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Motivation

What is calibration?

I Derivative pricing models depend on parameters:
Black-Scholes σ, interest rate r , Heston reversion speed κ, etc.

I For a given parameter θ, one can compute model prices of
derivatives, say, P(θ; S0, t0), conditional on the value of the
underlying stock at time t0, S0.

I But: parameters are a priori unknown.

I −→ Observe them indirectly via traded market prices P?.

I Calibration seeks to identify θ from the requirement

P(θ;S0, t0) = P?,

where P and P? can be vectors.
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Motivation

Why calibrate?

I Calibration can be used to match the prices of liquidly traded
contracts.

I It interpolates between prices, say for different strikes,
maturities;

I to discover the true (?) model,

I to price more ‘exotic’ derivatives.

I Perhaps most importantly, it allows us to use the model to
translate prices into hedge parameters.

I ...
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Model-free density estimation

I Under no-arbitrage, option prices are discounted expectations
under a risk-neutral measure.

I A key building block is the risk-neutral probability measure.
I The (risk-neutral) transition p(S , t;S ′,T ) can be viewed in

two ways:

1. If S and t are fixed (today’s spot price and date), we can
regard p(S , t;S ′,T ) as the probability density that at time
T > t the spot price will be S ′.

2. If S ′ and T are fixed (some given value of the spot price and
date, say) then p(S , t;S ′,T ) is the probability density that at
time t < T the spot price was S .

p is governed by the (forward and backward) Kolmogorov
equations, which are model-specific (see later).
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Breeden-Litzenberger formula

The price C of a European call option with strike K and expiration
T can be written as

C (S , t;K ,T ) = e−r(T−t)

∫ ∞
0

p(S , t; S ′,T )C (S ,T ;K ,T ) dS ′

= e−r(T−t)

∫ ∞
K

p(S , t; S ′,T )(S ′ − K ) dS ′,

and from this

∂C

∂K
= −e−r(T−t)

∫ ∞
K

p dS ′,

∂2C

∂K 2
= e−r(T−t)p(S , t;K ,T ).
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Risk-neutral densities

I Matlab example: numerical risk-neutral densities from calls
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Main models

I The Black-Scholes model assumes geometric Brownian motion

dS t

St
= µt dt + σ dW t

with a constant volatility parameter σ.
I The local volatility model allows a function

dS t

St
= µt dt + σ(St , t) dW t .

I The Heston stochastic volatility model with a volatility process

dS t = µtSt dt +
√
vtSt dW t ,

dvt = κ(θ − vt) dt + ξ
√
vt dW v

t .

I The local-stochastic volatility (LSV) model combines both
(see later).
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Practicalities

Demands:

I Fast direct solver
I will need to generate prices for many different strikes,

maturities, as part of some sort of iteration;
I ideally analytic or semi-analytic formulae should be available,
I e.g., Fourier-based methods for affine models

I Stable parameter sensitivities
I search directions of solvers usually based on gradients
I Monte Carlo parameter ‘bumping’ can be noisy
I use algorithmic differentiation, adjoint methods etc

I Good initial guess
I solver may only converge locally
I parameter ballpark may be unknown
I use guess based on analytic (asymptotic) approximation
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Issues

Potential, more fundamental problems:

I May not be able to fit all observed prices:

{θ : P(θ;S0, t0) = P?} = ∅

I May not have enough observed prices to determine all
parameters:

|{θ : P(θ;S0, t0) = P?}| > 1

I Estimation may be unstable:

P−1(P?;S0, t0) not continuous

Trade-off between goodness of fit and stability of estimators,
Greeks etc.
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Outline

I Parametric models
I Black-Scholes and implied volatility
I Heston
I Best-fit and iterative solvers

I Local volatilities
I Breeden-Litzenberger and the probability density function
I Dupire local volatility and the adjoint problem
I Inverse and ill-posed problems, regularisation
I Local-stochastic volatility

I Techniques
I Monte Carlo and particle methods
I Finite differences
I Application
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Parametric models
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Black-Scholes model and PDE

The Black-Scholes model assumes geometric Brownian motion

dS

S
= µ dt + σ dW

with a constant volatility parameter σ. The PDE for the
no-arbitrage price of a European option in this model is

∂V

∂t
+

1

2
σ2S2∂

2V

∂S2
+ rS

∂V

∂S
− rV = 0.

