, wi :� vi for i � 2, � � � , d.

Since w1|x1�0 � 0 resulting from (2.32b), we can obtain identity (2.35) by the
standard energy method.

2: Proof of (2.36). A straightforward calculation shows that solutions of (2.18)
satisfy (see, e.g., the proof of Qian–Zhang [24, Proposition 1])

pBt � v`B`qpF`kB`Fij � F`jB`Fikq � BmvipF`kB`Fmj � F`jB`Fmkq.
After transformation (2.29), we have

pBt � w`B`qMk,i,j � BΦmviMk,m,j

with Mk,i,j :� F`kBΦ` Fij � F`jBΦ` Fik. Here we recall the differentials with re-
spect to (2.29) from definition (2.40). Similar to the proof of Hu–Wang [19,
Lemma A.2], we can use integration by parts and w1|x1�0 � 0 to obtain (2.36).

3: Proof of (2.37) and (2.39). In the original variables, system (2.15) gives

pBt � v`B`qpρFijq � ρFijB`v` � ρF`jB`vi � 0. (B.1)

After transformation (2.29), equation (B.1) becomes

pBt � w`B`qpρFijq � ρFijBΦ` v` � ρF`jBΦ` vi � 0. (B.2)

By virtue of (2.32b), we have

pBt � w`B`qBiϕ � Biv �N on BΩ, for i � 2, . . . , d.
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Then it follows from the restriction of (B.2) on BΩ that

pBt � w`B`qpρFjN q � ρFjN

ḑ

`�2

B`v` � 0 on BΩ. (B.3)

Since w1|x1�0 � 0 and rvs � 0, we can derive (2.37) and (2.39) by employing
the method of characteristics.

4: Proof of (2.38). It follows from (B.3) that

pBt � w`B`qpρFkNFij � ρFjNFikq � ρFkN pBt � w`B`qFij

� ρFjN pBt � w`B`qFik �
ḑ

`�2

B`v`pρFkNFij � ρFjNFikq � 0 on BΩ.

Since

pBt � w`B`qFij � F`jBΦ` vi �
B1vi
B1Φ

FjN �
ḑ

`�2

F`jB`vi,

we have

pBt � w�
` B`qrIk,i,js �

ḑ

`�2

B`v�i rIj,`,ks �
ḑ

`�2

B`v�` rIk,i,js � 0 on BΩ,

for Ik,i,j :� ρFkNFij � ρFjNFik. Since (2.38) holds at the initial time, i.e.,
rIk,i,js � 0 at t � 0 for i, j, k � 1, . . . , d, we employ the standard argument of
the energy method to derive that (2.38) is satisfied for all t P r0, T s.
5: Proof of (2.41). It suffices to prove (2.12) in the original variables. We note
that (2.6)–(2.7) hold in virtue of (2.35)–(2.36) so that

B`pρF`kq � B`ppdetF q�1F`kq
� pdetF q�1B`F`k � pdetF q�2F`k

B detF

BFij B`Fij
� pdetF q�1

�B`F`k � pF�1qjiF`kB`Fij
�

� pdetF q�1
�B`F`k � pF�1qjiF`jB`Fik

�
� pdetF q�1 pB`F`k � δ`,iB`Fikq � 0.

This completes the proof of Proposition 2.2.
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Bd. III/1, pp. 226–793; appendix, pp. 794–858. Springer: Berlin (1960).
https://doi.org/10.1007/978-3-642-45943-6