In the simplest case of a vanilla call, there is a terminal condition

V (S ,T ) = max(S − K , 0).
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Black-Scholes formula

This problem can be solved analytically and the solution is

V (S , t) = S N(d1)− e−r(T−t)K N(d2),

where

d1 =
log(S/K ) + (r + 1

2σ
2)(T − t)

σ
√
T − t

, d2 = d1 − σ
√
T − t.

This gives us a mapping

V = V (S , t;K ,T ;σ, r)

from the asset price S and the parameters to the option price.
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Implied volatility

I For an externally given price V ?, the (Black-Scholes) implied
volatility is the (constant) volatility parameter σ?, which, if
inserted in the Black-Scholes model, gives this price.

I This definition only makes sense if such a parameter value
exists, and is unique. From

∂V
∂t

+
1

2
σ2S2∂

2V
∂S2

+ rS
∂V
∂S
− rV = −σS2Γ

with V(S ,T ) = 0 it can be shown that for convex payoffs the
implied volatility is unique.

I In the case of European calls this means inverting the
Black-Scholes formula with respect to σ.

I Moreover, the implied volatility is the same for calls and puts
(put-call-parity).
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Nonlinear iteration

Review iterative solvers:

I Fixed-point iteration:

I (linear) convergence for contractions.

I Newton-Raphson method:

I local, quadratic convergence.
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Empirical evidence

I The volatility σ is a parameter of the model for the stock (the
Black-Scholes model), and not of the option contract.

I If we believe in the model, we should expect to get the same
implied volatility independent of what strike and expiry the
option has that we use to identify σ.

Implied volatility for S&P 500 index call options.

T/K 85 90 95 100 105 110 115 120 130 140
0.175 0.190 0.168 0.133 0.113 0.102 0.097 0.120 0.142 0.169 0.200
0.425 0.177 0.155 0.138 0.125 0.109 0.103 0.100 0.114 0.130 0.150
0.695 0.172 0.157 0.144 0.133 0.118 0.104 0.100 0.101 0.108 0.124
0.940 0.171 0.159 0.149 0.137 0.127 0.113 0.106 0.103 0.100 0.110
1.000 0.171 0.159 0.150 0.138 0.128 0.115 0.107 0.103 0.099 0.108
1.500 0.169 0.160 0.151 0.142 0.133 0.124 0.119 0.113 0.107 0.102
2.000 0.169 0.161 0.153 0.145 0.137 0.130 0.126 0.119 0.115 0.111
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S&P 500 volatility surface

It is evident that the volatility surface is not flat as predicted by
the Black-Scholes model. We often see both a

I dependence on K , termed smile or skew, and a
I dependence on T , referred to as term structure.
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FX volatility surface

I The EURUSD spot value on 28/03/2013 is S0 = 1.2837.
I Quoted are for each maturity 5 volatilities on a delta scale,

10D-Put, 25D-Put, 50D, 25D-Call, 10D-Call,

I and the following maturities

3M, 6M, 1Y, 2Y, 3Y, 4Y, 5Y.
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Heston model

I As a parametric example, we study the Heston stochastic
volatility model

dS t = rSt dt +
√
vtSt dW t ,

dvt = κ(θ − vt) dt + ξ
√
vt dW v

t ,

where Yt is the variance process of the asset. ξ > 0 governs
the volatility of variance, and κ, θ > 0 the mean reversion.

I The Wiener processes Wt , W
v
t have correlation ρ.

I The variance process is non-negative by construction.

I Under the Feller condition 2κθ > ξ2, the variance process
stays strictly positive.

I The distribution at time t is non-central ξ2.
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Heston model properties

I The log-process is affine.
I A hedging argument gives the pricing PDE

∂C

∂t
+

1

2

[
S2v

∂2C

∂S2
+ 2ργvS

∂2C

∂S∂v
+ ξ2v

∂2C

∂v2

]
+rS

∂C

∂S
+κ(θ−v)

∂C

∂v
−rC = 0
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Heston model properties

I The characteristic function

φ(u, t) = E [exp (iu log(St))]

is analytically known as

φ(u, t) = exp(iu(log(S0) + (r − q)t))× exp
(
θκξ
−2((κ− ρξiu + d)t)− 2 log((1− gedt )/(1− g))

)
× exp

(
v0ξ
−2(κ− ρξiu + d)(1− gedt )/(1− gedt )

)
d =

√
(ρξui − κ)2 + ξ2(iu + u2)

g = (κ− ρξiu + d)/(κ− ρξiu − d)

I This allows for a semi-closed-from solution for calls as

C(K ,T ) =
exp(−α log K)

π

∫ ∞
0

exp(−iv log K)%(v) dv

%(v) =
exp(−rT )φ(v − (α + 1)i,T )

α2 + α− v2 + i(2α + 1)v

(α arbitrary but such that α + 1st moment exists.)
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Fitted model

I Matlab example: Heston model implied vol and market fit
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Local volatility
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Local volatility

I One interpretation of the observed data is that the volatility is
not constant but depends on the value of the stock.

I A model that accounts for this dependence on state and time
is

dS

S
= µ dt + σ(S , t) dW .

The function (S , t)→ σ(S , t) is called local volatility.

I The risk neutral transition density satisfies

∂p

∂T
= 1

2

∂2

∂S ′2

(
σ(S ′,T )2S ′

2
p
)
− ∂

∂S ′
(
rS ′p

)
−∂p
∂t

= 1
2σ(S , t)2S2 ∂

2p

∂S2
+ rS

∂p

∂S
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Local volatility

The model still describes a complete market, where a standard
hedging argument determines the price of a European option as
the solution of the PDE

∂V

∂t
+

1

2
S2σ2(S , t)

∂2V

∂S2
+ r

(
S
∂V

∂S
− V

)
= 0.

For any choice of the local volatility function σ(., .), there is a
unique arbitrage-free price

V = V (S , t;K ,T ;σ(., .), r).

In general, numerical solution is necessary. This defines a
parameter-to-solution map

Ψ : σ(., .)→ V (., .), or Φ : σ(., .)→ σ̂(., .).

(the dependence on r is suppressed).
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Dupire formula

Using the integral formula for call prices and Kolmogorov forward
equation, the value function

V = V (S , t;K ,T ),

satisfies a PDE in T and K (!),

∂V

∂T
+ rK

∂V

∂K
= 1

2K
2σ2(K ,T )

∂2V

∂K 2
.

Re-arranging,

σ(S , t;K ,T )2 =
(∂V /∂T )(S , t;K ,T ) + rK (∂V /∂K )(S , t;K ,T )

1
2K

2(∂2V /∂K 2)(S , t;K ,T )

Recall that, in practice, when we compute σ(S , t;K ,T ), today’s
spot price S and date t are fixed. We can vary only the strike K
and the maturity T .
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Discussion

Practical problems with this approach:

I requires continuum of strikes and maturities (interpolation,
extrapolation)

I numerical differentiation is ill conditioned

I the nominator ∂2V /∂K 2 tends to zero for K →∞

The last problem can be circumvented to some extent by switching
from quoted prices to implied vols

σ(K ,T )2 =
σ̂2 + 2σ̂ (T − t) ∂σ̂

∂T
+ 2r σ̂ K(T − t) ∂σ̂

∂K

(1 + K d1
√
T − t ∂σ̂

∂K
)
2

+ σ̂ (T − t) K2
(
∂2σ̂
∂K2 − d1

(
∂σ̂
∂K

)2√
(T − t)

)
where, as usual,

d1 =
log(S/K) + (r + 1

2
σ̂2)(T − t)

σ̂
√

T − t
.
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Iterative solution (A. Rehai, Risk Magazine, April, 2006)

Can use this for an iterative procedure to solve

Φ(σ) = σ̂∗,

the market implied volatility.

I Set σ0 = σ̂∗.

I Then define, for k ≥ 0,

σk+1 = σk · σ̂∗

Φ(σk)
= φ(σk).

I Any fixed-point σ∗ solves Φ(σ∗) = σ̂∗.

I The map φ is found to be a contraction.

I In practice, only few iterations needed.
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Calibrated FX local volatility surface

I The EURUSD spot value on 28/03/2013 is S0 = 1.2837.
I Quoted are for each maturity 5 volatilities on a delta scale,

10D-Put, 25D-Put, 50D, 25D-Call, 10D-Call,

I and the following maturities

3M, 6M, 1Y, 2Y, 3Y, 4Y, 5Y.
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Noise magnification

I Matlab example: local vol without/with small data noise.
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An ill-posed problem

Parameter identification problems are often inherently ill-posed.

A problem is called well-posed (in the sense of Hadamard), if

1. a solution exists,

2. the solution is unique, and

3. the solution depends continuously on the data.

A problem that is not well-posed is called ill-posed.

When speaking of ‘inverse’ problems, a natural reflex is to ask
“inverse to what?”.

A simple instructive example of a direct/inverse problem pair are
differentiation and integration.
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Direct/inverse problems

I Integration:

F (x) =

∫ x

0
f (z) dz

If f = 0 with some ‘noise’ fε with |fε(x)| < ε for x ∈ [0, 1],
then for the perturbed integral Fε

|F (x)− Fε(x)| ≤
∣∣∣∣∫ x

0
fε(z) dz

∣∣∣∣ ≤ ε.
I Differentiation:

f (x) =
dF

dx
(x)

For F = 0 and noise of the form Fε(x) = ε sin(kx)

|f (x)− fε(x)| ≈ εk ,

which can be arbitrarily large, even if maxx∈[0,1] |Fε(x)| ≤ ε.
Christoph Reisinger Calibration of Derivative Pricing Models
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Numerical differentiation

If we replace the derivative by a finite difference,

dF

dx
(x) ≈ F (x + h)− F (x)

h
+ c · h + . . .

In the presence of noise

dF

dx
(x) ≈ Fε(x + h)− Fε(x)

h
+ c · h + . . .

≈ F (x + h)− F (x)

h
+
ε

h
+ c · h + . . .

The finite stepsize h regularises the ill-posed problem, it acts as
regularisation parameter. There is a tradeoff between
approximation and stability. If the ‘noise level’ ε is known, the
optimal choice is when ε/h ∼ h, i.e. h ∼

√
ε.
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Regularisation

For an abstract ill-posed problem

F (x) = y , x ∈ X , y ∈ Y , (1)

remedies often fall in the following classes.

1. Non-existence: find the best fit, i.e. replace (1) by an
optimisation problem

‖F (x)− y‖Y → min
x∈X

2. Non-uniqueness: choose a particular solution, e.g.

‖x − x0‖X → min
x∈X

for an initial guess x0.
3. Continuous dependence on data: combine the above two to

‖F (x)− y‖2
Y + λ‖x − x0‖2

X → min
x∈X

with some λ > 0.Christoph Reisinger Calibration of Derivative Pricing Models
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Example

Many examples found in the literature have the form

N∑
i=1

wi |V (S0, 0;Ki ,Ti ;σ)− Vi |2 + λ‖σ‖2 → min

with some positive weights wi and λ > 0, where Vi are quoted
prices for various strike/maturity pairs (Ki ,Ti ). They differ in their
choice of ‖.‖, and parametrisation of σ.

Jackson, Süli, Howison choose

‖σ‖2 =

∫ T

0

∫ ∞
0

(
∂σ

∂S

)2

+

(
∂σ

∂t

)2

dS dt

with greater weight for liquid options (short dated, close to the money).

σ is represented by cubic splines in S and piecewise linear in t, with more

points around the money, constant extrapolation in the far range. The

solution of the direct problem is computed by adaptive finite elements.
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Dual approach

Egger uses the Dupire PDE

∂V

∂T
=

1

2
σ2(K ,T )K 2∂

2V

∂K 2
− rK

∂V

∂K
V (S , t;K , t) = (K − S)+

solved again by finite elements, and

‖σ‖2 =

∫ ∞
0

(
∂σ

∂S

)2

+

(
∂2σ

∂S2

)2

dS

with σ from a class of cubic splines. A proof of stability and
convergence rates are given. The optimisation problem is solved by
a BSGF quasi-Newton method.
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Transformation

Following H. Berestycki, J. Busca, and I. Florent: Asymptotics and
calibration of local volatility models, Quantitative Finance (2002),
we now address the problematic regions t → T , S → 0 and
S →∞.

It is convenient to consider the transformations x = log(S/K ) + rτ ,
τ = T − t, and v(x , τ) = exp(rτ)C (S ,T − τ ;K ,T )/K , such that

Lv = vτ −
1

2
σ2(x , τ)(vxx − vx) = 0

v(x , 0) = (ex − 1)+

where σ(x , t) is actually σ(K exp(x − r(T − t)),T − t).

For σ = 1 constant,

uτ =
1

2
(uxx − ux).

Christoph Reisinger Calibration of Derivative Pricing Models



Parametric models
Local volatility

Techniques

Implied volatility

Note that if u(x , τ) is a solution to

uτ =
1

2
(uxx − ux),

then u(x , τµ) with µ > 0 is a solution to the problem with
volatility

√
µ.

Therefore, the implied volatility φ(x , τ) is implicitly given via

v(x , τ) = u(x , τφ2(x , τ)).

Some calculus gives

Lv = uτ (x , τφ2)F (x , τ, φ, φx , φxx)

with

F (x , τ, φ, φx , φxx) = φ2−σ2 (1− xφx/φ)2+2τφφτ−σ2τφ2φxx+σ2τ 2φ2φ2
x/4

Therefore, φ is the solution of the quasi-linear equation F = 0.
Christoph Reisinger Calibration of Derivative Pricing Models
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Asymptotics

We can set τ = 0 to ‘formally’ get the limiting equation

φ2 = σ2 (1− xφx/φ)2

⇔ 1
σ(x ,0) = φ−xφx

φ2 = d
dx

(
x
φ

)
⇔

∫ x
0

ds
σ(s,0) = x

φ

or
1

φ(x , 0)
=

∫ 1

0

ds

σ(xs, 0)
.

Based on this asymptotic result, define the calibration functional as

N∑
i=1

(
φ(xi , τi )

−1 − φ−1
i

)2
+ λ ‖∇(σ−1)‖2

2,

where φi are observed implied volatilities, and φ(xi , τi ) are implied
from the model for these strike/maturity pairs.
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Markovian projections

Gyöngy’s result

I Consider a model of the form

dS t

St
= r dt + ηt dW t ,

where η is a fairly arbitrary volatility process subject only to
some technical conditions (mostly,

∫ t
0 η

2
uS

2
u du of bounded

expectation).

I Then the law (density) of St agrees with that of the local
volatility model provided

E[η2
t |St = S ] = σ2(S , t).
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Discussion

I If the density of the processes agrees, the prices of European
options (e.g., calls and puts) agree.

I Hence for any continuous semi-martingale model there is a
local volatility model indistinguishable from vanilla options.

I We can use the local volatility as a “code book”, an
equivalent way to quote vanilla prices, in the same way as we
use the (Black-Scholes) implied volatility.
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Local-stochastic volatility (LSV)

I Local volatility can fit all prices exactly.

I The dynamics of spot and vol is incorrect.

I Stochastic volatility gives an imperfect fit.

I It gives a realistic spot-vol dynamics.

I The Local-stochastic volatility model seeks to combine both
advantages.

Christoph Reisinger Calibration of Derivative Pricing Models



Parametric models
Local volatility

Techniques

Local-stochastic volatility (LSV)

I Combining stochastic and local volatility,

dS t

St
= r dt + σ(St , t)

√
vt dW t ,

dvt = κ(θ − vt) dt + ξ
√
vt dW v

t ,

with local and stochastic volatility.

I To be consistent with European call/put option prices, it has
to hold that

σ2
LV (K ,T ) = σ(K ,T )2 E

[
vT
∣∣ST = K

]
,

where σLV is the Dupire local volatility function calibrated to
the calls and puts.
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A warning – model uncertainty

I A local volatility model, jump diffusion model, and (Heston)
stochastic volatility model calibrated to 60 observed European
calls for different strike/maturity pairs within 3 basis points.
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Parameter rate of long run volatility of correlation initial
reversion variance volatility variance

Value 0.0745 0.1415 0.1038 -0.2127 0.0167

I The value of an up-and-out barrier call with strike 90% and
barrier 110% of the spot varies by 177 basis points.
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Path simulation – local volatility

I For Black-Scholes, we have exactly

Sn+1 = Sn exp
(
(r − σ2/2)∆t + σ∆Wn

)
,

where ∆t ≡ tn+1 − tn and ∆Wn ≡Wtn+1 −Wtn ∼ N(0,∆t).

I The Euler-Maruyama scheme is

Sn+1 = Sn (1 + r∆t + σ∆Wn) .

I For local volatility, use either Euler-Maruyama or log-Euler

Sn+1 = Sn exp
(
(r − σ2(Stn , t)/2)∆t + σ(Stn , t)∆Wn

)
,

which preserves positivity and is exact for constant σ.
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Path simulation – Heston and LSV

I First, approximate the variance process, e.g. by the
full-truncation Euler scheme

vn+1 = vn + κ
(
θ − v+

n

)
∆t + ξ

√
v+
n ∆W v

n ,

where x+ = max(x , 0).
I Note the standard Euler-Maruyama scheme generates negative

variances.
I Then approximate S , e.g. by log-Euler

Sn+1 = Sn exp
(

(r − v+
n /2)∆t +

√
v+
n ∆Wn

)
,

which is again positive. Similarly, for SLV

Sn+1 = Sn exp
(

(r − v+
n σ

2(Stn , t)/2)∆t +
√

v+
n σ(Stn , t)∆Wn

)
.
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Monte Carlo expectations

Want to compute an expected European payoff

E [P(ST )] .

I Simulate ŜN for T = N∆t, to generate M independent

samples Ŝ
(i)
N .

I Then define the estimator

P̂ =
1

M

M∑
i=1

P(Ŝ
(i)
N ).

I The error consists of bias (neglect here) and sampling noise.

I Convergence for M →∞ by LLN and error bounds by CLT.
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Monte Carlo conditional expectations – particle method

I From the model, the conditional expectation can be estimated
by Markovian projection.

I A particle method estimator is

σ̂(S , t) =

∑N
i=1 η

(i)
t δε(S

(i)
t − S)∑N

i=1 δε(S
(i)
t − S)

,

where (S
(i)
t , η

(i)
t ) is a sample of (St , ηt).

I The kernel function δ has small bandwidth ε, e.g.

δε(S) =
1√
2πε

exp

(
− S2

2ε2

)
.

I Samples are obtained by Monte Carlo simulation.
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Finite differences – local volatility

We think of the θ-scheme as an approximation of the PDE at time
tm − θ∆t,

[
∂V

∂t

]t=tm−θ∆t

S=Sj

+

[
1
2
S2
σ

2(S, t)
∂2V

∂S2

]t=tm−θ∆t

S=Sj

+

[
rS
∂V

∂S

]t=tm−θ∆t

S=Sj

− [rV ]
t=tm−θ∆t
S=Sj

= 0

Approximate the PDE by setting e.g.

[rV ]t=tm−θ∆t
S=Sj

= θrV (Sj , tm−1) + (1− θ)rV (Sj , tm)

and similarly for the first S-derivative.
If [

∂V

∂t

]t=tm−θ∆t

S=Sj

=
V (Sj , tm)− V (Sj , tm−1)

∆t
,

the scheme is of second order accurate in ∆t if θ = 1
2 and of first

order otherwise.
Christoph Reisinger Calibration of Derivative Pricing Models
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Finite differences – local volatility

For the term containing σ, we could either use

[
1
2
S2
σ

2(S, t)
∂2V

∂S2

]t=tm−θ∆t

S=Sj

= θ 1
2
S2
j σ

2(Sj , tm−1)

[
∂2V

∂S2

]t=tm−1

S=Sj

+ (1− θ) 1
2
S2
j σ

2(Sj , tm)

[
∂2V

∂S2

]t=tm

S=Sj

with[
∂2V

∂S2

]t=tm

S=Sj

=
V (Sj + ∆S , tm)− 2V (Sj , tm) + V (Sj −∆S , tm)

∆S2
,

or

[
1
2
S2
σ

2(S, t)
∂2V

∂S2

]t=tm−θ∆t

S=Sj

=
1
2
S2
j σ

2(Sj , tm − θ∆t)

{
θ

[
∂2V

∂S2

]t=tm−1

S=Sj

+ (1− θ)

[
∂2V

∂S2

]t=tm

S=Sj

}
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Finite differences – forward equations

I For the computation of (conditional) expectations, the
probability density is useful.

I This requires a numerical solution of the Kolmogorov forward
equation.

I Can approximate

[
1
2

∂2

∂S2
S2
σ

2(S, t)V

]t=tm−θ∆t

S=Sj

= θ 1
2

[
∂2

∂S2
S2
σ

2(S, t)V

]t=tm−1

S=Sj

+ (1− θ) 1
2

[
∂2

∂S2
S2
σ

2(S, t)V

]t=tm

S=Sj

,

where

[
∂2

∂S2
S2
σ

2(S, t)V (s, t)

]t=tm

S=Sj

=
(Sj + ∆S)2σ2(Sj + ∆S, tm)V (Sj + ∆S, tm)− 2S2

j σ
2(Sj , t)V (Sj , tm) + . . .

∆S2
.

I The Dirac initial datum needs care (e.g., Rannacher start-up).
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Computing gradients

I In the optimisation, need to compute derivatives

∇θ
n∑

i=1

|V (S , t; θ)− V ∗i |2 = 2∇θV (S , t; θ)
n∑

i=1

(V (S , t; θ)− V ∗i )

I The pricing method must be able to return stable parameter
sensitivities.

I Can differentiate PDE with respect to parameters and solve
extra PDEs.

I Monte Carlo:
I Pathwise sensitivities
I Likelihood ratios
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Generic tools

I ‘Bumping’
I Evaluate algorithm for parameters θ and θ + δθ
I approximate derivative by V (θ+δθ)−V (θ)

δθ
I potentially large error magnification; trade off with bias
I inefficient for large number of parameters

I Algorithmic differentiation
I break code down into elementary instructions (+,×,...)
I differentiate by a giant chain rule
I automatic software tools available

I AAD – Adjoint algorithmic differentiation
I evaluate the chain rule in reverse direction
I ultimately, backward product of transposed matrices
I efficient when many inputs, i.e. high-dimensional gradient
I complexity always within 3-4 times that of function evaluation
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Example: Local-stochastic volatility

I Whiteboard example LSV: first fix the Heston parameters,
then fine-tune by ‘boot-strapping’ the function σ; see Ren,
Madan and Qian (2007).
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